Differentiation in the SiC Filler Size Effect in the Mechanical and Tribological Properties of Friction-Spot-Welded AA5083-H116 Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Macroscopic View of the Composite Joints
2.2. Mechanical and Tribological Characteristics
2.3. X-ray Diffraction (XRD) and Microscopic Studies
3. Results and Discussion
3.1. Microscopic Characterization of the Welds
3.2. Lap Shear Strength
3.3. Microhardness
3.4. Wear Behavior
4. Conclusions
- The addition of micro- and nano-SiC particles into spot joints improves both the mechanical and tribological properties of the joints.
- The addition of nano-SiC particles, in particular, increases lap shear strength by 29.3%, hardness by 23.3%, and wear property by 26.3%.
- The superior material flow of the nano-SiC particles in the SZs improved the mixing of the aluminum/SiC particles, and a more homogenized SZ was the result. Some agglomerations of particles were seen in the micro-SiC-particle-added joints that consequently reduced their mechanical and tribological properties compared to those of the nano-SiC-added joints. The improvement in the hardness, tensile strength, and wear resistance of the FSSW joints was the result of the grain refinement and uniform dispersion of the reinforcement particles.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, R.-Y.; Chu, H.-Y.; Lai, C.-C.; Wu, C.-T. Effects of annealing temperature on the mechanical properties and sensitization of 5083-H116 aluminum alloy. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2015, 229, 339–346. [Google Scholar] [CrossRef]
- Summers, P.T.; Chen, Y.; Rippe, C.M.; Allen, B.; Mouritz, A.P.; Case, S.W.; Lattimer, B.Y. Overview of aluminum alloy mechanical properties during and after fires. Fire Sci. Rev. 2015, 4, 3. [Google Scholar] [CrossRef] [Green Version]
- Kala, H.; Mer, K.K.S.; Kumar, S. A review on mechanical and tribological behaviors of stir cast aluminum matrix composites. Procedia Mater. Sci. 2014, 6, 1951–1960. [Google Scholar] [CrossRef] [Green Version]
- Neelamegam, V.; Govindasamy Bhavani, B.; Muthukrishnan, M.; Tadivaka, S.R. Investigation on corrosion behavior of cryogenically treated friction stir welded AA5083. Mechanika 2020, 26, 442–449. [Google Scholar] [CrossRef]
- Kah, P.; Rajan, R.; Martikainen, J.; Suoranta, R. Investigation of weld defects in friction-stir welding and fusion welding of aluminium alloys. Int. J. Mech. Mater. Eng. 2015, 10, 26. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.; Ding, Y.; Gerlich, A.P. Advances in friction stir spot welding. Crit. Rev. Solid State Mater. Sci. 2020, 45, 457–534. [Google Scholar] [CrossRef]
- Suresh, S.; Venkatesan, K.; Rajesh, S. Optimization of process parameters for friction stir spot welding of AA6061/Al2O3 by Taguchi method. AIP Conf. Proc. 2019, 2128, 030018. [Google Scholar] [CrossRef]
- Yang, X.W.; Fu, T.; Li, W.Y. Friction stir spot welding: A review on joint macro-and microstructure, property, and process modelling. Adv. Mater. Sci. Eng. 2014, 2014, 697170. [Google Scholar] [CrossRef] [Green Version]
- Heidarzadeh, A.; Mironov, S.; Kaibyshev, R.; Çam, G.; Simard, A.; Gerlich, A.; Khodabakhshi, F.; Mostafaei, A.; Field, D.P.; Robson, J.D.; et al. Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution. Prog. Mater. Sci. 2021, 117, 100752. [Google Scholar] [CrossRef]
- Anton Savio Lewise, K.; Edwin Raja Dhas, J. FSSW process parameter optimization for AA2024 and AA7075 alloy. Mater. Manuf. Process. 2021, 37, 34–42. [Google Scholar] [CrossRef]
