Suitability of Surface-Treated Flax and Hemp Fibers for Concrete Reinforcement
Abstract
:1. Introduction
Treatment/Solute | Hazard (s) | Solvent | Hazard (s) | Concentration |
---|---|---|---|---|
Alkali (NaOH) | Water | 5%, 10%, 15% | ||
Potassium Permanganate (KMnO4) | Acetone | 0.05% | ||
Stearic Acid (C18H36O2) | None | Ethanol | 1.0% | |
EDTA (C10H16N2O8) | Water | 5 g/L |
2. Materials and Methods
2.1. Vegetable Fibres
2.1.1. Untreated Fibres Analysis: Preliminary Study
2.1.2. Initial FRC Mixture
2.2. Surface Treatment and Mechanical Properties of the Fibres
2.3. Degradability Test of Fibres in Alkaline Solution
2.3.1. FTIR
2.3.2. SEM Images
2.4. Vegetable Fibre Reinforced Concrete
- i.
- Control, no addition of fibres
- ii.
- Basalt fibres (48 mm)—0.5%
- iii.
- Hemp Fibres—0.5%
- iv.
- Flax fibres—0.5%
- v.
- Flax fibres—0.35%
- vi.
- Flax fibres—0.25%
2.4.1. Compressive Strength (fcu)
2.4.2. Fracture Energy (Gf), Young’s Modulus€ and Residual Flexural Tensile Strength(f)
Flexural Strength (FL), (Fn) [MPa]
2.4.3. Thermal Conductivity
2.4.4. Water Penetration
2.4.5. SEM Images
3. Results and Analysis
3.1. Vegetable Fibres
3.1.1. Chemical Surface Treatment
3.1.2. Degradation
3.1.3. SEM Images
3.2. Vegetable Fibre Reinforced Concrete
3.2.1. Compressive Strength (fcu), Density and Slump
3.2.2. Fracture Energy (Gf), Young’s Modulus (E) and Flexural Tensile Strength (F)
Flexural Tensile Strength (fn) and Residual (fR,j) [MPa]
3.2.3. Thermal Conductivity
3.2.4. Water Penetration
3.2.5. SEM Images
4. Limitations
5. Conclusions
- Basalt fibres, as mineral fibres, presented superior results when compared to flax and hemp fibres as concrete reinforcement, consistent with what is already known by the research community.
- Most of the surface treatments studied increased both the tensile strength and elastic’s modulus of hemp and flax fibres.
- Although the surface treatment using stearic acid for 4 h was selected for the flax fibres, treatment using EDTA for 4 h also presented interesting results. It might require an additional treatment step, according to Le Troedec et al. [45], and this can be suggested as a topic for future research work for both flax and hemp fibres.
- Corroborating results found by other authors, using NaOH to treat hemp fibres reduced their variability, including under an alkaline environment.
- All FRC mixes presented increased fracture energy and reduced elastic modulus, with the mixes containing 0.5% of treated hemp fibres and 0.5% treated flax fibres outstanding compared to the others.
- Adding treated flax fibres by 0.5% could reduce the thermal conductivity by 4% more when compared to the same mixture reinforced with polypropylene.
