Mechanical Reinforcement of Wool Fiber through Polyelectrolyte Complexation with Chitosan and Gellan Gum
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of Chitosan and Gellan Gum Solutions
2.3. Single Treated Fiber
2.4. Polyelectrolyte Complex Treated Wool Fiber
2.5. Drying the Treated Fiber
2.6. Characterization
2.7. Kubelka-Munk Analysis
3. Results and Discussion
3.1. Single-Treated Fiber
Sample | Immersion (min) | Diameter (µm) | TS (MPa) | E (MPa) | U (J g−1) | ε (%) |
---|---|---|---|---|---|---|
Pristine wool fiber | - | 850 ± 30 | 41 ± 1 | 270 ± 24 | 19 ± 11 | 64 ± 2 |
CH-fiber | 2 | 930 ± 10 | 49 ± 4 | 662 ± 52 | 31 ± 8 | 47 ± 2 |
10 | 880 ± 40 | 55 ± 5 | 1103 ± 117 | 30 ± 3 | 48 ± 2 | |
20 | 800 ± 30 | 65 ± 4 | 1447 ± 191 | 33 ± 1 | 50 ± 3 | |
30 | 760 ± 40 | 73 ± 7 | 1400 ± 250 | 27 ± 8 | 49 ± 6 | |
GG-fiber | 2 | 870 ± 70 | 48 ± 8 | 567 ± 181 | 32 ± 2 | 50 ± 1 |
5 | 800 ± 70 | 61 ± 9 | 1001 ± 155 | 38 ± 1 | 54 ± 1 | |
10 | 780 ± 50 | 61 ± 7 | 932 ± 143 | 34 ± 4 | 54 ± 1 | |
20 | 770 ± 20 | 69 ± 7 | 1004 ± 56 | 36 ± 7 | 54 ± 1 |
3.2. Dyed Single-Treated Fiber
Sample | Diameter (µm) | TS (MPa) | E (MPa) | U (J g−1) | ε (%) |
---|---|---|---|---|---|
Pristine wool fiber | 850 ± 30 | 41 ± 1 | 270 ± 24 | 19 ± 11 | 64 ± 2 |
CH | 800 ± 30 | 65 ± 4 | 1447 ± 191 | 33 ± 1 | 50 ± 3 |
GG | 800 ± 70 | 61 ± 9 | 1001 ± 155 | 38 ± 1 | 54 ± 1 |
CH-dyed | 620 ± 40 | 105 ± 9 | 2380 ± 275 | 28 ± 2 | 48 ± 2 |
GG-dyed | 680 ± 50 | 72 ± 9 | 959 ± 103 | 31 ± 0.3 | 58 ± 2 |
CH(pH) | 740 ± 60 | 82 ± 9 | 1577 ± 257 | 30 ± 1 | 52 ± 1 |
GG(pH) | 660 ± 40 | 42 ± 4 | 814 ± 150 | 23 ± 2 | 63 ± 3 |
CHint°GG | 620 ± 60 | 111 ± 14 | 2356 ± 108 | 26 ± 0.4 | 48 ± 2 |
GGint°CH | 690 ± 50 | 92 ± 7 | 1290 ± 109 | 32 ± 0.6 | 58 ± 1 |
CHint°GG(pH) | 730 ± 40 | 43 ± 3 | 1065 ± 111 | 17 ± 0.6 | 57 ± 2 |
GGint°CH(pH) | 700 ± 60 | 69 ± 16 | 798 ± 140 | 36 ± 1.5 | 59 ± 2 |
CH(pH) int°GG | 790 ± 70 | 64 ± 3 | 949 ± 83 | 34 ± 1 | 58 ± 2 |
GG(pH) int°CH | 690 ± 30 | 63 ± 1 | 918 ± 66 | 28 ± 0.1 | 70 ± 5 |
CH(pH) int°GG(pH) | 750 ± 60 | 36 ± 2 | 769 ± 60 | 20 ± 0.8 | 60 ± 2 |
GG(pH) int°CH(pH) | 650 ± 30 | 60 ± 3 | 945 ± 155 | 26 ± 0.6 | 70 ± 1 |
3.4. Dye and pH Adjusted Polyelectrolyte Complex Treated Fiber
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Hoogeveen, N.G.; Cohen Stuart, M.A.; Fleer, G.J.; Böhmer, M.R. Formation and stability of multilayers of polyelectrolytes. Langmuir 1996, 12, 3675–3681. [Google Scholar] [CrossRef]
- Woelki, S.; Kohler, H.-H. Effect of dispersion forces on the potential of charged interfaces. Chem. Phys. 2004, 306, 209–217. [Google Scholar] [CrossRef]
- Miller, M.D.; Bruening, M.L. Controlling the nanofiltration properties of multilayer polyelectrolyte membranes through variation of film composition. Langmuir 2004, 20, 11545–11551. [Google Scholar] [CrossRef]
- Van Den Beucken, J.J.J.P.; Vos, M.R.J.; Thüne, P.C.; Hayakawa, T.; Fukushima, T.; Okahata, Y.; et al. Fabrication, characterization, and biological assessment of multilayered DNA-coatings for biomaterial purposes. Biomaterials 2006, 27, 691–701. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, Y.; Podsiadlo, P.; Kotov, N.A. Biomedical applications of layer-by-layer assembly: from biomimetics to tissue engineering. Adv. Mater. 2006, 18, 3203–3224. [Google Scholar] [CrossRef]
