Preparation and Characterization of In Situ Carbide Particle Reinforced Fe-Based Gradient Materials by Laser Melt Deposition
Abstract
:1. Introduction
2. Experimental Procedures
3. Results and Analysis
3.1. Constituent Phase
3.2. Microstructure
3.3. Microhardness
3.4. Wear Resistance
4. Conclusions
- (1)
- To obtain the camshaft with surface rigidity and core toughness, the wear-resistant Fe-based alloy gradient materials were successfully prepared by LMD. The gradient materials satisfied formability and metallurgical bonding between 12CrNi2V low alloy steel and wear-resistant Fe-based alloy.
- (2)
- The microstructure of Fe-based gradient materials was mainly cellular dendrite and intergranular structure. The 12CrNi2V low alloy steel was composed of α-Fe single phase solid solution, and S1, S2, and S3 were comprised of α-Fe, Cr23C6, and V2C. With the increase of Cr3C2 and FeV50, the carbides of S4 vanadium changed from V2C to V8C7.
- (3)
- With the increase of Cr3C2 and FeV50, the microhardness and wear resistance of Fe-based gradient materials were significantly better than that of 12CrNi2V. The average microhardness of S4 was 2.6 times higher than that of 12CrNi2V, and the wear resistance of S3 was about 21 times better than that of 12CrNi2V. The wear mechanism of S1, S2, and S3 was oxidation wear and abrasive wear, while the wear mechanism of S4 and 12CrNi2V low alloy steel was oxidation wear and adhesive wear.
Author Contributions
Funding
Conflicts of Interest
References
- Lin, D.Y.; Hou, B.J.; Lan, C.C. A balancing cam mechanism for minimizing the torque fluctuation of engine camshafts. Mech. Mach. Theory 2017, 108, 160–175. [Google Scholar] [CrossRef]
- Guan, T.T.; Chen, S.Y.; Chen, X.T.; Liang, J.; Liu, C.S.; Wang, M. Effect of laser incident energy on microstructures and mechanical properties of 12CrNi2Y alloy steel by direct laser deposition. J. Mater. Sci. Technol. 2019, 35, 395–402. [Google Scholar] [CrossRef]
- Cui, X.; Zhang, S.; Zhang, C.H.; Wu, C.L.; Zhang, J.B.; Liu, Y.; Abdullah, A.O. Effect of powder oxygen content on formability of 12CrNi2 alloy steel fabricated by laser melting deposition. Powder Metall. 2019, 62, 186–195. [Google Scholar] [CrossRef]
- Rudnev, V.I.; Loveless, D. Induction hardening: Technology, process design, and computer modeling. Compre. Mater. Process. 2014, 12, 489–580. [Google Scholar]
- Carroll, B.E.; Otis, R.A.; Borgonia, J.P.; Suh, J.O.; Dillon, R.P.; Shapiro, A.A.; Hofmann, D.C.; Liu, Z.K.; Beese, A.M. Functionally graded material of 304L stainless steel and inconel 625 fabricated by directed energy deposition: Characterization and thermodynamic modeling. Acta Mater. 2016, 108, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.C.; Zhang, X.L.; Lu, Y.X.; Li, Y.H. Static and dynamic analysis of the postbuckling of bi-directional functionally graded material microbeams. Int. J. Mech. Sci. 2019, 151, 424–443. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, Z.Q.; Feng, H. Dynamic fracture analysis of functional gradient material coating based on the peridynamic method. Coatings 2019, 9, 62. [Google Scholar] [CrossRef]
- Han, C.J.; Li, Y.; Wang, Q.; Cai, D.S.; Wei, Q.S.; Yang, L.; Wen, S.F.; Liu, J.; Shi, Y.S. Titanium/hydroxyapatite (Ti/HA) gradient materials with quasi-continuous ratios fabricated by SLM: Material interface and fracture toughness. Mater. Des. 2018, 141, 256–266. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J.Y.; Wang, B.; Yao, C.G. Comparative study of IN600 superalloy produced by two powder metallurgy technologies: Argon Atomizing and Plasma Rotating Electrode Process. Vacuum 2018, 156, 302–309. [Google Scholar] [CrossRef]