- While the water penetrability was inversely reduced by adding synthetic fibres into concrete, vegetable fibres presented a proportional increase with a more significant percentage of fibres. This was possibly due to the higher adhesion between the fibre and matrix caused by the high hygroscopicity of plant fibres, while polypropylene fibres would present less permeability.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References and Note
- Barth, M.; Carus, M. Carbon Footprint and Sustainability of Different Natural Fibre for Biocomposites and Insulation Material. In Study Providing Data for the Automotive and Insulation Industry; Nova-Institute: Hürth, Germany, 2019; p. 57. [Google Scholar]
- Amir, N.; Abidin, K.A.Z.; Shiri, F.B.M. Effects of Fibre Configuration on Mechanical Properties of Banana Fibre/PP/MAPP Natural Fibre Reinforced Polymer Composite. Procedia Eng. 2017, 184, 573–580. [Google Scholar] [CrossRef]
- Degrave-Lemeurs, M.; Glé, P.; Hellouin de Menibus, A. Acoustical Properties of Hemp Concretes for Buildings Thermal Insulation: Application to Clay and Lime Binders. Constr. Build. Mater. 2018, 160, 462–474. [Google Scholar] [CrossRef]
- Sinitsky, O.; Trabelsi, N.; Priel, E. The Mechanical Response of Epoxy-Sisal Composites Considering Fiber Anisotropy: A Computational and Experimental Study. Fibers 2022, 10, 43. [Google Scholar] [CrossRef]
- Huang, J.K.; Young, W. Bin The Mechanical, Hygral, and Interfacial Strength of Continuous Bamboo Fiber Reinforced Epoxy Composites. Compos. Part B Eng. 2019, 166, 272–283. [Google Scholar] [CrossRef]
- Zah, R.; Hischier, R.; Leão, A.L.; Braun, I. Curauá Fibers in the Automobile Industry—A Sustainability Assessment. J. Clean. Prod. 2007, 15, 1032–1040. [Google Scholar] [CrossRef]
- Manna, S.; Saha, P.; Roy, D.; Sen, R.; Adhikari, B.; Das, S. Enhanced Biodegradation Resistance of Biomodified Jute Fibers. Carbohydr. Polym. 2013, 93, 597–603. [Google Scholar] [CrossRef]
- Saha, P.; Manna, S.; Sen, R.; Roy, D.; Adhikari, B. Durability of Lignocellulosic Fibers Treated with Vegetable Oil-Phenolic Resin. Carbohydr. Polym. 2012, 87, 1628–1636. [Google Scholar] [CrossRef]
- Arrigoni, A.; Pelosato, R.; Melià, P.; Ruggieri, G.; Sabbadini, S.; Dotelli, G. Life Cycle Assessment of Natural Building Materials: The Role of Carbonation, Mixture Components and Transport in the Environmental Impacts of Hempcrete Blocks. J. Clean. Prod. 2017, 149, 1051–1061. [Google Scholar] [CrossRef]
- Kumar, V.G.; Ramadoss, R.; Rampradheep, G.S. A Study Report on Carbon Sequestration by Using Hempcrete. Mater. Today Proc. 2020, 45, 6369–6371. [Google Scholar] [CrossRef]
- Shang, Y.; Tariku, F. Hempcrete Building Performance in Mild and Cold Climates: Integrated Analysis of Carbon Footprint, Energy, and Indoor Thermal and Moisture Buffering. Build. Environ. 2021, 206, 108377. [Google Scholar] [CrossRef]
- Yan, L.; Chouw, N.; Jayaraman, K. Flax Fibre and Its Composites—A Review. Compos. Part B Eng. 2014, 56, 296–317. [Google Scholar] [CrossRef]
- Neacsu, A.; Makarov, I.S.; Golova, L.K.; Smyslov, A.G.; Vinogradov, M.I.; Palchikova, E.E.; Legkov, S.A. Flax Noils as a Source of Cellulose for the Production of Lyocell Fibers. Fibers 2022, 10, 45. [Google Scholar] [CrossRef]
- Sood, M.; Dwivedi, G. Effect of Fiber Treatment on Flexural Properties of Natural Fiber Reinforced Composites: A Review. Egypt. J. Pet. 2018, 27, 775–783. [Google Scholar] [CrossRef]
- Kini, U.A.; Nayak, S.Y.; Shenoy Heckadka, S.; Thomas, L.G.; Adarsh, S.P.; Gupta, S. Borassus and Tamarind Fruit Fibers as Reinforcement in Cashew Nut Shell Liquid-Epoxy Composites. J. Nat. Fibers 2018, 15, 204–218. [Google Scholar] [CrossRef]
