Coating Sand with New Hydrophobic and Superhydrophobic Silica/Paraffin Wax Nanocapsules for Desert Water Storage and Transportation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Techniques
2.2.1. Preparation of Hydrophobic Silane Precursors
2.2.2. Preparation of the Paraffin Wax Emulsion
2.2.3. Preparation of the Superhydrophobic Silica/Wax Capsules
2.3. Characterization of the PWs/Hydrophobic Silica Nanocapsules
2.4. Coating of Sand with HSNPs
3. Results and Discussion
3.1. Characterization of the PWs/Silica Nanocapsules
3.2. Thermal and Wetting Characteristics of the PWs/HSNPs Microcapsules
3.3. Water Transportation of the Superhydrophobic Sand
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- El-Saied, H.; El-Hady, O.A.; Basta, A.H.; El-Dewiny, C.Y.; Abo-Sedera, S.A. Bio-chemical properties of sandy calcareous soil treated with rice straw-based hydrogels. J. Saudi Soc. Agric. Sci. 2016, 15, 188–194. [Google Scholar] [CrossRef] [Green Version]
- Narjary, B.; Aggarwal, P.; Singh, A.; Chakraborty, D.; Singh, R. Water availability in different soils in relation to hydrogel application. Geoderma 2012, 187, 94–101. [Google Scholar] [CrossRef]
- Montesano, F.F.; Parente, A.; Santamaria, P.; Sannino, A.; Serio, F. Biodegradable superabsorbent hydrogel increaseswater retention properties of growing media and plant growth. Agric. Agric. Sci. Procedia 2015, 4, 451–458. [Google Scholar] [CrossRef]
- Khodadadi Dehkordi, D. Effect of superabsorbent polymer on soil and plants on steep surfaces. Water Environ. J. 2018, 32, 158–163. [Google Scholar] [CrossRef]
- Dehkordi, D.K. Effect of hydrophilic polymers on seed germination and plant survival for sloping area. J. Soil Water Conserv. 2018, 73, 173–178. [Google Scholar] [CrossRef]
- Liao, R.; Wu, W.; Ren, S.; Yang, P. Effects of superabsorbent polymers on the hydraulic parameters and water retention properties of soil. J. Nanomater. 2016, 2016, 37. [Google Scholar] [CrossRef]
- González-Peñaloza, F.A.; Zavala, L.M.; Jordán, A.; Bellinfante, N.; Bárcenas-Moreno, G.; Mataix-Solera, J.; Granged, A.J.P.; Granja-Martins, F.M.; Neto-Paixão, H.M. Water repellency as conditioned by particle size and drying in hydrophobized sand. Geoderma 2013, 209, 31–40. [Google Scholar] [CrossRef]
- Chen, L.; Si, Y.; Guo, Z.; Liu, W. Superhydrophobic sand: A hope for desert water storage and transportation projects. J. Mater. Chem. A 2017, 5, 6416–6423. [Google Scholar] [CrossRef]
- Sun, X.; Liu, Y.; Mopidevi, S.; Meng, Y.; Huang, F.; Parisi, J.; Nieh, M.-P.; Cornelius, C.; Suib, S.L.; Lei, Y. Super-hydrophobic “smart” sand for buried explosive detection. Sens. Actuators B Chem. 2014, 195, 52–57. [Google Scholar] [CrossRef]
- Mitzel, M.R.; Sand, S.; Whalen, J.K.; Tufenkji, N. Hydrophobicity of biofilm coatings influences the transport dynamics of polystyrene nanoparticles in biofilm-coated sand. Water Res. 2016, 92, 113–120. [Google Scholar] [CrossRef]
