RF Magnetron Sputtering Deposition of TiO2 Thin Films in a Small Continuous Oxygen Flow Rate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate Preparation
2.2. Deposition Parameters
2.3. Characterization Techniques
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Richards, B. Single-material TiO2 double-layer antireflection coatings. Sol. Energy Mater. Sol. Cells 2003, 79, 369–390. [Google Scholar] [CrossRef]
- Majeed, A.; He, J.; Jiao, L.; Zhong, X.; Sheng, Z. Surface properties and biocompatibility of nanostructured TiO2 film deposited by RF magnetron sputtering. Nanoscale Res. Lett. 2015, 10, 91. [Google Scholar] [CrossRef]
- Bait, L.; Azzouz, L.; Saoula, N.; Madaoui, N. Influence of substrate bias voltage on the properties of TiO2 deposited by radio-frequency magnetron sputtering on 304L for biomaterials applications. Appl. Surf. Sci. 2017, 395, 72–77. [Google Scholar] [CrossRef]
- Krishna, D.S.R.; Sun, Y. Thermally oxidised rutile-TiO2 coating on stainless steel for tribological properties and corrosion resistance enhancement. Appl. Surf. Sci. 2005, 252, 1107–1116. [Google Scholar] [CrossRef]
- Shen, G.; Chen, Y.; Lin, L.; Lin, C.; Scantlebury, D. Study on a hydrophobic nano-TiO2 coating and its properties for corrosion protection of metals. Electrochim. Acta 2005, 50, 5083–5089. [Google Scholar] [CrossRef]
- Bamoulid, L.; Maurette, M.T.; De Caro, D.; Guenbour, A.; Bachir, A.B.; Aries, L.; El Hajjaji, S.; Benoît-Marquié, F.; Ansart, F. An efficient protection of stainless steel against corrosion: Combination of a conversion layer and titanium dioxide deposit. Surf. Coat. Technol. 2008, 202, 5020–5026. [Google Scholar] [CrossRef] [Green Version]
- Shan, C.; Hou, X.; Choy, K.L. Corrosion resistance of TiO2 films grown on stainless steel by atomic layer deposition. Surf. Coat. Technol. 2008, 202, 2399–2402. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, F.; Xue, C.; Li, L.; Yin, Y. Structure stability and corrosion resistance of nano-TiO2 coatings on aluminum in seawater by a vacuum dip-coating method. Surf. Coat. Technol. 2010, 205, 2335–2339. [Google Scholar] [CrossRef]
- Xie, D.; Wang, H.; Ganesan, R.; Leng, Y.; Sun, H.; Huang, N. Fatigue durability and corrosion resistance of TiO2 films on CoCrMo alloy under cyclic deformation. Surf. Coat. Technol. 2015, 275, 252–259. [Google Scholar] [CrossRef]
- Wang, N.; Fu, W.; Zhang, J.; Li, X.; Fang, Q. Corrosion performance of waterborne epoxy coatings containing polyethylenimine treated mesoporous-TiO2 nanoparticles on mild steel. Prog. Org. Coat. 2015, 89, 114–122. [Google Scholar] [CrossRef]
- Karunagaran, B.; Uthirakumar, P.; Chung, S.; Velumani, S.; Suh, E.K. TiO2 thin film gas sensor for monitoring ammonia. Mater. Charact. 2007, 58, 680–684. [Google Scholar] [CrossRef]
- Dhivya, P.; Prasad, A.K.; Sridharan, M. Nanostructured TiO2 films: Enhanced NH3 detection at room temperature. Ceram. Int. 2014, 40, 409–415. [Google Scholar] [CrossRef]
