Fibre Laser Treatment of Beta TNZT Titanium Alloys for Load-Bearing Implant Applications: Effects of Surface Physical and Chemical Features on Mesenchymal Stem Cell Response and Staphylococcus aureus Bacterial Attachment
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Laser Treatment
2.3. Surface Roughness, Topography and Composition
2.4. Phase Identification
2.5. Surface Chemistry
2.6. In Vitro Cell Culture
2.6.1. Attachment
2.6.2. Proliferation
2.6.3. Differentiation
2.7. Bacterial Attachment
2.8. Statistical Analysis
3. Results
3.1. Surface Roughness by WLI
3.2. Surface Topography and Composition by SEM-EDX
3.3. Phase Identification by XRD
3.4. Surface Chemistry by XPS
3.5. Cell Responses
3.5.1. Attachment
3.5.2. Proliferation
3.5.3. Differentiation
3.6. Bacterial Attachment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- National Joint Registry. National Joint Registry for England, Wales and Northern Ireland 14th Annual Report 2017; Pad Creative Ltd.: London, UK, 2017. [Google Scholar]
- Miyamoto, T.; Suda, T. Differentiation and function of osteoclasts. Keio J. Med. 2003, 52, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abu-Amer, Y.; Darwech, I.; Clohisy, J.C. Aseptic loosening of total joint replacements: Mechanisms underlying osteolysis and potential therapies. Arthritis Res. Ther. 2007, 9, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chu, P.K.; Ding, C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. R Rep. 2004, 47, 49–121. [Google Scholar] [CrossRef] [Green Version]
- Niinomi, M.; Nakai, M.; Hieda, J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012, 8, 3888–3903. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, D.; Niinomi, M.; Morinaga, M.; Kato, Y.; Yashiro, T. Design and mechanical properties of new beta type titanium alloys for implant materials. Mater. Sci. Eng. 1998, 243, 244–249. [Google Scholar] [CrossRef]
- Ku, C.; Pioletti, D.P.; Browne, M.; Gregson, P.J. Effect of different Ti–6Al–4V surface treatments on osteoblasts behaviour. Biomaterials 2002, 23, 1447–1454. [Google Scholar] [CrossRef] [Green Version]
- Akahori, T.; Niinomi, M.; Nakai, M.; Kasuga, T.; Ogawa, M. Characteristics of Biomedical Beta-Type Titanium Alloy Subjected to Coating. Mater. Trans. 2008, 49, 365–371. [Google Scholar] [CrossRef] [Green Version]
- Niinomi, M. Biologically and Mechanically Biocompatible Titanium Alloys. Mater. Trans. 2008, 49, 2170–2178. [Google Scholar] [CrossRef] [Green Version]
- Hutmacher, D.W.; Schantz, J.T.; Lam, C.X.; Tan, K.C.; Lim, T.C. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. Tissue Eng. Regen. Med. 2007, 1, 245–260. [Google Scholar] [CrossRef]
- Abdel-Hady Gepreel, M.; Niinomi, M. Biocompatibility of Ti-alloys for long-term implantation. J. Mech. Behav. Biomed. Mater. 2013, 20, 407–415. [Google Scholar] [CrossRef]
- Campoccia, D.; Montanaro, L.; Arciola, C.R. The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials 2006, 27, 2331–2339. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Singh, S.K.; Chowdhury, I.; Singh, R. Understanding the Mechanism of Bacterial Biofilms Resistance to Antimicrobial Agents. Open Microbiol. J. 2017, 11, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Scarano, A.; Piattelli, M.; Vrespa, G.; Caputi, S.; Piattelli, A. Bacterial adhesion on titanium nitride-coated and uncoated implants: An in vivo human study. Oral Implantol. 2003, 29, 80–85. [Google Scholar] [CrossRef]