- Han, Y.; Hwang, G.; Kim, D.; Bradford, S.A.; Lee, B.; Eom, I.; Kim, P.J.; Choi, S.Q.; Kim, H. Transport, retention, and long-term release behavior of ZnO nanoparticle aggregates in saturated quartz sand: Role of solution pH and biofilm coating. Water Res. 2016, 90, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Sailor, M.J.; Link, J.R. “Smart dust”: Nanostructured devices in a grain of sand. Chem. Commun. 2005, 1375–1383. [Google Scholar] [CrossRef] [PubMed]
- Nazhipkyzy, M.; Temirgaliyeva, T.S.; Lesbayev, B.T.; Prikhodko, N.G.; Mansurov, Z.A. Obtaining superhydrophobic sand on the basis of soot synthesized during combustion of oil waste. Procedia Manuf. 2017, 12, 17–21. [Google Scholar] [CrossRef]
- Abousnina, R.M.; Manalo, A.; Shiau, J.; Lokuge, W. Effects of light crude oil contamination on the physical and mechanical properties of fine sand. Soil Sediment. Contam. Int. J. 2015, 24, 833–845. [Google Scholar] [CrossRef]
- Ovaskainen, L.; Olin, P.; Pettersson, T.; Wågberg, L.; Tuominen, M. The effect of different wear on superhydrophobic wax coatings. Nordic Pulp Paper Res. J. 2017, 32, 195–203. [Google Scholar] [CrossRef]
- Guan, Y.; Yu, C.; Zhu, J.; Yang, R.; Li, X.; Wei, D.; Xu, X. Design and fabrication of vapor-induced superhydrophobic surfaces obtained from polyethylene wax and silica nanoparticles in hierarchical structures. RSC Adv. 2018, 8, 25150–25158. [Google Scholar] [CrossRef]
- Bardet, J.P.; Jesmani, M.; Jabbari, N.; Nunes Lourenco, S.D. Permeability and compressibility of wax-coated sands. Géotechnique 2014, 64, 752–755. [Google Scholar] [CrossRef] [Green Version]
- Leelamanie, D.A.L.; Karube, J. Effects of hydrophobic and hydrophilic organic matter on the water repellency of model sandy soils. Soil Sci. Plant Nutr. 2009, 55, 462–467. [Google Scholar] [CrossRef] [Green Version]
- Ogihara, H.; Xie, J.; Okagaki, J.; Saji, T. Simple method for preparing superhydrophobic paper: Spray-deposited hydrophobic silica nanoparticle coatings exhibit high water-repellency and transparency. Langmuir 2012, 28, 4605–4608. [Google Scholar] [CrossRef]
- Manca, M.; Cannavale, A.; De Marco, L.; Arico, A.S.; Cingolani, R.; Gigli, G. Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol−gel processing. Langmuir 2009, 25, 6357–6362. [Google Scholar] [CrossRef]
- Illescas, J.F.; Mosquera, M.J. Surfactant-synthesized PDMS/silica nanomaterials improve robustness and stain resistance of carbonate stone. J. Phys. Chem. C 2011, 115, 14624–14634. [Google Scholar] [CrossRef]
- Xu, L.; Geng, Z.; He, J.; Zhou, G. Mechanically robust, thermally stable, broadband antireflective, and superhydrophobic thin films on glass substrates. ACS Appl. Mater. Interfaces 2014, 6, 9029–9035. [Google Scholar] [CrossRef] [PubMed]
- Bravo, J.; Zhai, L.; Wu, Z.; Cohen, R.E.; Rubner, M.F. Transparent superhydrophobic films based on silica nanoparticles. Langmuir 2007, 23, 7293–7298. [Google Scholar] [CrossRef]
- Men, X.; Ge, B.; Li, P.; Zhu, X.; Shi, X.; Zhang, Z. Facile fabrication of superhydrophobic sand: Potential advantages for practical application in oil–water separation. J. Taiwan Inst. Chem. Eng. 2016, 60, 651–655. [Google Scholar] [CrossRef]
