Current Progress on the Surface Chemical Modification of Carbonaceous Materials
Abstract
:1. Introduction
2. Surface Chemical Characteristics
2.1. Acidic Surfaces
2.2. Basic Surfaces
3. Surface Chemical Modification of Activated Carbons
3.1. Acid Treatment
3.2. Base Treatment
3.3. Chemical Impregnation
3.4. Surfactant-Modified Activated Carbons
3.5. Ligand Functionalization
4. Surface Analyses of Activated Carbons
4.1. Acid/ Base Titrations
4.2. Fourier Transform Infrared Spectroscopy (FT-IR)
4.3. Temperature Programmed Desorption (TPD)
4.4. X-Ray Photoelectron Spectroscopy (XPS)
5. Practical Applications of Surface-Modified Activated Carbons
5.1. Surface Modified Carbons as Supercapacitors
5.2. Surface Modified Carbons as Efficient CO2 Adsorbents
5.3. Surface Modified Carbons as Organic Pollutant Adsorbents
5.4. Surface Modified Carbons as Dye Adsorbents
6. Concluding Remarks and Future Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Nacu, G.; Bulgariu, D.; Cristina Popescu, M.; Harja, M.; Toader Juravle, D.; Bulgariu, L. Removal of Zn (II) ions from aqueous media on thermal activated sawdust. Desalin. Water Treat. 2016, 57, 21904–21915. [Google Scholar] [CrossRef]
- Liang, L.; Liu, C.; Jiang, F.; Chen, Q.; Zhang, L.; Xue, H.; Jiang, H.L.; Qian, J.; Yuan, D.; Hong, M. Carbon dioxide capture and conversion by an acid-base resistant metal-organic framework. Nat. Commun. 2017, 8, 1233. [Google Scholar] [CrossRef] [PubMed]
- Hulicova-Jurcakova, D.; Seredych, M.; Lu, G.Q.; Bandosz, T.J. Combined effect of nitrogen-and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv. Funct. Mater. 2009, 19, 438–447. [Google Scholar] [CrossRef]
- Georgin, J.; Dotto, G.L.; Mazutti, M.A.; Foletto, E.L. Preparation of activated carbon from peanut shell by conventional pyrolysis and microwave irradiation-pyrolysis to remove organic dyes from aqueous solutions. J. Environ. Chem. Eng. 2016, 4, 266–275. [Google Scholar] [CrossRef]
- Hameed, B.; Tan, I.; Ahmad, A. Adsorption isotherm, kinetic modeling and mechanism of 2, 4, 6-trichlorophenol on coconut husk-based activated carbon. Chem. Eng. J. 2008, 144, 235–244. [Google Scholar] [CrossRef]
- Ioannidou, O.; Zabaniotou, A. Agricultural residues as precursors for activated carbon production—a review. Renew. Sustain. Energy Rev. 2007, 11, 1966–2005. [Google Scholar] [CrossRef]
- Mohamed, A.R.; Mohammadi, M.; Darzi, G.N. Preparation of carbon molecular sieve from lignocellulosic biomass: A review. Renew. Sustain. Energy Rev. 2010, 14, 1591–1599. [Google Scholar] [CrossRef]
- Kılıç, M. Apaydın-Varol, E. Pütün, A.E. Preparation and surface characterization of activated carbons from Euphorbia rigida by chemical activation with ZnCl2, K2CO3, NaOH and H3PO4. Appl. Surf. Sci. 2012, 261, 247–254. [Google Scholar] [CrossRef]
- Ngah, W.W.; Hanafiah, M. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour. Technol. 2008, 99, 3935–3948. [Google Scholar] [CrossRef]
- Rehman, A.; Park, S.J. Facile synthesis of nitrogen-enriched microporous carbons derived from imine and benzimidazole-linked polymeric framework for efficient CO2 adsorption. J. CO2 Util. 2017, 21, 503–512. [Google Scholar] [CrossRef]
- Daifullah, A.; Girgis, B. Removal of some substituted phenols by activated carbon obtained from agricultural waste. Water Res. 1998, 32, 1169–1177. [Google Scholar] [CrossRef]
- Li, L.; Quinlivan, P.A.; Knappe, D.R. Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution. Carbon 2002, 40, 2085–2100. [Google Scholar] [CrossRef]
- Matsui, Y.; Fukuda, Y.; Inoue, T.; Matsushita, T. Effect of natural organic matter on powdered activated carbon adsorption of trace contaminants: characteristics and mechanism of competitive adsorption. Water Res. 2003, 37, 4413–4424. [Google Scholar] [CrossRef]
- Chen, J.P.; Wu, S.; Chong, K.H. Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption. Carbon 2003, 41, 1979–1986. [Google Scholar] [CrossRef]
- Karanfil, T.; Kilduff, J.E. Role of granular activated carbon surface chemistry on the adsorption of organic compounds. 1. Priority pollutants. Environ. Sci. Technol. 1999, 33, 3217–3224. [Google Scholar] [CrossRef]
- Monser, L.; Adhoum, N. Modified activated carbon for the removal of copper, zinc, chromium and cyanide from wastewater. Sep. Purif. Technol. 2002, 26, 137–146. [Google Scholar] [CrossRef]
- Jiang, Z.; Liu, Y.; Sun, X.; Tian, F.; Sun, F.; Liang, C.; You, W.; Han, C.; Li, C. Activated carbons chemically modified by concentrated H2SO4 for the adsorption of the pollutants from wastewater and the dibenzothiophene from fuel oils. Langmuir 2003, 19, 731–736. [Google Scholar] [CrossRef]
- Faria, P.; Orfao, J.; Pereira, M. Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries. Water Res. 2004, 38, 2043–2052. [Google Scholar] [CrossRef]
- Dąbrowski, A.; Podkościelny, P.; Hubicki, Z.; Barczak, M. Adsorption of phenolic compounds by activated carbon—A critical review. Chemosphere 2005, 58, 1049–1070. [Google Scholar] [CrossRef]
- Moreno-Castilla, C.; Lopez-Ramon, M.; Carrasco-Marın, F. Changes in surface chemistry of activated carbons by wet oxidation. Carbon 2000, 38, 1995–2001. [Google Scholar] [CrossRef]
- Pradhan, B.K.; Sandle, N. Effect of different oxidizing agent treatments on the surface properties of activated carbons. Carbon 1999, 37, 1323–1332. [Google Scholar] [CrossRef]
- Biniak, S.; Szymański, G.; Siedlewski, J.; Światkowski, A. The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 1997, 35, 1799–1810. [Google Scholar] [CrossRef]
- El-Hendawy, A.N.A. Influence of HNO3 oxidation on the structure and adsorptive properties of corncob-based activated carbon. Carbon 2003, 41, 713–722. [Google Scholar] [CrossRef]