- Li, X.; Peng, X.Y.; Dong, H.; Zhou, Y.; Wang, T.; Ren, K.; Sun, L. The evaluation of durability of plasma-sprayed thermal barrier coatings with double-layer bond coat. Coatings 2019, 9, 241. [Google Scholar] [CrossRef]
- Pan, C.G.; Liu, D.D.; Zhao, C.X.; Chang, Q.M.; He, P. Corrosion and thermal fatigue behaviors of TiC/Ni composite coating by self-propagating high-temperature synthesis in molten aluminum alloy. Coatings 2017, 7, 203. [Google Scholar] [CrossRef]
- Patel, B.; Pati, R.K.; Mukhopadhyay, I.; Ray, A. Effect of vacuum and sulphur annealing on the structural properties of spray deposited Cu2SnS3 thin films. Vacuum 2018, 158, 263–270. [Google Scholar] [CrossRef]
- Ren, H.S.; Liu, D.; Tang, H.B.; Tian, X.J.; Zhu, Y.Y.; Wang, H.M. Microstructure and mechanical properties of a graded structural material. Mater. Sci. Eng. A 2014, 611, 362–369. [Google Scholar] [CrossRef]
- Gualtieri, T.; Bandyopadhyay, A. Additive manufacturing of compositionally gradient metal-ceramic structures: Stainless steel to vanadium carbide. Mater. Des. 2018, 139, 419–428. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, C.H.; Wang, Q.; Wu, C.L.; Zhang, S.; Chen, J.; Abdullah, A.O. Effect of Ni content on stainless steel fabricated by laser melting deposition. Opt. Laser Technol. 2018, 101, 363–371. [Google Scholar] [CrossRef]
- Cortina, M.; Arrizubieta, J.I.; Ukar, E.; Lamikiz, A. Analysis of the influence of the use of cutting fluid in hybrid processes of machining and laser metal deposition (LMD). Coatings 2018, 8, 61. [Google Scholar] [CrossRef]
- Chen, X.Y.; Yan, L.; Karnati, S.; Zhang, Y.L.; Liou, F. Fabrication and characterization of AlxCoFeNiCu1−x high entropy alloys by laser metal deposition. Coatings 2017, 7, 47. [Google Scholar] [CrossRef]
- Arcella, F.G.; Froes, F.H. Producing titanium aerospace components from powder using laser forming. JOM 2000, 52, 28–30. [Google Scholar] [CrossRef]
- Qi, H.; Azer, M.; Singh, P. Adaptive tool path deposition method for laser net shape manufacturing and repair of turbine compressor airfoils. Int. J. Adv. Manuf. Technol. 2010, 48, 121–131. [Google Scholar] [CrossRef]
- Qu, H.P.; Li, P.; Zhang, S.Q.; Li, A.; Wang, H.M. Microstructure and mechanical property of laser melting deposition (LMD) Ti/TiAl structural gradient material. Mater. Des. 2010, 31, 574–582. [Google Scholar] [CrossRef]
- Zhang, C.H.; Zhang, H.; Wu, C.L.; Zhang, S.; Sun, Z.L.; Dong, S.Y. Multi-layer functional graded stainless steel fabricated by laser melting deposition. Vacuum 2017, 141, 181–187. [Google Scholar] [CrossRef]
- Li, W.; Karnati, S.; Kriewall, C.; Liou, F.; Newkirk, J.; Taminger, K.M.B.; Seufzer, W.J. Fabrication and characterization of a functionally graded material from Ti-6Al-4V to SS316 by laser metal deposition. Addit. Manuf. 2017, 14, 95–104. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, C.P.; Liu, W.S.; Ma, Y.Z.; Liu, C.; Zhang, C. Dilution of Al and V through laser powder deposition enables a continuously compositionally Ti/Ti6Al4V graded structure. J. Alloys Compd. 2018, 763, 376–383. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, S.Y.; Chen, X.T.; Cui, T.; Liang, J.; Liu, C.S. The evolution of bainite and mechanical properties of direct laser deposition 12CrNi2 alloy steel at different laser power. Mater. Sci. Eng. A 2019, 742, 150–161. [Google Scholar] [CrossRef]
- Hosseini, M.; Shishesaz, M.; Tahan, K.N.; Hadi, A. Stress analysis of rotating nano-disks of variable thickness made of functionally graded materials. Int. J. Eng. Sci. 2016, 109, 29–53. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, S.; Zhang, C.H.; Wu, C.L.; Zhang, J.B.; Abdullah, A.O. Phase evolution and wear resistance of in situ synthesized V8C7 particles reinforced Fe-based coating by laser cladding. Opt. Laser Technol. 2018, 105, 58–65. [Google Scholar] [CrossRef]