- Cunha, A.; Elie, A.-M.; Plawinski, L.; Serro, A.P.; do Rego, B.; Maria, A.; Almeida, A.; Urdaci, M.C.; Durrieu, M.-C.; Vilar, R. Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation. Appl. Surf. Sci. 2016, 360, 485–493. [Google Scholar] [CrossRef]
- Chan, C.W.; Carson, L.; Smith, G.C.; Morelli, A.; Lee, S. Enhancing the antibacterial performance of orthopaedic implant materials by fibre laser surface engineering. Appl. Surf. Sci. 2017, 404, 67–81. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.-W.; Lee, S.; Smith, G.; Sarri, G.; Ng, C.-H.; Sharba, A.; Man, H.-C. Enhancement of wear and corrosion resistance of beta titanium alloy by laser gas alloying with nitrogen. Appl. Surf. Sci. 2016, 367, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Faeda, R.S.; Tavares, H.S.; Sartori, R.; Guastaldi, A.C.; Marcantonio, E.J. Evaluation of titanium implants with surface modification by laser beam: Biomechanical study in rabbit tibias. Braz. Oral Res. 2009, 23, 137–143. [Google Scholar] [CrossRef]
- Cunha, A.; Zouani, O.F.; Plawinski, L.; Botelho do Rego, A.M.; Almeida, A.; Vilar, R.; Durrieu, M.C. Human mesenchymal stem cell behavior on femtosecond laser-textured Ti-6Al-4V surfaces. Nanomedicine 2015, 10, 725–739. [Google Scholar] [CrossRef]
- Zhou, J.; Sun, Y.; Huang, S.; Sheng, J.; Li, J.; Agyenim-Boateng, E. Effect of laser peening on friction and wear behavior of medical Ti6Al4V alloy. Opt. Laser Technol. 2019, 109, 263–269. [Google Scholar] [CrossRef]
- Folkes, J.A. Laser Surface Melting and Alloying of Titanium Alloys. Ph.D. Thesis, University of London, London, UK, 1986. [Google Scholar]
- Hussein, H.T.; Kadhim, A.; Al-Amiery, A.A.; Kadhum, A.A.H.; Mohamad, A.B. Enhancement of the Wear Resistance and Microhardness of Aluminum Alloy by Nd:YaG Laser Treatment. Sci. World J. 2014, 2014, 1–5. [Google Scholar] [CrossRef]
- Mudali, U.K.; Pujar, M.G.; Dayal, R.K. Effects of Laser Surface Melting on the Pitting Resistance of Sensitized Nitrogen-Bearing Type 316L Stainless Steel. J. Mater. Eng. Perform. 1997, 7, 214–220. [Google Scholar] [CrossRef]
- Langlade, C.; Vannes, A.B.; Krafft, J.M.; Martin, J.R. Surface modification and tribological behaviour of titanium and titanium alloys after YAG-laser treatments. Surf. Coat. Technol. 1998, 100, 383–387. [Google Scholar] [CrossRef]
- Sun, Z.; Annergren, I.; Pan, D.; Mai, T.A. Effect of laser surface remelting on the corrosion behavior of commercially pure titanium sheet. Mater. Sci. Eng. A 2003, 345, 293–300. [Google Scholar] [CrossRef]
- National Joint Registry. National Joint Registry for England, Wales and Northern Ireland 11th Annual Report 2014; Pad Creative Ltd.: London, UK, 2014. [Google Scholar]
- National Joint Registry. National Joint Registry for England, Wales and Northern Ireland 12th Annual Report 2015; Pad Creative Ltd.: London, UK, 2015. [Google Scholar]
- National Joint Registry. National Joint Registry for England, Wales and Northern Ireland 13th Annual Report 2016; Pad Creative Ltd.: London, UK, 2016. [Google Scholar]