- Manickam, S.; Rajendran, C.; Balasubramanian, V. Investigation of FSSW parameters on shear fracture load of AA6061 and copper alloy joints. Heliyon 2020, 6, e04077. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, B.; MahdianRizi, A.A.; Abbasi, M.; Givi, M. Friction stir spot vibration welding: Improving the microstructure and mechanical properties of Al5083 joint. Metallogr. Microstruct. Anal. 2019, 8, 713–725. [Google Scholar] [CrossRef]
- Kalaf, O.; Nasir, T.; Asmael, M.; Safaei, B.; Zeeshan, Q.; Motallebzadeh, A.; Hussain, G. Friction stir spot welding of AA5052 with additional carbon fiber-reinforced polymer composite interlayer. Nanotechnol. Rev. 2021, 10, 201–209. [Google Scholar] [CrossRef]
- Bagheri, B.; Shamsipur, A.; Abdollahzadeh, A.; Mirsalehi, S.E. Investigation of SiC nanoparticle size and distribution effects on microstructure and mechanical properties of Al/SiC/Cu composite during the FSSW process: Experimental and simulation. Met. Mater. Int. 2022. [Google Scholar] [CrossRef]
- Akinlabi, E.T.; Ikumapayi, O.M.; Osinubi, A.S.; Madushele, N.; Abegunde, O.O.; Fatoba, S.O.; Akinlabi, S.A. Characterizations of AA5083-H116 produced by friction stir spot welding technique. Adv. Mater. Process. Technol. 2022. [Google Scholar] [CrossRef]
- Hassanifard, S.; Ghiasvand, A.; Varvani-Farahani, A. Fatigue response of aluminum 7075-T6 joints through inclusion of Al2O3particles to the weld nugget zone during friction stir spot welding. J. Mater. Eng. Perform. 2022, 31, 1781–1790. [Google Scholar] [CrossRef]
- Janga, V.S.R.; Awang, M. Influence of plunge depth on temperatures and material flow behavior in refill friction stir spot welding of thin AA7075-T6 sheets: A numerical study. Metals 2022, 12, 927. [Google Scholar] [CrossRef]
- Tiwan, H.; Ilman, M.N.; Kusmono, K. Effect of pin geometry and toolrotational speed on microstructure and mechanical properties of friction stir spot welded joints in AA2024-O aluminum alloy. Int. J. Eng. 2021, 34, 1949–1960. [Google Scholar] [CrossRef]
- Karthikeyan, R. Establishing relationship between optimised friction stir spot welding process parameters and strength of aluminium alloys. Adv. Mater. Process. Technol. 2021, 8, 1173–1195. [Google Scholar] [CrossRef]
- Balamurugan, M.; Gopi, S.; Mohan, D.G. Influence of tool pin profiles on the filler added friction stir spot welded dissimilar aluminium alloy joints. Mater. Res. Express 2021, 8, 096531. [Google Scholar] [CrossRef]
- Gao, Y.; Liang, Y.; Ren, X.; Paidar, M. Pre-hole friction stir spot welding (PFSSW) for dissimilar welding of AA2219 to AA3003 sheets. Vacuum 2020, 182, 109688. [Google Scholar] [CrossRef]
- Suryanarayanan, R.; Sridhar, V.G. Effect of process parameters in pinlessfriction stir spot welding of Al5754-Al6061 alloys. Metallogr. Microstruct. Anal. 2020, 9, 261–272. [Google Scholar] [CrossRef]
- Rohani Yazdi, S.; Beidokhti, B.; Haddad-Sabzevar, M. Pinless tool for FSSW of AA 6061-T6 aluminum alloy. J. Mater. Process. Technol. 2019, 267, 44–51. [Google Scholar] [CrossRef]
- Suresh, S.; Venkatesan, K.; Natarajan, E.; Rajesh, S.; Lim, W.H. Evaluating weld properties of conventional and swept friction stir spot welded 6061-T6 aluminium alloy. Mater. Express 2019, 9, 851–860. [Google Scholar] [CrossRef]
- Fahmy, M.H.; Abdel-Aleem, H.A.; El-kousy, M.R.; Abdel-Elraheem, N.M. Comparative study of spot welding and friction stir spot welding of Al 2024-T3. Key Eng. Mater. 2018, 786, 104–118. [Google Scholar] [CrossRef]