- Daud, W.M.A.W.; Houshamnd, A.H. Textural characteristics, surface chemistry and oxidation of activated carbon. J. Nat. Gas Chem. 2010, 19, 267–279. [Google Scholar] [CrossRef]
- Choi, C.H.; Park, S.H.; Woo, S.I. Heteroatom doped carbons prepared by the pyrolysis of bio-derived amino acids as highly active catalysts for oxygen electro-reduction reactions. Green Chem. 2011, 13, 406–412. [Google Scholar] [CrossRef]
- Paraknowitsch, J.P.; Thomas, A. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 2013, 6, 2839–2855. [Google Scholar] [CrossRef]
- Duan, X.; Sun, H.; Wang, Y.; Kang, J.; Wang, S. N-doping-induced nonradical reaction on single-walled carbon nanotubes for catalytic phenol oxidation. ACS Catal. 2014, 5, 553–559. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Ed. 2012, 51, 68–89. [Google Scholar] [CrossRef]
- Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S.Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem. 2012, 124, 11664–11668. [Google Scholar] [CrossRef]
- Moreno-Castilla, C. Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 2004, 42, 83–94. [Google Scholar] [CrossRef]
- Villacañas, F.; Pereira, M.F.R.; Órfão, J.J.; Figueiredo, J.L. Adsorption of simple aromatic compounds on activated carbons. J. Colloid Interface Sci. 2006, 293, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Hyun, S.; Pignatello, J.J.; Lee, L.S. Evidence for π− π electron donor− acceptor interactions between π-donor aromatic compounds and π-acceptor sites in soil organic matter through pH effects on sorption. Environ. Sci. Technol. 2004, 38, 4361–4368. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Dai, S. Surface functionalization and pore size manipulation for carbons of ordered structure. Chem. Mater. 2005, 17, 1717–1721. [Google Scholar] [CrossRef]
- Li, B.; Dai, F.; Xiao, Q.; Yang, L.; Shen, J.; Zhang, C.; Cai, M. Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ. Sci. 2016, 9, 102–106. [Google Scholar] [CrossRef]
- Kiciński, W.; Szala, M.; Bystrzejewski, M. Sulfur-doped porous carbons: synthesis and applications. Carbon 2014, 68, 1–32. [Google Scholar] [CrossRef]
- Zhang, Y.; Park, S.-J. Incorporation of RuO2 into charcoal-derived carbon with controllable microporosity by CO2 activation for high-performance supercapacitor. Carbon 2017, 122, 287–297. [Google Scholar] [CrossRef]
- Tamon, H.; Okazaki, M. Influence of acidic surface oxides of activated carbon on gas adsorption characteristics. Carbon 1996, 34, 741–746. [Google Scholar] [CrossRef]
- Boehm, H.P. Surface oxides on carbon and their analysis: a critical assessment. Carbon 2002, 40, 145–149. [Google Scholar] [CrossRef]
- Vinke, P.; Van der Eijk, M.; Verbree, M.; Voskamp, A.; Van Bekkum, H. Modification of the surfaces of a gasactivated carbon and a chemically activated carbon with nitric acid, hypochlorite and ammonia. Carbon 1994, 32, 675–686. [Google Scholar] [CrossRef]
- Valdés, H.; Sánchez-Polo, M.; Rivera-Utrilla, J.; Zaror, C. Effect of ozone treatment on surface properties of activated carbon. Langmuir 2002, 18, 2111–2116. [Google Scholar] [CrossRef]
- Toles, C.A.; Marshall, W.E.; Johns, M.M. Surface functional groups on acid-activated nutshell carbons. Carbon 1999, 37, 1207–1214. [Google Scholar] [CrossRef]
- Prahas, D.; Kartika, Y.; Indraswati, N.; Ismadji, S. Activated carbon from jackfruit peel waste by H3PO4 chemical activation: pore structure and surface chemistry characterization. Chem. Eng. J. 2008, 140, 32–42. [Google Scholar] [CrossRef]
- Wang, S.; Lu, G.M. Effects of acidic treatments on the pore and surface properties of Ni catalyst supported on activated carbon. Carbon 1998, 36, 283–292. [Google Scholar] [CrossRef]
- Montes-Morán, M.; Suárez, D.; Menéndez, J.; Fuente, E. On the nature of basic sites on carbon surfaces: an overview. Carbon 2004, 42, 1219–1225. [Google Scholar] [CrossRef]
- Moreno-Castilla, C.; Carrasco-Marin, F.; Utrera-Hidalgo, E.; Rivera-Utrilla, J. Activated carbons as adsorbents of sulfur dioxide in flowing air, Effect of their pore texture and surface basicity. Langmuir 1993, 9, 1378–1383. [Google Scholar] [CrossRef]
- Lopez-Ramon, M.V.; Stoeckli, F.; Moreno-Castilla, C.; Carrasco-Marin, F. On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon 1999, 37, 1215–1221. [Google Scholar] [CrossRef]
- El-Sayed, Y.; Bandosz, T.J. Adsorption of valeric acid from aqueous solution onto activated carbons: role of surface basic sites. J. Colloid Interface Sci. 2004, 273, 64–72. [Google Scholar] [CrossRef]
- Leon, C.L.; Solar, J.; Calemma, V.; Radovic, L.R. Evidence for the protonation of basal plane sites on carbon. Carbon 1992, 30, 797–811. [Google Scholar] [CrossRef]
- Boehm, H. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 1994, 32, 759–769. [Google Scholar] [CrossRef]
- Shafeeyan, M.S.; Daud, W.M.A.W.; Houshmand, A.; Shamiri, A. A review on surface modification of activated carbon for carbon dioxide adsorption. J Anal. Appl. Pyrolysis 2010, 89, 143–151. [Google Scholar] [CrossRef]
- Arrigo, R.; Hävecker, M.; Wrabetz, S.; Blume, R.; Lerch, M.; McGregor, J.; PJ Parrott, E.; Zeitler, J.A.; Gladden, L.F.; Knop-Gericke, A.; Schlögl, R.; Sheng Su, D. Tuning the acid/base properties of nanocarbons by functionalization via amination. J. Am. Chem. Soc. 2010, 132, 9616–9630. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, K. Carbon: Electrochemical and Physicochemical Properties; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1988. [Google Scholar]
- Wang, X.; Liu, R.; Waje, M.M.; Chen, Z.; Yan, Y.; Bozhilov, K.N.; Feng, P. Sulfonated ordered mesoporous carbon as a stable and highly active protonic acid catalyst. Chem. Mater. 2007, 19, 2395–2397. [Google Scholar] [CrossRef]