- Yong, J.; Chen, F.; Yang, Q.; Bian, H.; Du, G.; Shan, C.; Huo, J.; Fang, Y.; Hou, X. Oil-water separation: A gift from the desert. Adv. Mater. Interfaces 2016, 3, 1500650. [Google Scholar] [CrossRef]
- Li, C.; Mei, Z.; Liu, Q.; Wang, J.; Xu, J.; Sun, D. Formation and properties of paraffin wax submicron emulsions prepared by the emulsion inversion point method. Colloids Surf. Physicochem. Eng. Asp. 2010, 356, 71–77. [Google Scholar] [CrossRef]
- Kong, L.; Uedono, A.; Smith, S.V.; Yamashita, Y.; Chironi, I. Synthesis of silica nanoparticles using oil-in-water emulsion and the porosity analysis. J. Sol-Gel Sci. Technol. 2012, 64, 309–314. [Google Scholar] [CrossRef]
- Roy, I.; Ohulchanskyy, T.Y.; Pudavar, H.E.; Bergey, E.J.; Oseroff, A.R.; Morgan, J.; Dougherty, T.J.; Prasad, P.N. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: A novel drug—Carrier system for photodynamic therapy. J. Am. Chem. Soc. 2003, 125, 7860–7865. [Google Scholar] [CrossRef]
- Kumar, R.; Roy, I.; Ohulchanskky, T.Y.; Vathy, L.A.; Bergey, E.J.; Sajjad, M.; Prasad, P.N. In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles. ACS Nano 2010, 4, 699–708. [Google Scholar] [CrossRef]
- Srivastava, S.P.; Saxena, A.K.; Tandon, R.S.; Shekher, V. Measurement and prediction of solubility of petroleum waxes in organic solvents. Fuel 1997, 76, 625–630. [Google Scholar] [CrossRef]
- Qian, J.W.; Qi, G.R.; Xu, Y.L.; Yang, S.L. Solvent effect on the action of ethylene–vinyl acetate copolymer pour point depressant in waxy solutions. J. Appl. Polym. Sci. 1996, 60, 1575–1578. [Google Scholar] [CrossRef]
- Qian, J.W.; Zhou, G.H.; Yang, W.Y.; Xu, Y.L. Studies on pour point depression of EVA polymers in solvent mixtures containing wax. J. Appl. Polym. Sci. 2002, 83, 815–821. [Google Scholar] [CrossRef]
- Atta, A.M.; Al-Lohedan, H.A.; Al-Hussain, S.A. Functionalization of magnetite nanoparticles as oil spill collector. Int. J. Mol. Sci. 2015, 16, 6911–6931. [Google Scholar] [CrossRef] [PubMed]
- Lan, Q.; Yang, F.; Zhang, S.; Liu, S.; Xu, J.; Sun, D. Synergistic effect of silica nanoparticle and cetyltrimethyl ammonium bromide on the stabilization of O/W emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2007, 302, 126–135. [Google Scholar] [CrossRef]
- Luyt, A.S.; Krupa, I. Phase change materials formed by uv curable epoxy matrix and Fischer–Tropsch paraffin wax. Energy Convers. Manag. 2009, 50, 57–61. [Google Scholar] [CrossRef]
- Deng, X.; Mammen, L.; Zhao, Y.; Lellig, P.; Müllen, K.; Li, C.; Butt, H.-J.; Vollmer, D. Transparent, thermally stable and mechanically robust superhydrophobic surfaces made from porous silica capsules. Adv. Mater. 2011, 23, 2962–2965. [Google Scholar] [CrossRef] [PubMed]
- Schoonover, J.E.; Crim, J.F. An introduction to soil concepts and the role of soils in watershed management. J. Contemp. Water Res. Educ. 2015, 154, 21–47. [Google Scholar] [CrossRef]