- Patil, M.K.; Shaikh, S.; Ganesh, I. Recent advances on TiO2 thin film based photocatalytic applications (A review). Curr. Nanosci. 2015, 11, 271–285. [Google Scholar] [CrossRef]
- Nair, P.B.; Justinvictor, V.B.; Daniel, G.P.; Joy, K.; Raju, K.J.; Kumar, D.D.; Thomas, P.V. Optical parameters induced by phase transformation in RF magnetron sputtered TiO2 nanostructured thin films. Prog. Nat. Sci. Mater. Int. 2014, 24, 218–225. [Google Scholar] [CrossRef]
- Schönberger, W.; Bartzsch, H.; Schippel, S.; Bachmann, T. Deposition of rutile TiO2 films by pulsed and high power pulsed magnetron sputtering. Surf. Coat. Technol. 2016, 293, 16–20. [Google Scholar] [CrossRef]
- Wypych, A.; Bobowska, I.; Tracz, M.; Opasińska, A.; Kadlubowski, S.; Krzywania-Kaliszewska, A.; Grobelny, J.; Wojciechowski, P. Dielectric properties and characterisation of titanium dioxide obtained by different chemistry methods. J. Nanomater. 2014, 2014, 1–9. [Google Scholar] [CrossRef]
- Sekhar, M.C.; Kondaiah, P.; Chandra, S.J.; Rao, G.M.; Uthanna, S. Effect of substrate bias voltage on the structure, electric and dielectric properties of TiO2 thin films by DC magnetron sputtering. Appl. Surf. Sci. 2011, 258, 1789–1796. [Google Scholar] [CrossRef]
- Selhofer, H.; Muller, R. Comparison of pure and mixed coating materials for AR coatings for use by reactive evaporation on glass and plastic lenses. Thin Solid Film. 1999, 351, 180–183. [Google Scholar] [CrossRef]
- Yu, J.; Zhao, X. Effect of substrates on the photocatalytic activity of nanometer TiO2 thin films. Mater. Res. Bull. 2000, 35, 1293–1301. [Google Scholar] [CrossRef]
- Song, P.; Irie, Y.; Shigesato, Y. Crystallinity and photocatalytic activity of TiO2 films deposited by reactive sputtering with radio frequency substrate bias. Thin Solid Film. 2006, 496, 121–125. [Google Scholar] [CrossRef]
- Jagadale, T.C.; Takale, S.P.; Sonawane, R.S.; Joshi, H.M.; Patil, S.I.; Kale, B.B.; Ogale, S.B. N-Doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol−gel method. J. Phys. Chem. C 2008, 112, 14595–14602. [Google Scholar] [CrossRef]
- Višniakov, J.; Janulevičius, A.; Maneikis, A.; Matulaitienė, I.; Selskis, A.; Stanionytė, S.; Suchodolskis, A. Antireflection TiO2 coatings on textured surface grown by HiPIMS. Thin Solid Film. 2017, 628, 190–195. [Google Scholar] [CrossRef]
- Šícha, J.; Novák, O.; Kudláček, P.; Vlček, J. Ion flux characteristics in pulsed dual magnetron discharges used for deposition of photoactive TiO2 films. Plasma Process. Polym. 2011, 8, 191–199. [Google Scholar] [CrossRef]
- Šícha, J.; Heřman, D.; Musil, J.; Stryhal, Z.; Pavlík, J. High-rate low-temperature DC pulsed magnetron sputtering of photocatalytic TiO2 films: The effect of repetition frequency. Nanoscale Res. Lett. 2007, 2, 123–129. [Google Scholar] [CrossRef]
- Musil, J.; Šícha, J.; Heřman, D.; Čerstvý, R. Role of energy in low-temperature high-rate formation of hydrophilic TiO2 thin films using pulsed magnetron sputtering. J. Vac. Sci. Technol. A 2007, 25, 666. [Google Scholar] [CrossRef]