- Zhao, Z.W. Synthesis of V8C7-Cr3C2 nanocomposite via a novel in-situ precursor method. Int. J. Refract Met. Hard Mater. 2016, 56, 118–122. [Google Scholar] [CrossRef]
- Lin, C.M.; Chang, C.M.; Chen, J.H.; Wu, W. Hardness, toughness and cracking systems of primary (Cr, Fe)23C6 and (Cr, Fe)7C3 carbides in high-carbon Cr-based alloys by indentation. Mater. Sci. Eng. A 2010, 527, 5038–5043. [Google Scholar] [CrossRef]
- Sobolev, A.; Mirzoev, A. Structure and stability of (Cr, Fe)7C3 ternary carbides in solid and liquid state. J. Alloys Compd. 2019, 804, 566–572. [Google Scholar] [CrossRef]
- Wang, H.Y.; Zhang, S.; Zhang, C.H.; Wu, C.L.; Zhang, J.B.; Abdullah, A.O. Effects of V and Cr on laser cladded Fe-Based coatings. Coatings 2018, 8, 107. [Google Scholar] [CrossRef]
- Flint, T.F.; Panwisawas, C.; Sovani, Y.; Smith, M.C.; Basoalto, H.C. Prediction of grain structure evolution during rapid solidification of high energy density beam induced re-melting. Mater. Des. 2018, 147, 200–210. [Google Scholar] [CrossRef] [Green Version]
- Khalili, A.; Goodarzi, M.; Mojtahedi, M.; Torkamany, M.J. Solidification microstructure of in-situ laser-synthesized Fe-TiC hard coating. Surf. Coat. Technol. 2016, 307, 747–752. [Google Scholar] [CrossRef]
- Zhang, W. Research on microstructure and property of TiC-Co composite material made by laser cladding. Appl. Laser 2012, 25, 205–208. [Google Scholar] [CrossRef]
- Somunkiran, I.; Buytoz, S.; Dagdelen, F. Determination of curie temperatures and thermal oxidation behavior of Fe-Cr matrix composites produced by hot pressing. J. Alloys Compd. 2019, 777, 302–308. [Google Scholar] [CrossRef]
- Tam, K.F.; Cheng, F.T.; Man, H.C. Cavitation erosion behavior of laser-clad Ni-Cr-Fe-WC on brass. Mater. Res. Bull. 2002, 37, 1341–1351. [Google Scholar] [CrossRef]
- Chen, C.J.; Wang, M.C.; Wang, D.S.; Jin, R.; Liu, Y.M. Laser cladding of Mg20Al80 powder on ZM5 magnesium alloy. Brit. Corros. J. 2007, 42, 130–136. [Google Scholar] [CrossRef]
- Cai, X.L.; Zhong, L.S.; Xu, Y.H.; Lu, Z.X.; Li, J.L.; Zhu, J.L.; Ding, Y.C.; Yan, H.H. Microstructural characterization of a V2C and V8C7 ceramic-reinforced Fe substrate surface compound layer by EBSD and TEM. J. Alloys Compd. 2018, 747, 8–20. [Google Scholar] [CrossRef]
- Wu, C.L.; Zhang, S.; Zhang, C.H.; Zhang, H.; Dong, S.Y. Phase evolution and cavitation erosion-corrosion behavior of FeCoCrAlNiTix high entropy alloy coatings on 304 stainless steel by laser surface alloying. J. Alloys Compd. 2017, 698, 761–770. [Google Scholar] [CrossRef]
- Houdková, Š.; Zahálka, F.; Kašparová, M. Fracture toughness of HVOF sprayed cermet coatings measured by vickers indentation. Key Eng. Mater. 2011, 465, 475–478. [Google Scholar] [CrossRef]
- Wu, C.L.; Zhang, S.; Zhang, C.H.; Zhang, H.; Dong, S.Y. Phase evolution and properties in laser surface alloying of FeCoCrAlCuNix, high-entropy alloy on copper substrate. Surf. Coat. Technol. 2017, 315, 368–376. [Google Scholar] [CrossRef]
- Zhang, H.; Zou, Y.; Zou, Z.D.; Wu, D.T. Microstructure and properties of Fe-based composite coating by laser cladding Fe-Ti-V-Cr-C-CeO2 powder. Opt. Laser Technol. 2015, 65, 119–125. [Google Scholar] [CrossRef]
- Bi, J.; Lei, Z.L.; Chen, X.; Li, P.; Lu, N.N.; Chen, Y.B. Microstructure and mechanical properties of TiB2-reinforced 7075 aluminum matrix composites fabricated by laser melting deposition. Ceram. Int. 2019, 45, 5680–5692. [Google Scholar]
- Fernández, M.R.; García, A.; Cuetos, J.M.; González, R.; Noriega, A.; Cadenas, M. Effect of actual WC content on the reciprocating wear of a laser cladding NiCrBSi alloy reinforced with WC. Wear 2015, 324–325, 80–89. [Google Scholar] [CrossRef]