Characteristics | Light Slack Wax (Waste By-Product) | Paraffin Waxes (PWs) |
Yield | 100 | 54.5 |
Congealing point, °C | 46 | 53 |
Kinematic viscosity, 98.9 °C, cSt | 2.83 | 2.88 |
Refractive index, 98.9 °C | 1.4214 | 1.4187 |
Density, 70 °C, g/cm3 | 0.7910 | 0.7750 |
Oil content, wt % | 4.25 | 0.25 |
Sulfur content, wt % | 0.08 | 0.00 |
Cone penetration, 25 °C | 23 | – |
Needle penetration, 25 °C | 67 | 22 |
Color (ASTM-D 1500) | 0.5 | 0.0 |
Refractive Index by TAPPI Equation | – | 1.4242 |
Molecular Type Composition | ||
Total saturates, wt % | 97.74 | 100 |
n-Paraffins content, wt % | 78..98 | 88.14 |
Iso & cycloparaffins content, wt % | 18.76 | 11.86 |
Total aromatics, wt % | 2.26 | 0.00 |
Mono-aromatics, wt % | 0.64 | 0.00 |
Di-aromatics, wt % | 1.62 | 0.00 |
Sample | Steps | Weight Loss (%) | IDT (°C) | T10% (°C) | Y (%) | |
---|---|---|---|---|---|---|
Start Temp (°C) | End Temp (°C) | |||||
HSNP | 0 | 250 | 5.5 | 130 | 320 | 38 |
250 | 450 | 19.5 | ||||
450 | 650 | 37 | ||||
HOSNP | 0 | 250 | 1.0 | 250 | 360 | 18 |
250 | 450 | 50.0 | ||||
450 | 650 | 31.0 | ||||
EOSNP1 | 0 | 250 | 30.0 | 150 | 170 | 20 |
250 | 450 | 25.0 | ||||
450 | 650 | 25.0 | ||||
EOSNP2 | 0 | 250 | 10.0 | 140 | 250 | 30 |
250 | 450 | 30.0 | ||||
450 | 650 | 30.0 |
Sample Code | Contact Angle (Degree) | |
---|---|---|
Receding | Advancing | |
Glass | 45 ± 4 | 48 ± 3 |
PWs | 55 ± 3 | 58 ± 2 |
HSNP | 110 ± 1 | 118 ± 1 |
HOSNP | 120 ± 4 | 125 ± 1 |
EOSNP1 | 165 ± 2 | 168 ± 2 |
EOSNP2 | 118 ± 3 | 123 ± 1 |
Samples | Time (s) for Water Preservation | Sand Composition (Treated Sand: Untreated Sand wt %) | ||
---|---|---|---|---|
Untreated Sand | 1:10 | 1:5 | 1:1 | |
Blank (untreated Sand only) | 2 s | – | – | – |
EOSNP1 in the presence of 10 wt % of PWs | 11 | 15 | 17 | |
EOSNP1 in the presence of 15 wt % of PWs | 17 | 19 | 25 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atta, A.M.; Abdullah, M.M.S.; Al-Lohedan, H.A.; Mohamed, N.H. Coating Sand with New Hydrophobic and Superhydrophobic Silica/Paraffin Wax Nanocapsules for Desert Water Storage and Transportation. Coatings 2019, 9, 124. https://doi.org/10.3390/coatings9020124
Atta AM, Abdullah MMS, Al-Lohedan HA, Mohamed NH. Coating Sand with New Hydrophobic and Superhydrophobic Silica/Paraffin Wax Nanocapsules for Desert Water Storage and Transportation. Coatings. 2019; 9(2):124. https://doi.org/10.3390/coatings9020124
Chicago/Turabian StyleAtta, Ayman M., Mahmood M. S. Abdullah, Hamad A. Al-Lohedan, and Nermen H. Mohamed. 2019. "Coating Sand with New Hydrophobic and Superhydrophobic Silica/Paraffin Wax Nanocapsules for Desert Water Storage and Transportation" Coatings 9, no. 2: 124. https://doi.org/10.3390/coatings9020124
APA StyleAtta, A. M., Abdullah, M. M. S., Al-Lohedan, H. A., & Mohamed, N. H. (2019). Coating Sand with New Hydrophobic and Superhydrophobic Silica/Paraffin Wax Nanocapsules for Desert Water Storage and Transportation. Coatings, 9(2), 124. https://doi.org/10.3390/coatings9020124