- Sun, Y.; Morisada, Y.; Fujii, H.; Tsuji, N. Ultrafine grained structure and improved mechanical properties of low temperature friction stir spot welded 6061-T6 Al alloys. Mater. Charact. 2018, 135, 124–133. [Google Scholar] [CrossRef]
- Selvam, J.D.R.; Dinaharan, I.; Rai, R.S. Matrix and reinforcement materials for metal matrix composites. Encycl. Mater. Compos. 2021, 2, 615–639. [Google Scholar] [CrossRef]
- Casati, R.; Vedani, M. Metal matrix composites reinforced by nano-particles—A review. Metals 2014, 4, 65–83. [Google Scholar] [CrossRef] [Green Version]
- Sachinkumar; Narendranath, S.; Chakradhar, D. Microstructure, hardness and tensile properties of friction stir welded aluminum matrix composite reinforced with SiC and fly ash. Silicon 2019, 11, 2557–2565. [Google Scholar] [CrossRef]
- Bhushan, R.K.; Sharma, D. Optimization of friction stir welding parameters to maximize hardness of AA6082/Si3N4 and AA6082/SiCcomposites joints. Silicon 2021, 14, 643–661. [Google Scholar] [CrossRef]
- Fereiduni, E.; Movahedi, M.; Baghdadchi, A. Ultrahigh-strength friction stir spot welds of aluminium alloy obtained by Fe3O4 nanoparticles. Sci. Technol. Weld. Join. 2018, 23, 63–70. [Google Scholar] [CrossRef]
- Wu, D.; Shen, J.; Lv, L.; Wen, L.; Xie, X. Effects of nano-SiC particles on the FSSW welded AZ31 magnesium alloy joints. Mater. Sci. Technol. 2017, 33, 998–1003. [Google Scholar] [CrossRef]
- Tebyani, S.F.; Dehghani, K. Friction stir spot welding of interstitial free steel with incorporating silicon carbide nanopowders. Int. J. Adv. Manuf. Technol. 2015, 79, 343–350. [Google Scholar] [CrossRef]
- Suresh, S.; Venkatesan, K.; Natarajan, E. Influence of SiCnanoparticle reinforcement on FSS welded 6061-T6 aluminum alloy. J. Nanomater 2018, 2018, 7031867. [Google Scholar] [CrossRef] [Green Version]
- Hannachi, N.; Khalfallah, A.; Leitao, C.; Rodrigues, D.M. A comparative study on the physical and mechanical behavior of AA6082-T6 and AA5083-H116 aluminum alloys in friction stir spot welding. In Advances in Mechanical Engineering, Materials and Mechanics. ICAMEM 2019. Lecture Notes in Mechanical Engineering; Kharrat, M., Baccar, M., Dammak, F., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Akinlabi, E.T.; Osinubi, A.S.; Madushele, N.; Akinlabi, S.A.; Ikumapayi, O.M. Data on microhardness and structural analysis of friction stir spot welded lap joints of AA5083-H116. Data Br. 2020, 33, 106585. [Google Scholar] [CrossRef] [PubMed]
- Chupradit, S.; Bokov, D.O.; Suksatan, W.; Landowski, M.; Fydrych, D.; Abdullah, M.E.; Derazkola, H.A. Pin angle thermal effects on friction stir welding of AA5058 aluminum alloy: CFD simulation and experimental validation. Materials 2021, 14, 7565. [Google Scholar] [CrossRef]
- Suresh, S.; Elango, N.; Ragavanantham, S.; Venkatesan, K.; Saravanakumar, N.; AntoDilip, A. Strategized friction stir welded AA6061-T6/SiC composite lap joint suitable for sheet metal applications. J. Mater. Res. Technol. 2022, 21, 30–39. [Google Scholar] [CrossRef]
- Moradi, M.M.; Jamshidi Aval, H.; Jamaati, R. Microstructure and mechanical properties in nano and microscale SiC-included dissimilar friction stir welding of AA6061-AA2024. Mater. Sci. Technol. 2017, 34, 388–401. [Google Scholar] [CrossRef]
- Liu, T.-S.; Qiu, F.; Dong, B.-X.; Geng, R.; Zha, M.; Yang, H.-Y.; Shu, S.-L.; Jiang, Q.-C. Role of trace nanoparticles in establishing fully optimized microstructure configuration of cold-rolled Al alloy. Mater. Des. 2021, 206, 109743. [Google Scholar] [CrossRef]
- Raja, S.; Muhamad, M.R.; Jamaludin, M.F.; Yusof, F. A review on nanomaterials reinforcement in friction stir welding. J. Mater. Res. Technol. 2020, 9, 16459–16487. [Google Scholar] [CrossRef]