- National Joint Registry. National Joint Registry for England, Wales and Northern Ireland 15th Annual Report 2018; Pad Creative Ltd.: London, UK, 2018. [Google Scholar]
- Evans, J.T.; Evans, J.P.; Walker, R.W.; Blom, A.W.; Whitehouse, M.R.; Sayers, A. How long does a hip replacement last? A systematic review and meta-analysis of case series and national registry reports with more than 15 years of follow-up. Lancet 2019, 393, 647–654. [Google Scholar] [CrossRef]
- Chesmel, K.D.; Clark, C.C.; Brighton, C.T.; Black, J. Cellular responses to chemical and morphologic aspects of biomaterial surfaces. II. The biosynthetic and migratory response of bone cell populations. J. Biomed. Mater. Res. 1995, 29, 1101–1110. [Google Scholar] [CrossRef]
- Leyens, C.; Peters, M. Titanium and Titanium Alloys: Fundamentals and Applications; Wiley-VCH: Hoboken, NJ, USA, 2003. [Google Scholar]
- Meirelles, L.; Arvidsson, A.; Albrektsson, T.; Wennerberg, A. Increased bone formation to unstable nano rough titanium implants. Clin. Oral Implant. Res. 2007, 18, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.S.; Arnold, C.B. Laser Precision Microfabrication; Sugioka, K., Meunier, M., Pique, A., Eds.; Springer: Berlin, Germany, 2010; pp. 91–120. [Google Scholar]
- Fotovvati, B.; Wayne, S.F.; Lewis, G.; Asadi, E. A Review on Melt-Pool Characteristics in Laser Welding of Metals. Adv. Mater. Sci. Eng. 2018, 2018, 1–18. [Google Scholar] [CrossRef]
- Chan, C.W.; Carson, L.; Smith, G.C. Fibre laser treatment of martensitic NiTi alloys for load-bearing implant applications: Effects of surface chemistry on inhibiting Staphylococcus aureus biofilm formation. Surf. Coat. Technol. 2018, 349, 488–502. [Google Scholar] [CrossRef]
- György, E.; del Pino, A.P.; Serra, P.; Morenza, J.L. Microcolumn development on titanium by multipulse laser irradiation in nitrogen. J. Mater. Res. 2003, 18, 2228–2234. [Google Scholar] [CrossRef] [Green Version]
- Picasso, M.; Hoadley, A.F.A. Finite element simulation of laser surface treatments including convection in the melt pool. Int. J. Numer. Methods Heat Fluid Flow 1994, 4, 61–83. [Google Scholar] [CrossRef]
- Teughels, W.; Assche, N.; Van Sliepen, I.; Quirynen, M.; Van Assche, N. Effect of material characteristics and/or surface topography on biofilm development. Clin. Oral Implant. Res. 2006, 17, 68–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griepentrog, M.; Griepentrog, M.; Haustein, I.; Müller, W.D.; Lange, K.P.; Briedigkeit, H.; Göbel, U.B. Plaque formation on surface modified dental implants. Clin. Oral Implant. Res. 2001, 12, 543–551. [Google Scholar]
- Brunello, G.; Brun, P.; Gardin, C.; Ferroni, L.; Bressan, E.; Meneghello, R.; Zavan, B.; Sivolella, S. Biocompatibility and antibacterial properties of zirconium nitride coating on titanium abutments: An in vitro study. PLoS ONE 2018, 13, e0199591. [Google Scholar] [CrossRef] [PubMed]
- Badrinarayanan, S.; Sinha, S.; Mandale, A.B. XPS studies of nitrogen ion implanted zirconium and titanium. J. Electron. Spectrosc. Relat. Phenom. 1989, 49, 303–309. [Google Scholar] [CrossRef]