- Hu, H.J.; Huang, W.J. Studies on wears of ultrafinegrained ceramic tool and common ceramic tool during hard turning using Archard wear model. Int. J. Adv. Manuf. Technol. 2013, 69, 31–39. [Google Scholar] [CrossRef]
- Zhong, M.L.; Jiang, D.F.; Zhang, H.J.; Hong, C.; Weisheit, A.; Kelbassa, I. Fabrication of nanoparticulate reinforced metal matrix composites by laser cladding. J. Laser Appl. 2014, 26, 022007. [Google Scholar] [CrossRef]
- Li, S.N.; Xiong, H.P.; Li, N.; Chen, B.Q.; Gao, C.; Zou, W.J.; Ren, H.S. Mechanical properties and formation mechanism of Ti/SiC system gradient materials fabricated by in-situ reaction laser cladding. Ceram. Int. 2017, 43, 961–967. [Google Scholar] [CrossRef]
C | Cr | Si | Ni | Mn | Mo | B | Trace Elements | Fe |
---|---|---|---|---|---|---|---|---|
≤0.18 | 16.5 | 1.15 | 1.7 | ≤0.5 | 1 | 1.25 | ≤0.5 | Bal. |
Powder Number | C | Cr | Si | Ni | Mn | Mo | B | Fe | V |
---|---|---|---|---|---|---|---|---|---|
P1 | 0.19 | 18.83 | 1.14 | 1.54 | 0.45 | 0.91 | 1.13 | Bal. | 2.5 |
P2 | 0.19 | 20.44 | 1.13 | 1.44 | 0.43 | 0.85 | 1.06 | Bal. | 4 |
P3 | 0.20 | 22.24 | 1.13 | 1.31 | 0.39 | 0.77 | 0.96 | Bal. | 6 |
P4 | 0.21 | 24.39 | 1.11 | 1.17 | 0.345 | 0.69 | 0.86 | Bal. | 8 |
Parameter | Values |
---|---|
Laser power (W) | 2200 |
Scanning velocity (mm/min) | 480 |
Powder feeding rate (g/min) | 12 |
Shielding gas flux (L/h) | 400–500 |
Spot diameter (mm) | 4 |
Scanning interval (mm) | 2 |
Overlap (%) | 40 |
Sample Number | Region A (wt. %) | Region B (wt. %) | ||||||
---|---|---|---|---|---|---|---|---|
C | Cr | V | Fe | C | Cr | V | Fe | |
S1 | 1.30 | 7.71 | 1.24 | 80.39 | 2.00 | 12.25 | 1.91 | 81.30 |
S2 | 1.41 | 7.49 | 1.21 | 86.96 | 2.35 | 14.21 | 2.54 | 79.25 |
S3 | 1.30 | 7.90 | 1.30 | 86.95 | 2.34 | 14.79 | 3.18 | 79.43 |
S4 | 1.16 | 8.30 | 1.28 | 87.03 | 2.41 | 16.26 | 3.38 | 78.37 |
Sample Number | Region C (wt. %) | Region D (wt. %) | ||||||
---|---|---|---|---|---|---|---|---|
C | Cr | V | Fe | C | Cr | V | Fe | |
S1 | 6.27 | 24.43 | 2.54 | 65.20 | 5.70 | 21.41 | 35.53 | 35.07 |
S2 | 5.63 | 30.97 | 1.65 | 59.31 | 4.31 | 20.00 | 14.70 | 58.60 |
S3 | 5.99 | 39.77 | 2.57 | 50.65 | 4.92 | 17.71 | 26.79 | 42.38 |
S4 | 6.48 | 39.25 | 1.99 | 50.24 | 3.43 | 24.44 | 20.10 | 50.25 |
Sample Number | 12CrNi2V | S1 | S2 | S3 | S4 |
---|---|---|---|---|---|
Wear Volume (μm3) | 4.096 × 107 | 9.134 × 106 | 6.431 × 106 | 2.303 × 106 | 6.249 × 106 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zong, W.; Zhang, S.; Zhang, C.; Wu, C.; Zhang, J.; Liu, Y.; Abdullah, A.O. Preparation and Characterization of In Situ Carbide Particle Reinforced Fe-Based Gradient Materials by Laser Melt Deposition. Coatings 2019, 9, 467. https://doi.org/10.3390/coatings9080467
Zong W, Zhang S, Zhang C, Wu C, Zhang J, Liu Y, Abdullah AO. Preparation and Characterization of In Situ Carbide Particle Reinforced Fe-Based Gradient Materials by Laser Melt Deposition. Coatings. 2019; 9(8):467. https://doi.org/10.3390/coatings9080467
Chicago/Turabian StyleZong, Weian, Song Zhang, Chunhua Zhang, Chenliang Wu, Jingbo Zhang, Yu Liu, and Adil O. Abdullah. 2019. "Preparation and Characterization of In Situ Carbide Particle Reinforced Fe-Based Gradient Materials by Laser Melt Deposition" Coatings 9, no. 8: 467. https://doi.org/10.3390/coatings9080467
APA StyleZong, W., Zhang, S., Zhang, C., Wu, C., Zhang, J., Liu, Y., & Abdullah, A. O. (2019). Preparation and Characterization of In Situ Carbide Particle Reinforced Fe-Based Gradient Materials by Laser Melt Deposition. Coatings, 9(8), 467. https://doi.org/10.3390/coatings9080467