- Jiao, Y.-P.; Cui, F.-Z. Surface modification of polyester biomaterials for tissue engineering. Biomed. Mater. 2007, 2. [Google Scholar] [CrossRef]
- Köhler, K.; Sukhorukov, G.B. Heat Treatment of polyelectrolyte multilayer capsules: a versatile method for encapsulation. Adv. Funct. Mater. 2007, 17, 2053–2061. [Google Scholar] [CrossRef]
- Bertrand, P.; Jonas, A.; Laschewsky, A.; Legras, R. Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties. Macromol. Rapid Comm. 2000, 21, 319–348. [Google Scholar] [CrossRef]
- Połowiński, S. Deposition of polymer complex layers onto nonwoven textiles. J. Appl. Polym. Sci. 2007, 103, 1700–1705. [Google Scholar] [CrossRef]
- Stefan, P. Nonwoven fabrics modified with deposited nanolayers. Polimery 2007, 52, 357–361. [Google Scholar]
- Stefan, Połowiński; Stawski, D. Thermogravimetric measurements of poly(propylene) nonwovens containing deposited layers of polyelectrolytes and colloidal particles of noble metals. Fibres Text. East. Eur. 2007, 15, 82–85. [Google Scholar]
- Dubas, S.T.; Kumlangdudsana, P.; Potiyaraj, P. Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids and Surfaces A: Physicochem. Eng. Asp. 2006, 289, 105–109. [Google Scholar] [CrossRef]
- Agullo, E.; Rodriguez, M.S.; Ramos, V.; Albertengo, L. Present and future role of chitin and chitosan in food. Macromol. Biosci. 2003, 3, 521–530. [Google Scholar] [CrossRef]
- Giavasis, I.; Harvey, L.M.; McNeil, B. Gellan Gum. Cr. Rev. Biotechn. 2000, 20, 177–211. [Google Scholar] [CrossRef]
- Smith, A.M.; Shelton, R.M.; Perrie, Y.; Harris, J.J. An initial evaluation of gellan gum as a material for tissue engineering applications. J. Biomater. Appl. 2007, 22, 241–254. [Google Scholar] [CrossRef]
- Amaike, M.; Senoo, Y.; Yamamoto, H. Sphere, honeycomb, regularly spaced droplet and fiber structures of polyion complexes of chitosan and gellan. Macromol. Rapid Comm. 1998, 19, 287–289. [Google Scholar] [CrossRef]
- Yamamoto, H.; Horita, C.; Senoo, Y.; Nishida, A.; Ohkawa, K. Polyion complex fiber and capsule formed by self-assembly of poly-L-Lysine and gellan at solution interfaces. J. Appl. Polym. Sci. 2001, 79, 437–446. [Google Scholar] [CrossRef]
- Yamamoto, H.; Ohkawa, K.; Nakamura, E.; Miyamoto, K.; Komai, T. Preparation of polyion complex capsule and fiber of chitosan and gellan-sulfate at aqueous interface. Bull. Chem. Soc. Jpn. 2003, 76, 2053–2057. [Google Scholar] [CrossRef]
- Ohkawa, K.; Kitagawa, T.; Yamamoto, H. Preparation and characterization of chitosan-gellan hybrid capsules formed by self-assembly at an aqueous solution interface. Macromol. Mater Eng. 2004, 289, 33–40. [Google Scholar] [CrossRef]
- Meier, C.; Welland, M.E. Wet-Spinning of amyloid protein nanofibers into multifunctional high-performance biofibers. Biomacromolecules 2011, 12, 3453–3459. [Google Scholar] [CrossRef]
- Amin, K.A.M.; Panhuis, Mih. Polyelectrolyte complex materials from chitosan and gellan gum. Carbohyd. Polym. 2011, 86, 352–358. [Google Scholar] [CrossRef]
- Mat Amin, K.A.; Gilmore, K.J.; Matic, J.; Poon, S.; Walker, M.J.; Wilson, M.R.; et al. Polyelectrolyte complex materials consisting of antibacterial and cell-supporting layers. Macromol. Biosci. 2012, 12, 374–382. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, D.; Nie, J. Chitosan/polyethylene glycol diacrylate films as potential wound dressing material. Int. J. Biol. Macromol. 2008, 43, 456–462. [Google Scholar] [CrossRef]