- Nayak, S.Y.; Shenoy Heckadka, S.; Seth, A.; Prabhu, S.; Sharma, R.; Shenoy, K.R. Effect of Chemical Treatment on the Physical and Mechanical Properties of Flax Fibers: A Comparative Assessment. Mater. Today Proc. 2020, 38, 2406–2410. [Google Scholar] [CrossRef]
- Page, J.; Amziane, S.; Gomina, M.; Djelal, C.; Audonnet, F. Using Linseed Oil as Flax Fibre Coating for Fibre-Reinforced Cementitious Composite. Ind. Crops Prod. 2021, 161, 113168. [Google Scholar] [CrossRef]
- Behnood, A.; Van Tittelboom, K.; De Belie, N. Methods for Measuring PH in Concrete: A Review. Constr. Build. Mater. 2016, 105, 176–188. [Google Scholar] [CrossRef]
- Sivasubramanian, P.; Kalimuthu, M.; Palaniappan, M.; Alavudeen, A.; Rajini, N.; Santulli, C. Effect of Alkali Treatment on the Properties of Acacia Caesia Bark Fibres. Fibers 2021, 9, 49. [Google Scholar] [CrossRef]
- Zafeiropoulos, N.E.; Vickers, P.E.; Baillie, C.A.; Watts, J.F. An Experimental Investigation of Modified and Unmodified Flax Fibres with XPS, ToF-SIMS and ATR-FTIR. J. Mater. Sci. 2003, 38, 3903–3914. [Google Scholar] [CrossRef]
- Netinger Grubeša, I.; Marković, B.; Gojević, A.; Brdarić, J. Effect of Hemp Fibers on Fire Resistance of Concrete. Constr. Build. Mater. 2018, 184, 473–484. [Google Scholar] [CrossRef]
- Department of Health, State of New Jersey. Right to Know Hazardous Substance Search List. Available online: https://web.doh.state.nj.us/rtkhsfs/chemicalsearch.aspx?_gl=1*11jgqr*_ga*MjAyMjkzMDE1OS4xNjYxMDAzMTAx*_ga_5PWJJG6642*MTY2MTAwMzEwMC4xLjEuMTY2MTAwMzE2Mi4wLjAuMA (accessed on 20 August 2022).
- Dai, D.; Fan, M. Characteristic and Performance of Elementary Hemp Fibre. Mater. Sci. Appl. 2010, 1, 336–342. [Google Scholar] [CrossRef] [Green Version]
- Da Costa Santos, A.C.; Archbold, P. Experimental Investigation on the Fracture Energy and Mechanical Behaviour of Hemp and Flax Fibre FRC Compared to Polypropylene FRC. Constr. Technol. Archit. 2022, 1, 326–331. [Google Scholar] [CrossRef]
- Da Costa Santos, A.C.; Archbold, P. Mechanical Properties and Fracture Energy of Concrete Beams Reinforced with Basalt Fibres. Constr. Technol. Archit. 2022, 1, 316–325. [Google Scholar] [CrossRef]
- Da Costa Santos, A.C.; Archbold, P. Characterisation of Natural Fibres for Composite Applications. Acad. J. Civ. Eng. 2019, 37, 24–31. [Google Scholar] [CrossRef]
- ASTM C1557; Standard Test Method for Tensile Strength and Young’s Modulus of Fibres. ASTM International: West Conshohocken, PA, USA, 2014.
- ASTM D6942-03; Standard Test Method for Stability of Cellulose Fibers in Alkaline Environments. ASTM International: West Conshohocken, PA, USA, 2019. [CrossRef]
- Piasta, W.; Zarzycki, B. The Effect of Cement Paste Volume and w/c Ratio on Shrinkage Strain, Water Absorption and Compressive Strength of High Performance Concrete. Constr. Build. Mater. 2017, 140, 395–402. [Google Scholar] [CrossRef]
- Naidu Gopu, G.; Androse Joseph, S. Corrosion Behavior of Fiber-Reinforced Concrete-A Review. Fibers 2022, 10, 38. [Google Scholar] [CrossRef]
- Archbold, P.; da Costa Santos, A.C.; Loonam, A. The Influence of Basalt Fibres on the Mechanical Properties of Concrete. Civ. Eng. Res. Irel. 2016, 1–5. Available online: https://www.researchgate.net/profile/Paul-Archbold/publication/308335002_The_Influence_of_Basalt_Fibres_on_the_Mechanical_Properties_of_Concrete/links/57e128fd08ae9834b4e7e30f/The-Influence-of-Basalt-Fibres-on-the-Mechanical-Properties-of-Concrete.pdf (accessed on 21 October 2022).
- Labanieh, A.R.; Pederneiras, C.M.; Veiga, R.; de Brito, J. Impact Resistance of Rendering Mortars with Natural and Textile-Acrylic Waste Fibres. Fibers 2022, 10, 44. [Google Scholar] [CrossRef]
- EN 12390-1:2012; Testing Hardened Concrete—Part 1: Shape, Dimensions and Other Requirements for Specimens and Moulds. NSAI Standards: Dublin, Ireland, 2012.