- Gotman, I. Characteristics of Metals Used in Implants. J. Endourol. 1997, 11, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Di Silvio, L.; Jayakumar, P. Cellular Response to Biomaterials; Woodhead Publishing Limited: Cambridge, UK, 2009; pp. 313–343. [Google Scholar]
- Gittens, R.; McLachlan, T.; Olivares-Navarrete, R.; Cai, Y.; Berner, S.; Tannenbaum, R.; Schwartz, Z.; Sandhage, K.H.; Boyan, B.D. The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials 2011, 32, 3395–3403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, P. Experiments on cell and axon orientation in vitro: The role of colloidal exudates in tissue organization. J. Exp. Zool. Part A 1945, 100, 353–386. [Google Scholar] [CrossRef]
- Loye, A.M.; Kinser, E.R.; Bensouda, S.; Shayan, M.; Davis, R.; Wang, R.; Chen, Z.; Schwarz, U.D.; Schroers, J.; Kyriakides, T.R. Regulation of Mesenchymal Stem Cell Differentiation by Nanopatterning of Bulk Metallic Glass. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Martínez, E.; Engel, E.; Planell, J.; Samitier, J. Effects of artificial micro- and nano-structured surfaces on cell behaviour. Ann. Anat. 2009, 191, 126–135. [Google Scholar] [CrossRef]
- Cunha, A. Multiscale Femtosecond Laser Surface Texturing of Titanium and Titanium Alloys for Dental and Orthopaedic Implants; Universite de Bordeaux: Bordeaux, France, 2015. [Google Scholar]
- Harrison, R.G. The cultivation of tissues in extraneous media as a method of morpho-genetic study. Anat. Rec. 1912, 6, 181–193. [Google Scholar] [CrossRef]
- Curtis, A.; Wilkinson, C. Topographical control of cells. Biomaterials 1998, 18, 1573–1583. [Google Scholar] [CrossRef]
- Kilian, K.; Bugarija, B.; Lahn, B.T.; Mrksich, M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl. Acad. Sci. USA 2010, 107, 4872–4877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jimenez-Vergara, A.C. Refined assessment of the impact of cell shape on human mesenchymal stem cell differentiation in 3D contexts. Acta Biomater. 2019. [Google Scholar] [CrossRef] [PubMed]
- Mangano, C.; Piattelli, A.; D’avila, S.; Iezzi, G.; Mangano, F.; Onuma, T.; Shibli, J.A. Early Human Bone Response to Laser Metal Sintering Surface Topography: A Histologic Report. J. Oral Implantol. 2010, 36, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Helal, M.E.; Gad, E.; Helal, M.; Zaghlool, M. Effect of different titanium laser surface treatments on osseointegration. Int. J. Acad. Res. 2010, 2, 138–144. [Google Scholar]
- Charles, P.D.; Anandapandian, P.A.; Samuel, S. Osteogenic potential of laser modified and conditioned titanium zirconium surfaces. J. Indian Prosthodont. Soc. 2016, 16, 253–258. [Google Scholar]
- Chu, S.-F.; Huang, M.-T.; Ou, K.L.; Sugiatno, E.; Cheng, H.-Y.; Huang, Y.-H.; Chui, W.-T.; Liou, T.-H. Enhanced biocompatible and hemocompatible nano/micro porous surface as a biological scaffold for functionalizational and biointegrated implants. J. Alloy. Compd. 2016, 684, 726–732. [Google Scholar] [CrossRef]
- Puckett, S.D.; Taylor, E.; Raimondo, T.; Webster, T.J. The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials 2010, 31, 706–713. [Google Scholar] [CrossRef]