- Baxter, S.; Zivanovic, S.; Weiss, J. Molecular weight and degree of acetylation of high-intensity ultrasonicated chitosan. Food Hydrocolloid. 2005, 19, 821–830. [Google Scholar] [CrossRef]
- Kantouch, A.; Heheish, A.; Bendak, A. Ceiv initiated graft polymerization of methyl methacrylate on wool fibres. Eur. Polym. J. 1971, 7, 153–163. [Google Scholar] [CrossRef]
- Sun, D.; Stylios, G.K. Fabric surface properties affected by low temperature plasma treatment. J. Mater. Process. Tech. 2006, 173, 172–177. [Google Scholar] [CrossRef]
- Cardamone, J.M.; Yao, J.; Nuńez, A. Controlling shrinkage in wool fabrics: effective hydrogen peroxide systems. Text. Res. J. 2004, 74, 887–898. [Google Scholar] [CrossRef]
- Strnad, S.; Šauper, O.; Jazbec, A.; Stana-Kleinschek, K. Influence of chemical modification on sorption and mechanical properties of cotton fibers treated with chitosan. Text. Res. J. 2008, 78, 390–398. [Google Scholar] [CrossRef]
- Lim, S.-H.; Hudson, S.H. Application of a fibre-reactive chitosan derivative to cotton fabric as a zero-salt dyeing auxiliary. Color. Technol. 2004, 120, 108–113. [Google Scholar] [CrossRef]
- Chung, Y.-S.; Lee, K.-K.; Kim, J.-W. Durable Press and Antimicrobial Finishing of Cotton Fabrics with a Citric Acid and Chitosan Treatment. Text. Res. J. 1998, 68, 772–775. [Google Scholar] [CrossRef]
- Shu, X.Z.; Zhu, K.J.; Song, W. Novel pH-sensitive citrate cross-linked chitosan film for drug controlled release. Int. J. Pharm. 2001, 212, 19–28. [Google Scholar] [CrossRef]
- Verma, P.; Baldrian, P.; Nerud, F. Decolorization of structurally different synthetic dyes using cobalt(II)/ascorbic acid/hydrogen peroxide system. Chemosphere 2003, 50, 975–979. [Google Scholar] [CrossRef]
- Marshall, W.E.; Wartelle, L.H.; Boler, D.E.; Johns, M.M.; Toles, C.A. Enhanced metal adsorption by soybean hulls modified with citric acid. Bioresource Technol. 1999, 69, 263–268. [Google Scholar] [CrossRef]
- Liu, W.; Sun, S.; Cao, Z.; Zhang, X.; Yao, K.; Lu, W.W.; et al. An investigation on the physicochemical properties of chitosan/DNA polyelectrolyte complexes. Biomaterials 2005, 26, 2705–2711. [Google Scholar] [CrossRef]
- Sworn, G.; Sanderson, G.R.; Gibson, W. Gellan gum fluid gels. Food Hydrocolloid. 1995, 9, 265–271. [Google Scholar] [CrossRef]
- Barron, V.; Torrent, J. Use of the Kubelka—Munk theory to study the influence of iron oxides on soil colour. J. Soil Sci. 1986, 37, 499–510. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Amin, K.A.M.; In het Panhuis, M. Mechanical Reinforcement of Wool Fiber through Polyelectrolyte Complexation with Chitosan and Gellan Gum. Fibers 2013, 1, 47-58. https://doi.org/10.3390/fib1030047
Amin KAM, In het Panhuis M. Mechanical Reinforcement of Wool Fiber through Polyelectrolyte Complexation with Chitosan and Gellan Gum. Fibers. 2013; 1(3):47-58. https://doi.org/10.3390/fib1030047
Chicago/Turabian StyleAmin, Khairul Anuar Mat, and Marc In het Panhuis. 2013. "Mechanical Reinforcement of Wool Fiber through Polyelectrolyte Complexation with Chitosan and Gellan Gum" Fibers 1, no. 3: 47-58. https://doi.org/10.3390/fib1030047
APA StyleAmin, K. A. M., & In het Panhuis, M. (2013). Mechanical Reinforcement of Wool Fiber through Polyelectrolyte Complexation with Chitosan and Gellan Gum. Fibers, 1(3), 47-58. https://doi.org/10.3390/fib1030047