- Aggarwal, D.; Goyal, M.; Bansal, R. Adsorption of chromium by activated carbon from aqueous solution. Carbon 1999, 37, 1989–1997. [Google Scholar] [CrossRef]
- Yin, C.Y.; Aroua, M.K.; Daud, W.M.A.W. Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions. Sep. Purif. Technol. 2007, 52, 403–415. [Google Scholar] [CrossRef]
- Álvarez-Merino, M.A.; López-Ramón, V.; Moreno-Castilla, C. A study of the static and dynamic adsorption of Zn (II) ions on carbon materials from aqueous solutions. J. Colloid Interface Sci. 2005, 288, 335–341. [Google Scholar] [CrossRef]
- Goel, J.; Kadirvelu, K.; Rajagopal, C.; Garg, V.K. Removal of lead (II) by adsorption using treated granular activated carbon: batch and column studies. J. Hazard. Mater. 2005, 125, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Serrano, V.; Macias-Garcia, A.; Espinosa-Mansilla, A.; Valenzuela-Calahorro, C. Adsorption of mercury, cadmium and lead from aqueous solution on heat-treated and sulphurized activated carbon. Water Res. 1998, 32, 1–4. [Google Scholar] [CrossRef]
- Goyal, M.; Rattan, V.; Aggarwal, D.; Bansal, R. Removal of copper from aqueous solutions by adsorption on activated carbons. Colloids Surf. A 2001, 190, 229–238. [Google Scholar] [CrossRef]
- Jia, Y.; Thomas, K. Adsorption of cadmium ions on oxygen surface sites in activated carbon. Langmuir 2000, 16, 1114–1122. [Google Scholar] [CrossRef]
- Macıas-Garcıa, A.; Gomez-Serrano, V.; Alexandre-Franco, M.; Valenzuela-Calahorro, C. Adsorption of cadmium by sulphur dioxide treated activated carbon. J. Hazard. Mater. 2003, 103, 141–152. [Google Scholar] [CrossRef]
- Park, S.J.; Jang, Y.S. Pore structure and surface properties of chemically modified activated carbons for adsorption mechanism and rate of Cr (VI). J. Colloid Interface Sci. 2002, 249, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Chen, P. Modification of a commercial activated carbon for metal adsorption by several approaches. In Proceedings of the 2001 International Containment & Remediation Technology Conference and Exhibition, Orlando, FL, USA, June 2001. [Google Scholar]
- Babel, S.; Kurniawan, T.A. Cr (VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere 2004, 54, 951–967. [Google Scholar] [CrossRef] [PubMed]
- Puziy, A.; Poddubnaya, O.; Kochkin, Y.N.; Vlasenko, N.; Tsyba, M. Acid properties of phosphoric acid activated carbons and their catalytic behavior in ethyl-tert-butyl ether synthesis. Carbon 2010, 48, 706–713. [Google Scholar] [CrossRef]
- Bedia, J.; Rosas, J.M.; Marquez, J.; Rodriguez-Mirasol, J.; Cordero, T. Preparation and characterization of carbon based acid catalysts for the dehydration of 2-propanol. Carbon 2009, 47, 286–294. [Google Scholar] [CrossRef]
- Puziy, A.; Poddubnaya, O.; Martınez-Alonso, A.; Suárez-Garcıa, F.; Tascón, J. Synthetic carbons activated with phosphoric acid: I. Surface chemistry and ion binding properties. Carbon 2002, 40, 1493–1505. [Google Scholar] [CrossRef]
- Elangovan, R.; Philip, L.; Chandraraj, K. Biosorption of chromium species by aquatic weeds: kinetics and mechanism studies. J. Hazard Mater. 2008, 152, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Martín-Lara, M.; Pagnanelli, F.; Mainelli, S.; Calero, M.; Toro, L. Chemical treatment of olive pomace: Effect on acid-basic properties and metal biosorption capacity. J. Hazard Mater. 2008, 156, 448–457. [Google Scholar] [CrossRef] [PubMed]
- Mameri, N.; Aioueche, F.; Belhocine, D.; Grib, H.; Lounici, H.; Piron, DL. Preparation of activated carbon from olive mill solid residue. J. Chem. Technol. Biotechnol. 2000, 75, 625–631. [Google Scholar] [CrossRef]
- Amuda, O.; Giwa, A.; Bello, I. Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon. Biochem. Eng. J. 2007, 36, 174–181. [Google Scholar] [CrossRef]
- Montanher, S.; Oliveira, E.; Rollemberg, M. Removal of metal ions from aqueous solutions by sorption onto rice bran. J. Hazard. Mater. 2005, 117, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Blázquez, G.; Calero, M.; Ronda, A.; Tenorio, G.; Martín-Lara, M. Study of kinetics in the biosorption of lead onto native and chemically treated olive stone. J. Ind. Eng. Chem. 2014, 20, 2754–2760. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Qian, Q.; Machida, M.; Tatsumoto, H. Effect of ZnO loading to activated carbon on Pb (II) adsorption from aqueous solution. Carbon 2006, 44, 195–202. [Google Scholar] [CrossRef]
- Barton, S.; Evans, M.; Halliop, E.; MacDonald, J. Acidic and basic sites on the surface of porous carbon. Carbon 1997, 35, 1361–1366. [Google Scholar] [CrossRef]
- Roosen, J.; Babu, C.M.; Binnemans, K. Functionalised activated carbon for the adsorption of rare-earth elements from aqueous solutions. In Proceedings of the 4th International Symposium on Enhanced Landfill Mining (ELFM IV), Mechelen, Belgium, 5–6 February 2018; pp. 305–310. [Google Scholar]
- Foo, G.S.; Sievers, C. Synergistic effect between defect sites and functional groups on the hydrolysis of cellulose over activated carbon. Chem. Sus. Chem. 2015, 8, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Maroto-Valer, M.M.; Dranca, I.; Lupascu, T.; Nastas, R. Effect of adsorbate polarity on thermodesorption profiles from oxidized and metal-impregnated activated carbons. Carbon 2004, 42, 2655–2659. [Google Scholar] [CrossRef]
- Rios, R.R.A.; Alves, D.E.; Dalmázio, I.; Bento, S.F.V.; Donnici, C.L.; Lago, R.M. Tailoring activated carbon by surface chemical modification with O, S and N containing molecules. Mater. Res. 2003, 6, 129–135. [Google Scholar] [CrossRef]
- Aburub, A.; Wurster, D.E. Phenobarbital interactions with derivatized activated carbon surfaces. J. Colloid Interface Sci. 2006, 296, 79–85. [Google Scholar] [CrossRef]