- Suresh, S.; Venkatesan, K.; Natarajan, E.; Rajesh, S. Influence of tool rotational speed on the properties of friction stir spot welded AA7075-T6/Al2O3 composite joint. Mater. Today Proc. 2020, 27, 62–67. [Google Scholar] [CrossRef]
- Abioye, T.E.; Zuhailawati, H.; Anasyida, A.S.; Yahaya, S.A.; Dhindaw, B.K. Investigation of the microstructure, mechanical and wear properties of AA6061-T6 friction stir weldments with different particulate reinforcements addition. J. Mater. Res. Technol. 2019, 8, 3917–3928. [Google Scholar] [CrossRef]
- Singh, T.; Tiwari, S.K.; Shukla, D.K. Mechanical and microstructural characterization of friction stir welded AA6061-T6 joints reinforced with nano-sized particles. Mater. Charact. 2020, 159, 110047. [Google Scholar] [CrossRef]
- Suresh, S.; Venkatesan, K.; Natarajan, E.; Rajesh, S. Performance analysis of nano silicon carbide reinforced swept friction stir spot weld joint in AA6061-T6 alloy. Silicon 2021, 13, 3399–3412. [Google Scholar] [CrossRef]
- Barmouz, M.; Asadi, P.; Besharati Givi, M.K.; Taherishargh, M. Investigation of mechanical properties of Cu/SiCcomposite fabricated by FSP: Effect of SiC particles’ size and volume fraction. Mater. Sci. Eng. A 2011, 528, 1740–1749. [Google Scholar] [CrossRef]
- Suresh, S.; Elango, N.; Venkatesan, K.; Lim, W.H.; Palanikumar, K.; Rajesh, S. Sustainable friction stir spot welding of 6061-T6 aluminium alloy using improved non-dominated sorting teaching learning algorithm. J. Mater. Res. Technol. 2020, 9, 11650–11674. [Google Scholar] [CrossRef]
- Sudhagar, S.; Gopal, P.M. Investigation on mechanical and tribological characteristics Cu/Si3N4surface composite developed through friction stir processing. Silicon 2022, 14, 4207–4216. [Google Scholar] [CrossRef]
- Suresh, S.; Natarajan, E.; Vinayagamurthi, P.; Venkatesan, K.; Viswanathan, R.; Rajesh, S. Optimum Tool Traverse Speed Resulting Equiaxed Recrystallized Grains and High Mechanical Strength at Swept Friction Stir Spot Welded AA7075-T6 Lap Joints. In Materials, Design and Manufacturing for Sustainable Environment; Lecture Notes in Mechanical Engineering; Natarajan, E., Vinodh, S., Rajkumar, V., Eds.; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Pereira, M.A.R.; Galvão, I.; Costa, J.D.; Amaro, A.M.; Leal, R.M. Joining of Fibre-Reinforced Thermoplastic Polymer Composites by Friction Stir Welding—A Review. Appl. Sci. 2022, 12, 2744. [Google Scholar] [CrossRef]
- Ramesh Rudrapati. Effects of welding process conditions on friction stir welding of polymer composites: A review. Compos. Part C Open Access 2022, 8, 100269. [Google Scholar] [CrossRef]
- Joudaki, J.; Safari, M.; Joodaki, M. Experimental investigation of friction stir spot welding of polymer-aluminum alloy weldments. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2022, 236, 1368–1379. [Google Scholar] [CrossRef]
Reference | Description | Significance/Findings of the Research |
---|---|---|
Bagheri et al., 2022 [14] | Al/Cu composite FSSW joints with the addition of SiC particles | Homogeneous distribution of a finer, nanoparticle-sized SiC additive particles in the matrix causes higher shear tensile and Von-Mises stress. |
Akinlabi et al., 2022 [15] | AA5083-H116 FSSW joint | Process parameters such as tool rotational speed and dwell time play a significant role in the improvement of structural, mechanical, and corrosion properties. |