- Nezar, S.; Sali, S.; Faiz, M.; Mekki, M.; Laoufi, N.A.; Saoula, N.; Tabet, N. Properties of TiO2 thin films deposited by rf reactive magnetron sputtering on biased substrates. Appl. Surf. Sci. 2017, 395, 172–179. [Google Scholar] [CrossRef]
- Herzinger, C.M.; Johs, B.; McGahan, W.A.; Woollam, J.A.; Paulson, W. Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation. J. Appl. Phys. 1998, 83, 3323–3336. [Google Scholar] [CrossRef]
- Fujiwara, H. Spectroscopic Ellipsometry Principles and Applications; John Wiley & Sons Ltd.: West Sussex, UK, 2007; ISBN 978-0-470-01608-4. [Google Scholar]
- Musil, J. Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness. Surf. Coat. Technol. 2012, 207, 50–65. [Google Scholar] [CrossRef]
- Musil, J. Flexible hard nanocomposite coatings. RSC Adv. 2015, 5, 60482–60495. [Google Scholar] [CrossRef]
- Kelly, P.J.; Arnell, R.D. Development of a novel structure zone model relating to the closed-field unbalanced magnetron sputtering system. J. Vac. Sci. Technol. A 1998, 16, 2858–2869. [Google Scholar] [CrossRef]
- Miao, L.; Jin, P.; Kaneko, K.; Terai, A.; Nabatova-Gabain, N.; Tanemura, S. Preparation and characterization of polycrystalline anatase and rutile TiO2 thin films by rf magnetron sputtering. Appl. Surf. Sci. 2003, 212, 255–263. [Google Scholar] [CrossRef]
- Thornton, J.A. Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. J. Vac. Sci. Technol. 1974, 11, 666–670. [Google Scholar] [CrossRef]
- Tanemura, S.; Miao, L.; Jin, P.; Kaneko, K.; Terai, A.; Nabatova-Gabain, N. Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering. Appl. Surf. Sci. 2003, 212, 654–660. [Google Scholar] [CrossRef]
- Sekhar, M.C.; Kondaiah, P.; Krishna, B.R.; Uthanna, S. Effect of oxygen partial pressure on the electrical and optical properties of DC magnetron sputtered amorphous TiO2 films. J. Spectrosc. 2013, 2013, 1–7. [Google Scholar] [CrossRef]
- Liao, M.; Niu, H.; Chen, G. Effect of sputtering pressure and post-annealing on hydrophilicity of TiO2 thin films deposited by reactive magnetron sputtering. Thin Solid Film. 2010, 518, 7258–7262. [Google Scholar] [CrossRef]
- Wiatrowski, A.; Mazur, M.; Obstarczyk, A.; Wojcieszak, D.; Kaczmarek, D.; Morgiel, J.; Gibson, D. Comparison of the physicochemical properties of TiO2 thin films obtained by magnetron sputtering with continuous and pulsed gas flow. Coatings 2018, 8, 412. [Google Scholar] [CrossRef]
- Zheng, J.; Bao, S.; Guo, Y.; Jin, P. TiO2 films prepared by DC reactive magnetron sputtering at room temperature: Phase control and photocatalytic properties. Surf. Coat. Technol. 2014, 240, 293–300. [Google Scholar] [CrossRef]
- Nair, P.B.; Justinvictor, V.; Daniel, G.P.; Joy, K.; Ramakrishnan, V.; Thomas, P. Effect of RF power and sputtering pressure on the structural and optical properties of TiO2 thin films prepared by RF magnetron sputtering. Appl. Surf. Sci. 2011, 257, 10869–10875. [Google Scholar] [CrossRef]
- Wang, S.F.; Hsu, Y.F.; Lee, Y.S. Microstructural evolution and optical properties of doped TiO2 films prepared by RF magnetron sputtering. Ceram. Int. 2006, 32, 121–125. [Google Scholar] [CrossRef]