- Chan, C.W.; Hussain, I.; Waugh, D.G.; Lawrence, J.; Man, H.C. Effect of laser treatment on the attachment and viability of mesenchymal stem cell responses on shape memory NiTi alloy. Mater. Sci. Eng. C. Mater. Biol. Appl. 2014, 42, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Feng, G.; Cheng, F.; Wang, S.-Y.; Borca-Tasciuc, D.A.; Worobo, R.W.; Moraru, C.I. Bacterial attachment and biofilm formation on surfaces are reduced by small-diameter nanoscale pores: How small is small enough? Biofilms Microbiomes 2015, 1, 1–9. [Google Scholar] [CrossRef]
XPS (% Concentration) | |||
---|---|---|---|
Name | BM | LT100 | LT200 |
C 1s | 54.1 | 56.4 | 52.2 |
N 1s | 7.7 | 4.4 | 3.2 |
O 1s | 27.4 | 30.8 | 32.9 |
Si 2p | 1.8 | 0.5 | 0.6 |
Ti 2p | 3.4 | 6.1 | 8.6 |
Cu 2p3/2 | 2.7 | 0.2 | 0.8 |
Zn 2p3/2 | 0.8 | 0.6 | 0.4 |
Zr 3d | 0.4 | 0.5 | 0.7 |
Element | Line | Assignment | BE Range (eV) | Present in Sample | ||
---|---|---|---|---|---|---|
BM | LT100 | LT200 | ||||
Ti | 2p3/2 | Ti metal | 454.3 | No | Yes | Yes |
Ti3+ in Ti2O3/TiN | 456.2 | V. weak | Yes | Yes | ||
Ti4+ in TiO2 | 458.4 | Yes | Yes | Yes | ||
O | 1s | Ti–O, Nb–O, Zr–O | 529.8 | Yes | Yes | Yes |
O=C | 530.9–531.5 | Yes | Yes | Yes | ||
O–C | 532.3–532.9 | Yes | Yes | Yes | ||
C | 1s | C–C | 285 | Yes | Yes | Yes |
C–O | 286–286.4 | Yes | Yes | Yes | ||
C=O | 287.2–288.1 | Yes | Yes | Yes | ||
COO- | 288.6–289.3 | Yes | Yes | Yes | ||
Nb | 3d5/2 | Nb metal | 202–202.5 | No | Yes | Yes |
Nb5+ in Nb2O5 | 207 | Yes | Yes | Yes | ||
Zr | 3d5/2 | Zr metal | 178.4 | Weak | Yes | Yes |
Zr4+ in ZrO2 | 182.3 | Yes | Yes | Yes | ||
N | 1s | Nitride | 395.8–397.0 | V. weak/No | Yes | Yes |
Organic | 399.7–400.3 | Yes | Yes | Yes |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donaghy, C.L.; McFadden, R.; Smith, G.C.; Kelaini, S.; Carson, L.; Malinov, S.; Margariti, A.; Chan, C.-W. Fibre Laser Treatment of Beta TNZT Titanium Alloys for Load-Bearing Implant Applications: Effects of Surface Physical and Chemical Features on Mesenchymal Stem Cell Response and Staphylococcus aureus Bacterial Attachment. Coatings 2019, 9, 186. https://doi.org/10.3390/coatings9030186
Donaghy CL, McFadden R, Smith GC, Kelaini S, Carson L, Malinov S, Margariti A, Chan C-W. Fibre Laser Treatment of Beta TNZT Titanium Alloys for Load-Bearing Implant Applications: Effects of Surface Physical and Chemical Features on Mesenchymal Stem Cell Response and Staphylococcus aureus Bacterial Attachment. Coatings. 2019; 9(3):186. https://doi.org/10.3390/coatings9030186
Chicago/Turabian StyleDonaghy, Clare Lubov, Ryan McFadden, Graham C. Smith, Sophia Kelaini, Louise Carson, Savko Malinov, Andriana Margariti, and Chi-Wai Chan. 2019. "Fibre Laser Treatment of Beta TNZT Titanium Alloys for Load-Bearing Implant Applications: Effects of Surface Physical and Chemical Features on Mesenchymal Stem Cell Response and Staphylococcus aureus Bacterial Attachment" Coatings 9, no. 3: 186. https://doi.org/10.3390/coatings9030186
APA StyleDonaghy, C. L., McFadden, R., Smith, G. C., Kelaini, S., Carson, L., Malinov, S., Margariti, A., & Chan, C. -W. (2019). Fibre Laser Treatment of Beta TNZT Titanium Alloys for Load-Bearing Implant Applications: Effects of Surface Physical and Chemical Features on Mesenchymal Stem Cell Response and Staphylococcus aureus Bacterial Attachment. Coatings, 9(3), 186. https://doi.org/10.3390/coatings9030186