Hassanifard et al., 2022 [16] | 7075-T6 joints through the inclusion of Al2O3 particles | The addition of Al2O3 nano-sized particles progress the improvement of the fatigue performance of the joint due to grain refinement. |
Janga and Awang, 2022 [17] | Refill FSSW of thin AA7075-T6 sheets | Weld zone temperature and strain rate increase with an increase in tool shoulder plunge depth. |
Tiwan et al., 2022 [18] | AA2024-O FSSW joints with variable tool pin configurations | The result showed that the maximum shear stress produced with the cylindrical pin FSSW tool was due to better material flow behavior during the process. |
Karthikeyan, 2021 [19] | FSSW of AA6061, AA2024, and AA7075 | Lower tool rotational speed and lower plunge rate are found to be optimum to friction stir spot-weld high-strength aluminum alloys compared to low-strength aluminum alloys. |
Balamurugan and Mohan, 2021 [20] | FSSW of AA5052 and AA6061 with various tool pin profiles | Tool pin profile (pin diameter, length, and taper angle) strongly influences the refined and uniformly distributed grain structure. |
Gao et al., 2020 [21] | Pre-hole FSSW of AA2219 to AA3003 | The PFSSW method has a significant impact on the mechanical properties of the joint and weld microstructures due to the fascinating mixing features and solid metallurgical bonds between the base alloys. |
Suryanarayanan and Sridhar, 2020 [22] | Pin-less FSSW of Al 5754-Al 6061 | FSSW with a pin-less tool overcomes the drawbacks of the stress concentration factor and corrosion. |
Rohani Yazdi al., 2019 [23] | FSSW of AA 6061-T6 with pin-less tool | Higher plunge depth of tool shoulder improves the volume of the displaced metal, resulting in high joint strength. |
Suresh et al., 2019 [24] | AA6061-T6 swept FSSW joint | Additional stirring action of the tool causes the joints to become stronger than conventional FSSW joints. |
Fahmy et al., 2018 [25] | RSW and FSSW of AA2024-T3 | FSSW produces welds with finer grain structures than welds produced by RSW due to the crushing, stirring, and forging action of the welding tool. |
Sun et al., 2018 [26] | Low-temperature FSSW of AA6061-T6 | Low rotational speed leads to higher lap shear strength. |
Material | Pin Diameter (mm) | Pin Length (mm) | Shoulder Diameter (mm) | Pin Profile | Shoulder Future | Heat Treatment |
---|---|---|---|---|---|---|
H13 steel | 5.0 | 3.0 | 12.0 | Threaded | Flat | 52–56 HRC |
Weld Joint | Wear (μm) | Coefficient of Friction |
---|---|---|
AA5083/nano-SiC | 187 | 0.345 |
AA5083/micro-SiC | 213 | 0.301 |
AA5083 | 254 | 0.283 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suresh, S.; Natarajan, E.; Franz, G.; Rajesh, S. Differentiation in the SiC Filler Size Effect in the Mechanical and Tribological Properties of Friction-Spot-Welded AA5083-H116 Alloy. Fibers 2022, 10, 109. https://doi.org/10.3390/fib10120109
Suresh S, Natarajan E, Franz G, Rajesh S. Differentiation in the SiC Filler Size Effect in the Mechanical and Tribological Properties of Friction-Spot-Welded AA5083-H116 Alloy. Fibers. 2022; 10(12):109. https://doi.org/10.3390/fib10120109
Chicago/Turabian StyleSuresh, S., Elango Natarajan, Gérald Franz, and S. Rajesh. 2022. "Differentiation in the SiC Filler Size Effect in the Mechanical and Tribological Properties of Friction-Spot-Welded AA5083-H116 Alloy" Fibers 10, no. 12: 109. https://doi.org/10.3390/fib10120109
APA StyleSuresh, S., Natarajan, E., Franz, G., & Rajesh, S. (2022). Differentiation in the SiC Filler Size Effect in the Mechanical and Tribological Properties of Friction-Spot-Welded AA5083-H116 Alloy. Fibers, 10(12), 109. https://doi.org/10.3390/fib10120109