- Pradhan, S.S.; Sahoo, S.; Pradhan, S. Influence of annealing temperature on the structural, mechanical and wetting property of TiO2 films deposited by RF magnetron sputtering. Thin Solid Film. 2010, 518, 6904–6908. [Google Scholar] [CrossRef]
- Shen, Y.; Yu, H.; Yao, J.; Shao, S.; Fan, Z.; He, H.; Shao, J. Investigation on properties of TiO2 thin films deposited at different oxygen pressures. Opt. Laser Technol. 2008, 40, 550–554. [Google Scholar] [CrossRef]
- Chapman, B.N. Sputtering. In Glow Discharge Processes—Sputtering and Plasma Etching; Wiley: New York, NY, USA, 1980; pp. 177–296. [Google Scholar]
Parameter | Value |
---|---|
Target | Ti (99.5% pure) |
Target-to-substrate distance (mm) | 90 |
Base pressure (Pa) | 1.33 × 10−5 |
Process pressure (Pa) | 0.26 |
RF power (W) | 500 |
RF power target density 1 (W/cm2) | 2.83 |
Argon flow rate (sccm 2) | 30 (99.999% pure) |
Oxygen flow rate (sccm) | 0–2 (0.5 step) (99.999% pure) |
Ar:O2 Flow (sccm) | Amp | En (eV) | Br (eV) | Einf1 | MSE |
---|---|---|---|---|---|
30:1 | 20.852 ± 0.0704 | 4.5444 ± 0.0062 | 0.91657 ± 0.00601 | 3.1789 ± 0.0236 | 6.552 |
30:1.5 | 19.369 ± 0.075 | 4.5151 ± 0.00603 | 0.92139 ± 0.00632 | 3.3776 ± 0.0325 | 7.901 |
30:2 | 19.411 ± 0.0736 | 4.4924 ± 0.00634 | 0.90886 ± 0.00628 | 3.3995 ± 0.0271 | 7.79 |
Ar:O2 Flow (sccm) | Lattice Constant (nm) | Lattice Strain (%) | Mean Crystallite Size (nm) | ||
---|---|---|---|---|---|
a | b | c | |||
30:0 | 0.29 | 0.29 | 0.46 | 0.15 | 11.4 |
30:0.5 | 0.30 | 0.30 | 0.47 | 0.44 | 4.9 |
30:1 | 0.46 | 0.46 | 0.29 | 0.67 | 4.3 |
30:1.5 | 0.46 | 0.46 | 0.29 | 0.55 | 3.1 |
30:2 | 0.46 | 0.46 | 0.29 | 0.61 | 3.7 |
Present Work | Nezar et al. [26] | |
---|---|---|
RF power (W) | 500 | 250 |
Process pressure (Pa) | 0.26 | 2.66 |
O2 (%) | 0–6.25 | 25 |
Target-to-substrate distance (mm) | 90 | 30 |
Crystallization phase | rutile | anatase |
Main crystal orientation | (110), (211) and (220) | (101) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simionescu, O.-G.; Romanițan, C.; Tutunaru, O.; Ion, V.; Buiu, O.; Avram, A. RF Magnetron Sputtering Deposition of TiO2 Thin Films in a Small Continuous Oxygen Flow Rate. Coatings 2019, 9, 442. https://doi.org/10.3390/coatings9070442
Simionescu O-G, Romanițan C, Tutunaru O, Ion V, Buiu O, Avram A. RF Magnetron Sputtering Deposition of TiO2 Thin Films in a Small Continuous Oxygen Flow Rate. Coatings. 2019; 9(7):442. https://doi.org/10.3390/coatings9070442
Chicago/Turabian StyleSimionescu, Octavian-Gabriel, Cosmin Romanițan, Oana Tutunaru, Valentin Ion, Octavian Buiu, and Andrei Avram. 2019. "RF Magnetron Sputtering Deposition of TiO2 Thin Films in a Small Continuous Oxygen Flow Rate" Coatings 9, no. 7: 442. https://doi.org/10.3390/coatings9070442
APA StyleSimionescu, O. -G., Romanițan, C., Tutunaru, O., Ion, V., Buiu, O., & Avram, A. (2019). RF Magnetron Sputtering Deposition of TiO2 Thin Films in a Small Continuous Oxygen Flow Rate. Coatings, 9(7), 442. https://doi.org/10.3390/coatings9070442