- García, A.B.; Martínez-Alonso, A.; y Leon, C.A.L.; Tascón, J.M. Modification of the surface properties of an activated carbon by oxygen plasma treatment. Fuel 1998, 77, 613–624. [Google Scholar] [CrossRef]
- Domingo-Garcia, M.; Lopez-Garzon, F.; Perez-Mendoza, M. Effect of some oxidation treatments on the textural characteristics and surface chemical nature of an activated carbon. J. Colloid Interface Sci. 2000, 222, 233–240. [Google Scholar] [CrossRef]
- Lee, D.; Hong, S.H.; Paek, K.H.; Ju, W.T. Adsorbability enhancement of activated carbon by dielectric barrier discharge plasma treatment. Surf. Coat. Tech. 2005, 200, 2277–2282. [Google Scholar] [CrossRef]
- Santiago, M.; Stüber, F.; Fortuny, A.; Fabregat, A.; Font, J. Modified activated carbons for catalytic wet air oxidation of phenol. Carbon 2005, 43, 2134–2145. [Google Scholar] [CrossRef]
- Terzyk, A.P. Further insights into the role of carbon surface functionalities in the mechanism of phenol adsorption. J. Colloid Interface Sci. 2003, 268, 301–329. [Google Scholar] [CrossRef]
- Jansen, R.; Van Bekkum, H. Amination and ammoxidation of activated carbons. Carbon 1994, 32, 1507–1516. [Google Scholar] [CrossRef]
- Dastgheib, S.A.; Karanfil, T.; Cheng, W. Tailoring activated carbons for enhanced removal of natural organic matter from natural waters. Carbon 2004, 42, 547–557. [Google Scholar] [CrossRef]
- Guerrero-Ruiz, A.; Rodriguez-Ramos, I.; Rodriguez-Reinoso, F.; Moreno-Castilla, C.; López-González, J. The role of nitrogen and oxygen surface groups in the behavior of carbon-supported iron and ruthenium catalysts. Carbon 1988, 26, 417–423. [Google Scholar] [CrossRef]
- Przepiórski, J. Enhanced adsorption of phenol from water by ammonia-treated activated carbon. J. Hazard. Mater. 2006, 135, 453–456. [Google Scholar] [CrossRef]
- Chen, W.; Cannon, F.S.; Rangel-Mendez, J.R. Ammonia-tailoring of GAC to enhance perchlorate removal. I: Characterization of NH3 thermally tailored GACs. Carbon 2005, 43, 573–580. [Google Scholar] [CrossRef]
- Economy, J.; Foster, K.; Andreopoulos, A.; Jung, H. Tailoring Carbon Fibers for Adsorbing Volatiles: Various Chemical Treatments are used to Change Surface Area, Pore Geometry and Adsorption Character Istics. Chemtech 1992, 22, 597–603. [Google Scholar]
- Stöhr, B.; Boehm, H.; Schlögl, R. Enhancement of the catalytic activity of activated carbons in oxidation reactions by thermal treatment with ammonia or hydrogen cyanide and observation of a superoxide species as a possible intermediate. Carbon 1991, 29, 707–720. [Google Scholar] [CrossRef]
- Boehm, H.P.; Mair, G.; Stoehr, T.; De Rincón, A.R.; Tereczki, B. Carbon as a catalyst in oxidation reactions and hydrogen halide elimination reactions. Fuel 1984, 63, 1061–1063. [Google Scholar] [CrossRef]
- Bota, K.B.; Abotsi, G.M. Ammonia: A reactive medium for catalysed coal gasification. Fuel 1994, 73, 1354–1357. [Google Scholar] [CrossRef]
- Meldrum, B.J.; Rochester, C.H. In situ infrared study of the surface oxidation of activated carbon in oxygen and carbon dioxide. J. Chem. Soc. Faraday Trans. 1990, 86, 861–865. [Google Scholar] [CrossRef]
- Karanfil, T.; Schlautman, M.A.; Kilduff, J.E.; Weber, W.J. Adsorption of organic macromolecules by granular activated carbon. 2. Influence of dissolved oxygen. Environ. Sci. Technol. 1996, 30, 2195–2201. [Google Scholar] [CrossRef]
- Park, S.-J.; Kim, B.-J. Ammonia removal of activated carbon fibers produced by oxyfluorination. J. Colloid Interface Sci. 2005, 291, 597–599. [Google Scholar] [CrossRef] [PubMed]
- González Plaza, M.; Pevida García, C.; Arias Rozada, B.; Fermoso Domínguez, J.; Rubiera González, F.; Pis Martínez, J.J. A comparison of two methods for producing CO2 capture adsorbents. Energy Procedia 2009, 1, 1107–1113. [Google Scholar] [CrossRef]
- Przepiórski, J.; Skrodzewicz, M.; Morawski, A. High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption. Appl. Surf. Sci. 2004, 225, 235–242. [Google Scholar] [CrossRef]
- Radovic, L.; Silva, I.; Ume, J.; Menendez, J.; Leon, C.L.Y.; Scaroni, A. An experimental and theoretical study of the adsorption of aromatics possessing electron-withdrawing and electron-donating functional groups by chemically modified activated carbons. Carbon 1997, 35, 1339–1348. [Google Scholar] [CrossRef]
- Plaza, M.G.; Pevida, C.; Arias, B.; Casal, M.; Martín, C.; Fermoso, J.; Rubiera, F.; Pis, J. Different approaches for the development of low-cost CO2 adsorbents. J. Environ. Eng. 2009, 135, 426–432. [Google Scholar] [CrossRef]
- Abotsi, G.M.; Scaroni, A.W. Reaction of carbons with ammonia: effects on the surface charge and molybdenum adsorption. Carbon 1990, 28, 79–84. [Google Scholar] [CrossRef]
- Adhoum, N.; Monser, L. Removal of phthalate on modified activated carbon: Application to the treatment of industrial wastewater. Sep. Purif. Technol. 2004, 38, 233–239. [Google Scholar] [CrossRef]
- Henning, K.-D.; Schäfer, S. Impregnated activated carbon for environmental protection. Gas Sep. Purif. 1993, 7, 235–240. [Google Scholar] [CrossRef]
- Rajaković, L.V.; Ristić, M.D. Sorption of boric acid and borax by activated carbon impregnated with various compounds. Carbon 1996, 34, 769–774. [Google Scholar] [CrossRef]
- Şayan, E. Ultrasound-assisted preparation of activated carbon from alkaline impregnated hazelnut shell: An optimization study on removal of Cu2+ from aqueous solution. Chem. Eng. J. 2006, 115, 213–218. [Google Scholar] [CrossRef]
- Adhoum, N.; Monser, L. Removal of cyanide from aqueous solution using impregnated activated carbon. Chem. Eng. Process. 2002, 41, 17–21. [Google Scholar] [CrossRef]
- Huang, C.; Vane, L.M. Enhancing removal by a activated carbon. J. Water Pollut. Control. Fed. 1989, 1596–1603. [Google Scholar]