- EN 12390-2:2019; Testing Hardened Concrete—Part 2: Making and Curing Specimens for Strength Tests. Irish Standard NSAI Standards: Dublin, Ireland, 2019.
- BS EN 12390-3; Testing Hardened Concrete, Part 3: Compressive Strength of Test Specimens. British Standards: London, UK, 2001.
- NF EN 14651+A1; Test Method for Metallic Fibre Concrete—Measuring the Flexural Tensile Strength (Limit of Proportionality (LOP), Residual). AFNOR: Paris, France, 2012.
- ISO 8301-1991; Thermal Insulation—Determination of Steady-State Thermal Resistance and Related Properties—Heat Flow Meter Apparatus. (E) SAI GLOBAL; The International Standards Organisation: Geneva, Switzerland, 1991.
- UNE EN 14845-2:2007; Test Methods for Fibres in Concrete—Part 2: Effect on Concrete. Irish Standard NSAI: Dublin, Ireland, 2007.
- P.A. Hilton Ltd. User Manual—Thermal Conductivity of Building Materials. Reference number: H111N 2008.
- Bala, A.; Gupta, S. Thermal Resistivity, Sound Absorption and Vibration Damping of Concrete Composite Doped with Waste Tire Rubber: A Review. Constr. Build. Mater. 2021, 299, 123939. [Google Scholar] [CrossRef]
- EN 12390-8:2009; Testing Hardened Concrete—Part 8: Depth of Penetration of Water under Pressure. NSAI Standards: Dublin, Ireland, 2009.
- Lodha, P.; Netravali, A.N. Thermal and Mechanical Properties of Environment-Friendly ‘Green’ Plastics from Stearic Acid Modified-Soy Protein Isolate. Ind. Crops Prod. 2005, 21, 49–64. [Google Scholar] [CrossRef]
- Liu, J.; Jia, Y.; Wang, J. Calculation of Chloride Ion Diffusion in Glass and Polypropylene Fiber-Reinforced Concrete. Constr. Build. Mater. 2019, 215, 875–885. [Google Scholar] [CrossRef]
- Suksawang, N.; Wtaife, S.; Alsabbagh, A. Evaluation of Elastic Modulus of Fiber-Reinforced Concrete. ACI Mater. J. 2018, 115, 239–249. [Google Scholar] [CrossRef] [Green Version]
- Le Troedec, M.; Sedan, D.; Peyratout, C.; Bonnet, J.P.; Smith, A.; Guinebretiere, R.; Gloaguen, V.; Krausz, P. Influence of Various Chemical Treatments on the Composition and Structure of Hemp Fibres. Compos. Part A Appl. Sci. Manuf. 2008, 39, 514–522. [Google Scholar] [CrossRef]
Wavenumber [cm−1] | Vibration | Sources |
---|---|---|
3336 | OH stretching | Cellulose, Hemicellulose |
2887 | C–H symmetrical stretching | Cellulose, Hemicellulose |
1729 | C=O stretching vibration | Pectin, Waxes |
1623 | OH bending of absorbed water | Water |
1506 | C=C aromatic symmetrical stretching | Lignin |
1423 | HCH and OCH in-plane bending vibration | Cellulose |
1368 | In-the-plane CH bending | Cellulose, Hemicellulose |
1317 | CH2 rocking vibration | Cellulose |
1246 | C=O and G ring stretching | Lignin |
1202 | C-O-C symmetric stretching | Cellulose, Hemicellulose |