- Ramos, R.L.; Ovalle-Turrubiartes, J.; Sanchez-Castillo, M. Adsorption of fluoride from aqueous solution on aluminum-impregnated carbon. Carbon 1999, 37, 609–617. [Google Scholar] [CrossRef]
- Lee, S.J.; Seo, Y.C.; Jurng, J.; Lee, T.G. Removal of gas-phase elemental mercury by iodine-and chlorine-impregnated activated carbons. Atmos. Environ. 2004, 38, 4887–4893. [Google Scholar] [CrossRef]
- Korpiel, J.A.; Vidic, R.D. Effect of sulfur impregnation method on activated carbon uptake of gas-phase mercury. Environ. Sci. Technol. 1997, 31, 2319–2325. [Google Scholar] [CrossRef]
- Rajaković, L.V. The sorption of arsenic onto activated carbon impregnated with metallic silver and copper. Sep. Sci. Technol. 1992, 27, 1423–1433. [Google Scholar] [CrossRef]
- Deveci, H.; Yazıcı, E.; Alp, I.; Uslu, T. Removal of cyanide from aqueous solutions by plain and metal-impregnated granular activated carbons. Int. J. Miner. Process. 2006, 79, 198–208. [Google Scholar] [CrossRef]
- Wu, S.H.; Pendleton, P. Adsorption of anionic surfactant by activated carbon: effect of surface chemistry, ionic strength and hydrophobicity. J. Colloid Interface Sci. 2001, 243, 306–315. [Google Scholar] [CrossRef]
- Xiao, J.X.; Zhang, Y.; Wang, C.; Zhang, J.; Wang, C.M.; Bao, Y.X.; Zhao, Z.G. Adsorption of cationic–anionic surfactant mixtures on activated carbon. Carbon 2005, 43, 1032–1038. [Google Scholar] [CrossRef]
- González-Garcıa, C.; González-Martın, M.; Gómez-Serrano, V.; Bruque, J.; Labajos-Broncano, L. Analysis of the adsorption isotherms of a non-ionic surfactant from aqueous solution onto activated carbons. Carbon 2001, 39, 849–855. [Google Scholar] [CrossRef]
- González-García, C.; Gonzalez-Martin, M.; Denoyel, R.; Gallardo-Moreno, A.; Labajos-Broncano, L.; Bruque, J. Ionic surfactant adsorption onto activated carbons. J. Colloid Interface Sci. 2004, 278, 257–264. [Google Scholar] [CrossRef] [PubMed]
- González-García, C.; González-Martín, M.; González, J.; Sabio, E.; Ramiro, A.; Gañán, J. Nonionic surfactants adsorption onto activated carbon. Influence of the polar chain length. Powder Technol. 2004, 148, 32–37. [Google Scholar] [CrossRef]
- Parette, R.; Cannon, F.S. The removal of perchlorate from groundwater by activated carbon tailored with cationic surfactants. Water Res. 2005, 39, 4020–4028. [Google Scholar] [CrossRef]
- Choi, H.D.; Jung, W.S.; Cho, J.M.; Ryu, B.G.; Yang, J.S.; Baek, K. Adsorption of Cr (VI) onto cationic surfactant-modified activated carbon. J. Hazard. Mater. 2009, 166, 642–646. [Google Scholar] [CrossRef]
- Mohamed, M.M. Acid dye removal: comparison of surfactant-modified mesoporous FSM-16 with activated carbon derived from rice husk. J. Colloid Interface Sci. 2004, 272, 28–34. [Google Scholar] [CrossRef]
- Choi, H.D.; Shin, M.C.; Kim, D.H.; Jeon, C.S.; Baek, K. Removal characteristics of reactive black 5 using surfactant-modified activated carbon. Desalination 2008, 23, 290–298. [Google Scholar] [CrossRef]
- Nadeem, M.; Shabbir, M.; Abdullah, M.; Shah, S.; McKay, G. Sorption of cadmium from aqueous solution by surfactant-modified carbon adsorbents. Chem. Eng. J. 2009, 148, 365–370. [Google Scholar] [CrossRef]
- Namasivayam, C.; Sureshkumar, M. Removal of chromium (VI) from water and wastewater using surfactant modified coconut coir pith as a biosorbent. Bioresour. Technol. 2008, 99, 2218–2225. [Google Scholar] [CrossRef] [PubMed]
- García-Martín, J.; López-Garzón, R.; Godino-Salido, M.L.; Gutiérrez-Valero, M.D.; Arranz-Mascarós, P.; Cuesta, R.; Carrasco-Marín, F. Ligand adsorption on an activated carbon for the removal of chromate ions from aqueous solutions. Langmuir 2005, 21, 6908–6914. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, C.; Feng, M.; Chen, Z.; Li, S.; Tian, G. Solid phase extraction of uranium (VI) onto benzoylthiourea-anchored activated carbon. J. Hazard. Mater. 2010, 176, 119–124. [Google Scholar] [CrossRef]
- Song, Q.; Ma, L.; Liu, J.; Bai, C.; Geng, J.; Wang, H. Preparation and adsorption performance of 5-azacytosine-functionalized hydrothermal carbon for selective solid-phase extraction of uranium. J. Colloid Interface Sci. 2012, 386, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Deng, B.; Yang, J.; Gang, D. Modifying activated carbon with hybrid ligands for enhancing aqueous mercury removal. Carbon 2009, 47, 2014–2025. [Google Scholar] [CrossRef]
- Zhou, J.H.; Sui, Z.J.; Zhu, J.; Li, P.; Chen, D.; Dai, Y.C.; Yuan, W.K. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR. Carbon 2007, 45, 785–796. [Google Scholar] [CrossRef]
- Boehm, H.P. Chemical Identification of Surface Groups. Adv. Catal. 1966, 16, 179–274. [Google Scholar] [CrossRef]
- El-Sayed, Y.; Bandosz, T.J. Effect of increased basicity of activated carbon surface on valeric acid adsorption from aqueous solution activated carbon. Phys. Chem. Chem. Phys. 2003, 5, 4892–4898. [Google Scholar] [CrossRef]
- Jia, Y.; Xiao, B.; Thomas, K. Adsorption of metal ions on nitrogen surface functional groups in activated carbons. Langmuir 2002, 18, 470–478. [Google Scholar] [CrossRef]
- Figueiredo, J.; Pereira, M.; Freitas, M.; Orfao, J. Modification of the surface chemistry of activated carbons. Carbon 1999, 37, 1379–1389. [Google Scholar] [CrossRef]
- Vickers, P.E.; Watts, J.F.; Perruchot, C.; Chehimi, M.M. The surface chemistry and acid–base properties of a PAN-based carbon fibre. Carbon 2000, 38, 675–689. [Google Scholar] [CrossRef]
- Sellitti, C.; Koenig, J.; Ishida, H. Surface characterization of graphitized carbon fibers by attenuated total reflection Fourier transform infrared spectroscopy. Carbon 1990, 28, 221–228. [Google Scholar] [CrossRef]
- Gomez-Serrano, V.; Pastor-Villegas, J.; Perez-Florindo, A.; Duran-Valle, C.; Valenzuela-Calahorro, C. FT-IR study of rockrose and of char and activated carbon. J. Anal. Appl. Pyrolysis 1996, 36, 71–80. [Google Scholar] [CrossRef]
- Julien, F.; Baudu, M.; Mazet, M. Relationship between chemical and physical surface properties of activated carbon. Water Res. 1998, 32, 3414–3424. [Google Scholar] [CrossRef]
- Jung, M.W.; Ahn, K.H.; Lee, Y.; Kim, K.P.; Rhee, J.S.; Park, J.T.; Paeng, K.J. Adsorption characteristics of phenol and chlorophenols on granular activated carbons (GAC). Microchem. J. 2001, 70, 123–131. [Google Scholar] [CrossRef]
- Li, Z.; Yan, W.; Dai, S. Surface Functionalization of Ordered Mesoporous Carbons A Comparative Study. Langmuir 2005, 21, 11999–12006. [Google Scholar] [CrossRef]
- Sakintuna, B.; Yürüm, Y. Preparation and characterization of mesoporous carbons using a Turkish natural zeolitic template/furfuryl alcohol system. Microporous Mesoporous Mater. 2006, 93, 304–312. [Google Scholar] [CrossRef]
- Donnet, J.; Custodéro, E.; Wang, T.; Hennebert, G. Energy site distribution of carbon black surfaces by inverse gas chromatography at finite concentration conditions. Carbon 2002, 40, 163–167. [Google Scholar] [CrossRef]
- Zielke, U.; Hüttinger, K.; Hoffman, W. Surface-oxidized carbon fibers: I. Surface structure and chemistry. Carbon 1996, 34, 983–998. [Google Scholar] [CrossRef]
- Mayes, R.T.; Fulvio, P.F.; Ma, Z.; Dai, S. Phosphorylated mesoporous carbon as a solid acid catalyst. Phys. Chem. Chem. Phys. 2011, 13, 2492–2944. [Google Scholar] [CrossRef] [PubMed]
- Fulvio, P.F.; Mayes, R.T.; Bauer, J.C.; Wang, X.; Mahurin, S.M.; Veith, G.M.; Dai, S. “One-pot” synthesis of phosphorylated mesoporous carbon heterogeneous catalysts with tailored surface acidity. Catal. Today 2012, 186, 12–19. [Google Scholar] [CrossRef]
- Otake, Y.; Jenkins, R.G. Characterization of oxygen-containing surface complexes created on a microporous carbon by air and nitric acid treatment. Carbon 1993, 31, 109–121. [Google Scholar] [CrossRef]
- Dandekar, A.; Baker, R.; Vannice, M. Characterization of activated carbon, graphitized carbon fibers and synthetic diamond powder using TPD and DRIFTS. Carbon 1998, 36, 1821–1831. [Google Scholar] [CrossRef]
- Figueiredo, J.L.; Pereira, M.F.; Freitas, M.M.; Órfão, J.J. Characterization of active sites on carbon catalysts. Ind. Eng. Chem. Res. 2007, 46, 4110–4115. [Google Scholar] [CrossRef]
- Rodrıguez-Reinoso, F.; Molina-Sabio, M. Textural and chemical characterization of microporous carbons. Adv. Colloid Interface Sci. 1998, 76, 271–294. [Google Scholar] [CrossRef]
- Salame, I.I.; Bandosz, T.J. Role of surface chemistry in adsorption of phenol on activated carbons. J. Colloid Interface Sci. 2003, 264, 307–312. [Google Scholar] [CrossRef]
- Bansal, R.; Aggarwal, D.; Goyal, M.; Kaistha, B. Influence of carbon-oxygen surface groups on the adsorption of phenol by activated carbons. NISCAIR-CSIR 2002, 9, 290–296. [Google Scholar]
- Haydar, S.; Moreno-Castilla, C.; Ferro-Garcıa, M.; Carrasco-Marın, F.; Rivera-Utrilla, J.; Perrard, A.; Joly, J. Regularities in the temperature-programmed desorption spectra of CO2 and CO from activated carbons. Carbon 2000, 38, 1297–1308. [Google Scholar] [CrossRef]
- Montoya, A.; Mondragon, F.; Truong, T.N. First-principles kinetics of CO desorption from oxygen species on carbonaceous surface. J. Phys. Chem. A 2002, 106, 4236–4239. [Google Scholar] [CrossRef]
- Turner, N.H.; Schreifels, J.A. Surface analysis: X-ray photoelectron spectroscopy and auger electron spectroscopy. Anal. Chem. 2000, 72, 99–110. [Google Scholar] [CrossRef]
- McGuire, G.; Weiss, P.; Kushmerick, J.; Johnson, J.; Simko, S.J.; Nemanich, R.; Parikh, N.R.; Chopra, D. Surface characterization. Anal. Chem. 1997, 69, 231–250. [Google Scholar] [CrossRef]
- Gardella, J.A., Jr. Recent developments in instrumentation for x-ray photoelectron spectroscopy. Anal. Chem. 1989, 61, 589A–600A. [Google Scholar] [CrossRef]
- Li, K.; Ling, L.; Lu, C.; Qiao, W.; Liu, Z.; Liu, L.; Mochida, I. Catalytic removal of SO2 over ammonia-activated carbon fibers. Carbon 2001, 39, 1803–1808. [Google Scholar] [CrossRef]
- Polovina, M.; Babić, B.; Kaluderović, B.; Dekanski, A. Surface characterization of oxidized activated carbon cloth. Carbon 1997, 35, 1047–1052. [Google Scholar] [CrossRef]
- Bradley, R.; Ling, X.; Sutherland, I. An investigation of carbon fibre surface chemistry and reactivity based on XPS and surface free energy. Carbon 1993, 31, 1115–1120. [Google Scholar] [CrossRef]
- Grzybek, T.; Kreiner, K. Surface changes in coals after oxidation. 1. X-ray photoelectron spectroscopy studies. Langmuir 1997, 13, 909–912. [Google Scholar] [CrossRef]
- Boudou, J.P.; Parent, P.; Suárez-García, F.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J. Nitrogen in aramid-based activated carbon fibers by TPD, XPS and XANES. Carbon 2006, 44, 2452–2462. [Google Scholar] [CrossRef]
- Severini, F.; Formaro, L.; Pegoraro, M.; Posca, L. Chemical modification of carbon fiber surfaces. Carbon 2002, 40, 735–741. [Google Scholar] [CrossRef]
- Jansen, R.; Van Bekkum, H. XPS of nitrogen-containing functional groups on activated carbon. Carbon 1995, 33, 1021–1027. [Google Scholar] [CrossRef]
- Mangun, C.L.; Benak, K.R.; Economy, J.; Foster, K.L. Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia. Carbon 2001, 39, 1809–1820. [Google Scholar] [CrossRef]
- Kelemen, S.; Gorbaty, M.; Kwiatek, P. Quantification of nitrogen forms in Argonne premium coals. Energy Fuels 1994, 8, 896–906. [Google Scholar] [CrossRef]
- Perry, D.L.; Grint, A. Application of XPS to coal characterization. Fuel 1983, 62, 1024–1033. [Google Scholar] [CrossRef]