1155 | C-O-C asymmetrical stretching | Cellulose, Hemicellulose |
1048 | C-C, C-OH, C-H ring and side group vibrations | Cellulose, Hemicellulose |
1019 | C-C, C-OH, C-H ring and side group vibrations | Cellulose, Hemicellulose |
995 | C-C, C-OH, C-H ring and side group vibrations | Cellulose, Hemicellulose |
896 | COC, CCO and CCH deformation and stretching | Cellulose |
662 | C-OH out-of-plane bending | Cellulose |
Material | Diameter [µm] | Density [g/cm3] | Tensile Strength [N/mm2] | E [GPa] | % |
---|---|---|---|---|---|
Basalt | 14.0 | 2.2 | 2546.00 | 136.18 | 1.67% |
Flax | 82.4 | 1.1 | 865.96 | 40.78 | 2.09% |
Hemp | 73.0 | 1.1 | 262.68 | 22.44 | 1.47% |
Material | Quantities in kg Per m3 (to the Nearest 5 kg) | Fibre | % of Volume |
---|---|---|---|
Cement | 385 | Basalt | 1.0%, 0.5% |
Water | 170 | Flax | 0.5% |
Fine aggregate | 585 | Hemp | 1.0%, 0.5% |
Coarse aggregate (10 mm) | 415 | Polypropylene | 1.0%, 0.5% |
Coarse aggregate (25 mm) | 830 | Steel | 0.1%, 0.05% and 0.025% |
j | CMOD (mm) | δ (mm) |
---|---|---|
1 | 0.05 | 0.08 |
2 | 0.1 | 0.13 |
3 | 0.2 | 0.21 |
4 | 0.5 | 0.47 |
5 | 1.05 | 1.32 |
6 | 2.5 | 2.17 |
7 | 3.5 | 3.02 |
8 | 4.0 | 3.44 |
Mix | fcu [MPa] 7 Days | fcu [MPa] 28 Days | Density [g/cm3] 28 Days | Slump [mm] |
---|---|---|---|---|
Control 1.1 | 37.4 | 49.7 | 2.411 | 35 |
Control 1.2 | 36.2 | 51.3 | 2.396 | 38 |
Polypropylene 0.5% | 11.1 | 21.1 | 2.256 | 5 |
Polypropylene 0.25% | 26.4 | 27.9 | 2.267 | 12 |
Hemp 1.1 0.5% | 21.5 | 28.2 | 2.318 | 0 |
Hemp 1.2 0.5% | 23.6 | 30.8 | 2.333 | 0 |
Flax 1 0.5% | 19.6 | 29.2 | 2.297 | 0 |
Flax 2 0.35% | 17.5 | 19.5 | 2.324 | 0 |
Flax 3.1 0.25% | 24.8 | 32.4 | 2.348 | 20 |
Flax 3.2 0.25% | 25.8 | 35.2 | 2.332 | 23 |
Basalt 1.1 0.5% | 23.3 | 25.6 | 2.297 | 10 |
Basalt 1.2 0.5% | 21.0 | 26.7 | 2.301 | 10 |
Mixture | Gf [N/m] | Gf [% of Control] | E [GPa] | E [% of Control] |
---|---|---|---|---|
Control | 180.31 | 100% | 48.33 | 100% |
Basalt 0.5% | 319.86 | 177% | 30.02 | 62% |
Basalt 1.0% | 489.42 | 271% | 29.17 | 60% |
Flax 0.5% | 338.63 | 188% | 23.65 | 49% |
Hemp 0.5% | 368.35 | 204% | 38.62 | 80% |
Hemp 1.0% | 356.57 | 198% | 17.34 | 36% |
Polypropylene 0.5% | 308.84 | 171% | 20.76 | 43% |
Polypropylene 1.0% | 406.35 | 225% | 37.54 | 78% |
Steel 0.05% | 193.87 | 108% | 47.01 | 97% |
Steel 0.1% | 190.49 | 106% | 44.94 | 93% |
Steel 0.15% | 415.56 | 230% | 47.30 | 98% |
Steel 0.2% | 596.74 | 331% | 40.61 | 84% |
Mixture | Gf [N/m] | Gf [% of Control] | E [GPa] | E [% of Control] |
---|---|---|---|---|
Control 7 d | 198.77 | 100% | 27.67 | 100% |
Basalt 0.5% 7 d | 1296.88 | 652% | 11.14 | 40% |
Flax 0.25% 7 d | 129.80 | 65% | 25.13 | 91% |
Hemp 0.5% 7 d | 285.61 | 144% | 19.43 | 70% |
Control 3 28 d | 146.31 | 100% | 45.30 | 100% |