- Kambara, S.; Takarada, T.; Yamamoto, Y.; Kato, K. Relation between functional forms of coal nitrogen and formation of nitrogen oxide (NOx) precursors during rapid pyrolysis. Energy Fuels 1993, 7, 1013–1020. [Google Scholar] [CrossRef]
- Balathanigaimani, M.; Shim, W.G.; Lee, M.J.; Kim, C.; Lee, J.W.; Moon, H. Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors. Electrochem. Commun. 2008, 10, 868–871. [Google Scholar] [CrossRef]
- Candelaria, S.L.; Garcia, B.B.; Liu, D.; Cao, G. Nitrogen modification of highly porous carbon for improved supercapacitor performance. J. Mater. Chem. 2012, 22, 9884–9889. [Google Scholar] [CrossRef]
- Wang, D.W.; Feng, L.; Min, L.; Cheng, H.-m. Improved capacitance of SBA-15 templated mesoporous carbons after modification with nitric acid oxidation. New Carbon Mater. 2007, 22, 307–314. [Google Scholar] [CrossRef]
- Heidari, A.; Younesi, H.; Rashidi, A.; Ghoreyshi, A.A. Evaluation of CO2 adsorption with eucalyptus wood based activated carbon modified by ammonia solution through heat treatment. Chem. Eng. J. 2014, 254, 503–513. [Google Scholar] [CrossRef]
- Zhang, C.; Song, W.; Sun, G.; Xie, L.; Wang, J.; Li, K. CO2 capture with activated carbon grafted by nitrogenous functional groups. Energy Fuels 2013, 27, 4818–4823. [Google Scholar] [CrossRef]
- Gholidoust, A.; Atkinson, J.D.; Hashisho, Z. Enhancing CO2 adsorption via amine-impregnated activated carbon from oil sands coke. Energy Fuels 2017, 31, 1756–1763. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, Z. Effects of acidic treatment of activated carbons on dye adsorption. Dyes Pigm. 2007, 75, 306–314. [Google Scholar] [CrossRef]
- Pereira, M.F.R.; Soares, SF.; Órfão, J.J.; Figueiredo, J.L. Adsorption of dyes on activated carbons: influence of surface chemical groups. Carbon 2003, 41, 811–821. [Google Scholar] [CrossRef]
- Zhai, Y.; Dou, Y.; Zhao, D.; Fulvio, P.F.; Mayes, R.T.; Dai, S. Carbon materials for chemical capacitive energy storage. Adv. Mater. 2011, 23, 4828–4850. [Google Scholar] [CrossRef] [PubMed]
- Ismanto, A.E.; Wang, S.; Soetaredjo, F.E.; Ismadji, S. Preparation of capacitor’s electrode from cassava peel waste. Bioresour. Technol. 2010, 101, 3534–3540. [Google Scholar] [CrossRef] [PubMed]
- Elmouwahidi, A.; Zapata-Benabithe, Z.; Carrasco-Marín, F.; Moreno-Castilla, C. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Bioresour. Technol. 2012, 111, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.C.; Kong, L.B.; Zhang, P.; Luo, Y.C.; Kang, L. Porous wood carbon monolith for high-performance supercapacitors. Electrochim. Acta 2012, 60, 443–448. [Google Scholar] [CrossRef]
- Pevida, C.; Plaza, M.G.; Arias, B.; Fermoso, J.; Rubiera, F.; Pis, J. Surface modification of activated carbons for CO2 capture. Appl. Surf. Sci. 2008, 254, 7165–7172. [Google Scholar] [CrossRef]
- Maroto-Valer, M.M.; Tang, Z.; Zhang, Y. CO2 capture by activated and impregnated anthracites. Fuel Process. Technol. 2005, 86, 1487–1502. [Google Scholar] [CrossRef]
- Hao, G.P.; Li, W.C.; Qian, D.; Lu, A.H. Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture. Adv. Mater. 2010, 22, 853–857. [Google Scholar] [CrossRef]
- Sevilla, M.; Valle-Vigón, P.; Fuertes, A.B. N-doped polypyrrole-based porous carbons for CO2 capture. Adv. Funct. Mater. 2011, 21, 2781–2787. [Google Scholar] [CrossRef]
- Leng, C.C.; Pinto, N. Effects of surface properties of activated carbons on adsorption behavior of selected aromatics. Carbon 1997, 35, 1375–1385. [Google Scholar] [CrossRef]
- Mahajan, O.P.; Moreno-Castilla, C.; Walker, P., Jr. Surface-treated activated carbon for removal of phenol from water. Sep. Sci. Technol. 1980, 15, 1733–1752. [Google Scholar] [CrossRef]
- Franz, M.; Arafat, H.A.; Pinto, N.G. Effect of chemical surface heterogeneity on the adsorption mechanism of dissolved aromatics on activated carbon. Carbon 2000, 38, 1807–1819. [Google Scholar] [CrossRef]
- Daifullah, A.; Girgis, B. Impact of surface characteristics of activated carbon on adsorption of BTEX. Colloids Surf. A 2003, 214, 181–193. [Google Scholar] [CrossRef]
- Rivera-Utrilla, J.; Sanchez-Polo, M.; Carrasco-Marin, F. Adsorption of 1, 3, 6-naphthalenetrisulfonic acid on activated carbon in the presence of Cd (II), Cr (III) and Hg (II) Importance of electrostatic interactions. Langmuir 2003, 19, 10857–10861. [Google Scholar] [CrossRef]
- El-Sayed, Y.; Bandosz, T.J. Role of surface oxygen groups in incorporation of nitrogen to activated carbons via ethylmethylamine adsorption. Langmuir 2005, 21, 1282–1289. [Google Scholar] [CrossRef] [PubMed]
- Órfão, J.; Silva, A.; Pereira, J.; Barata, S.; Fonseca, I.; Faria, P.; Pereira, M. Adsorption of a reactive dye on chemically modified activated carbons—influence of pH. J. Colloid Interface Sci. 2006, 296, 480–489. [Google Scholar] [CrossRef]
- Attia, A.A.; Rashwan, W.E.; Khedr, S.A. Capacity of activated carbon in the removal of acid dyes subsequent to its thermal treatment. Dyes Pigments. 2006, 69, 128–136. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, Z.; Coomes, A.; Haghseresht, F.; Lu, G. The physical and surface chemical characteristics of activated carbons and the adsorption of methylene blue from wastewater. J. Colloid Interface Sci. 2005, 284, 440–446. [Google Scholar] [CrossRef]
Techniques Used | Nature of Functional Groups Induced | Applications | References |
---|---|---|---|
Oxidation by nitric acid | weakly acidic and non-acidic | Cr(III) and Cr(IV) removal | [54] |
Oxidation by nitric and hydrofluoric acid | weakly acidic | Cu2+ removal | [55] |
Oxidation by ammonium persulfate and sulfuric acid solution | weakly acidic | Zn2+ removal | [56] |
Treatment using Na2S | weakly acidic | Pb2+ removal | [57] |
Heat treatment in H2S | sulfur-based | Mercury (as HgCl2) removal | [58] |
Oxidization using nitric acid, ammonium persulphate | weakly acidic | Cu2+ removal | [59] |
Oxidization using nitric acid | weakly acidic | Cd2+ removal | [60] |
Treatment at ambient temperature and 900 °C in SO2 and/or H2S | sulfur surface complexes | Cd2+ removal | [61] |
Treatment using hydrochloric acid | weakly acidic | Cr(VI) removal | [62] |
Samples | Acid Used | Species Biosorbed | References |
---|---|---|---|
Aquatic weeds | H2SO4 | Cr(III), Cr(VI) | [68] |
Agricultural waste | H3PO4, H2O2 | Cd | [69] |
Olive mill solid residue | HCl | Phenol | [70] |
Activated coconut shell carbon | H3PO4 | Zn(II) | [71] |
Rice bran | HNO3 | Cd(II0, Cu(II), Pb(II), Zn(II) | [72] |
Olive stone | H2SO4, HNO3 | Pb(II) | [73] |
Materials | Amination Temperature | Applications | References |
---|---|---|---|
Carbon adsorbents from biomass residue (almond shells) | 800 °C | CO2 adsorption | [98] |
Commercial activated carbon | 1000 °C | CO2 adsorption | [99] |
Commercial granular activated carbons | 385 °C | Adsorption of model aromatic compounds (aniline and nitrobenzene) | [100] |
Carbon materials (biomass residues, sewage sludge, pet coke) | 400 °C | CO2 adsorption | [101] |
Activated carbon from peat | 900 °C | Enhancement of catalytic activity of AC in oxidation reaction | [92] |
Activated carbon from sulfonated styrene–divinyl-benzene copolymer | 600 °C | Enhancement of molybdenum adsorption | [102] |
Samples | Species Impregnated | Species Removed | References |
---|---|---|---|
Activated carbon | iodine and chlorine | Gas-phase elemental mercury | [110] |
Granular activated carbon | sulfur | Gas-phase elemental mercury | [111] |
Activated carbon | metallic silver and copper | Arsenic | [112] |
Activated carbons | silver and nickel | Cyanide | [107] |
Granular activated carbon | copper and silver | Cyanide | [113] |
Samples | Surfactant Used | Species Adsorbed | References |
---|---|---|---|
Surfactant modified activated carbon | HDTMA (hexadecyltrimethylammonium bromide) CPC (cetylpridinium chloride) | Cr(VI) | [120] |
Surfactant-modified mesoporous FSM-16 | cetyltrimethylammonium bromide (CTAB) | Acid dye (acid yellow and acid blue) | [121] |
Activated carbon | CPC (cetylpridinium chloride) | Reactive black 5 | [122] |
Surfactant-modified carbon | cetyltrimethylammonium bromide (CTAB) | Cd(II) | [123] |
Surfactant modified coconut coir pith | HDTMA (hexadecyltrimethylammonium bromide) | Cr(VI) | [124] |
Samples | Ligand Functionalized | Species Adsorbed | References |
---|---|---|---|
Activated carbon | Benzoylthiourea | U(VI) | [126] |
Carbon | 5-azacytosine | U(VI) | [127] |
Activated carbon | Hybrid ligands (nitric acid, thionyl chloride, ethylenediamine) | Hg(II) | [128] |
Materials | Modification Methods | Final Outcomes | References |
---|---|---|---|
Corn grains | KOH activation | Increased surface area (3199 m2/g) results in high specific capacitance (257 F/g) | [167] |
Porous carbon | Nitrogen-doping with 2 wt.% of hexamine | Modification of porous carbon with nitrogen has increased the capacitance of electrodes for supercapacitor applications. | [168] |
Mesoporous carbons | Nitric acid oxidation | An enhanced energy density with a highest value of 5.7 Wh/kg is obtained after oxidation. | [169] |
Activated carbon | Activated carbon was prepared from eucalyptus wood with H3PO4 and modified by NH3 | Incorporation of nitrogen group in ACs increased their adsorption capacities. The CO2 adsorption capacity achieved by modified carbon was 3.22 mmol/g at 1 bar. | [170] |
Activated carbon | Amino/nitro groups were introduced onto the surface of the activated carbon (AC) with nitration followed by reduction. | Results showed that the contents of nitrogen on the treated samples’ surface increased from 0% to 1.38 after modification. The maximum CO2 adsorption capacity of the modified samples can reach 19.07 mmol/g at 298 K and 36.0 bar. | [171] |
Activated carbon | Impregnation of carbon with diethanolamine, methyl diethanolamine and tetraethylene pentaamine. | Materials impregnated with diethanolamine performed best for CO2 capture; the highest adsorption capacity achieved was 5.63 mmol CO2/g. | [172] |
Activated carbon | Highly polar carbon surfaces were generated by acid and base treatment | Two common drinking water contaminants, relatively polar methyl tertiary-butyl ether (MTBE) and relatively nonpolar trichloroethene (TCE) were successfully adsorbed by activated carbon. | [12] |
Activated carbon | Acid treatment with HNO3 and HCl | Acid treatment produces more active acidic surface groups such as carboxyl and lactone, resulting in a reduction in the adsorption of basic dyes. | [173] |
Activated carbon | chemical treatments using HNO3, H2O2, NH3 | Excellent dye adsorption performance as a result of chemical modification of activated carbon. | [174] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, A.; Park, M.; Park, S.-J. Current Progress on the Surface Chemical Modification of Carbonaceous Materials. Coatings 2019, 9, 103. https://doi.org/10.3390/coatings9020103
Rehman A, Park M, Park S-J. Current Progress on the Surface Chemical Modification of Carbonaceous Materials. Coatings. 2019; 9(2):103. https://doi.org/10.3390/coatings9020103
Chicago/Turabian StyleRehman, Adeela, Mira Park, and Soo-Jin Park. 2019. "Current Progress on the Surface Chemical Modification of Carbonaceous Materials" Coatings 9, no. 2: 103. https://doi.org/10.3390/coatings9020103
APA StyleRehman, A., Park, M., & Park, S. -J. (2019). Current Progress on the Surface Chemical Modification of Carbonaceous Materials. Coatings, 9(2), 103. https://doi.org/10.3390/coatings9020103