Basalt 0.5% 28 d | 909.16 | 728% | 36.95 | 82% |
Flax 0.25% 28 d | 191.58 | 153% | 32.44 | 72% |
Hemp 0.5% 28 d | 316.74 | 254% | 32.59 | 72% |
Mixture | |||||||||
---|---|---|---|---|---|---|---|---|---|
Control | 4.71 | 0.67 | 1.11 | 1.99 | 2.15 | - | - | - | - |
Basalt 0.5% | 4.29 | 0.31 | 0.42 | 0.68 | 2.35 | 0.51 | 0.21 | - | - |
Basalt 1.0% | 5.29 | 0.26 | 0.34 | 0.53 | 1.71 | 1.27 | - | - | - |
Flax 0.5% | 3.21 | 0.43 | 0.63 | 1.00 | 2.58 | 0.65 | 0.35 | - | - |
Hemp 0.5% | 4.95 | 0.40 | 0.69 | 1.23 | 3.81 | 0.90 | - | - | - |
Hemp 1.0% | 3.60 | 0.30 | 0.41 | 0.62 | 1.50 | 1.94 | 1.19 | - | - |
Polypropylene 0.5% | 3.81 | 0.45 | 0.68 | 1.08 | 2.44 | 1.25 | - | - | - |
Polypropylene 1.0% | 4.51 | 0.50 | 0.75 | 1.26 | 3.88 | 1.80 | - | - | - |
Steel 0.05% | 4.65 | 0.64 | 1.04 | 1.84 | 1.98 | - | - | - | - |
Steel 0.1% | 4.62 | 0.53 | 0.84 | 1.59 | 2.93 | - | - | - | - |
Steel 0.15% | 4.87 | 0.64 | 1.03 | 1.80 | 2.62 | 1.32 | - | - | - |
Steel 0.2% | 4.14 | 0.44 | 0.74 | 1.43 | 3.33 | 1.28 | 1.16 | - | - |
Mixture | |||||||||
---|---|---|---|---|---|---|---|---|---|
Control 7 d | 3.95 | 0.30 | 0.40 | 0.57 | 1.48 | 0.11 | - | - | - |
Basalt 0.5% 7 d | 6.02 | 0.35 | 0.49 | 0.75 | 1.73 | 5.13 | 5.92 | - | - |
Flax 0.25% 7 d | 3.07 | 0.38 | 0.55 | 0.90 | 2.30 | 0.97 | 0.44 | 0.21 | 0.15 |
Hemp 0.5% 7 d | 3.66 | 0.41 | 0.63 | 1.04 | 2.68 | 3.06 | 1.95 | 1.39 | 1.54 |
Control 28 d | 4.03 | 0.79 | 1.29 | 2.16 | 0.17 | - | - | - | - |
Basalt 28 d | 9.15 | 0.60 | 0.97 | 1.67 | 4.34 | 7.17 | 3.07 | - | - |
Flax 0.25% 28 d | 4.23 | 0.46 | 0.73 | 1.23 | 3.03 | 1.00 | 0.34 | - | - |
Hemp 0.5% 28 d | 4.60 | 0.59 | 0.97 | 1.73 | 4.09 | 3.66 | 2.08 | - | - |
Mix | λ [W/mK] | Mix | λ [W/mK] |
---|---|---|---|
Control | 0.98 | Hemp (0.5%) | 0.89 |
Polypropylene (0.5%) FRC | 0.84 | Flax (0.5%) | 0.80 |
Polypropylene (0.25%) FRC | 0.87 | Flax (0.35%) | 0.83 |
Basalt (0.5%) | 0.81 | Flax (0.25%) | 0.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Costa Santos, A.C.; Archbold, P. Suitability of Surface-Treated Flax and Hemp Fibers for Concrete Reinforcement. Fibers 2022, 10, 101. https://doi.org/10.3390/fib10110101
da Costa Santos AC, Archbold P. Suitability of Surface-Treated Flax and Hemp Fibers for Concrete Reinforcement. Fibers. 2022; 10(11):101. https://doi.org/10.3390/fib10110101
Chicago/Turabian Styleda Costa Santos, Ana Caroline, and Paul Archbold. 2022. "Suitability of Surface-Treated Flax and Hemp Fibers for Concrete Reinforcement" Fibers 10, no. 11: 101. https://doi.org/10.3390/fib10110101
APA Styleda Costa Santos, A. C., & Archbold, P. (2022). Suitability of Surface-Treated Flax and Hemp Fibers for Concrete Reinforcement. Fibers, 10(11), 101. https://doi.org/10.3390/fib10110101