Corrosion Behavior of Fiber-Reinforced Concrete—A Review
Abstract
:1. Introduction
2. Effect of Fibers on Concrete Cracking Behavior
3. Impact of Fibers on Electric Resistivity
4. Chloride Ion Diffusion in Cracked and Uncracked Concrete
Impact of Fibers on Chloride ion Diffusion in Cracked Concrete and Uncracked Concrete
5. Chloride-Induced Corrosion of Fibers Incorporated in Reinforced Concrete (RC)
6. Steel Bars in FRC Are Susceptible to Corrosion
7. Conclusions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Hausmann, D.A. Steel corrosion in concrete—How does it occur? Mater. Prot. 1967, 6, 19–23. [Google Scholar]
- Bentur, A. Steel Corrosion in Concrete: Fundamentals and Civil Engineering Practice; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Hunkeler, F. Corrosion in Reinforced Concrete: Processes and Mechanisms. In Woodhead Publishing Series in Civil and Structural Engineering; Böhni, R.C.S., Ed.; Woodhead Publishing: Sawston, UK, 2005; pp. 1–45. [Google Scholar]
- Tuutti, K. Corrosion of Steel in Concrete; Swedish Cement and Concrete Research Institute: Stockholm, Sweden, 1982. [Google Scholar]
- Li, C.Q. Reliability Based Service Life Prediction of Corrosion Affected Concrete Structures. J. Struct. Eng. 2004, 130, 1570–1577. [Google Scholar] [CrossRef]
- Ormellese, M.; Lazzari, L.; Goidanich, S.; Fumagalli, G.; Brenna, A. A study of organic substances as inhibitors for chloride-induced corrosion in concrete. Corros. Sci. 2009, 51, 2959–2968. [Google Scholar] [CrossRef]
- Biczok, I. Concrete Corrosion and Concrete Protection. Concr. Corros. Concr. Prot. 2011, 2, 54–136. [Google Scholar]
- Ahmad, S. Reinforcement corrosion in concrete structures, its monitoring and service life prediction—A review. Cem. Concr. Compos. 2003, 25, 459–471. [Google Scholar] [CrossRef]
- Simčič, T.; Pejovnik, S.; De Schutter, G.; Bosiljkov, V.B. Chloride ion penetration into fly ash modified concrete during wetting–drying cycles. Constr. Build. Mater. 2015, 93, 1216–1223. [Google Scholar] [CrossRef]
- Zhan, H.; Wittmann, F.H.; Zhao, T. Chloride Barrier for Concrete in Saline Environment Established by Water Repellent Treatment/DurchHydrophobierenhergestellteChloridschrankefürBeton in KontaktmitSalzwasser. Restor. Build. Monum. 2003, 9, 535–550. [Google Scholar] [CrossRef]
- Liu, J.; Ou, G.; Qiu, Q.; Chen, X.; Hong, J.; Xing, F. Chloride transport and microstructure of concrete with/without fly ash under atmospheric chloride condition. Constr. Build. Mater. 2017, 146, 493–501. [Google Scholar] [CrossRef]
- Medeiros, M.; Helene, P. Surface treatment of reinforced concrete in marine environment: Influence on chloride diffusion coefficient and capillary water absorption. Constr. Build. Mater. 2009, 23, 1476–1484. [Google Scholar] [CrossRef]
- Medeiros, M.; Helene, P. Efficacy of surface hydrophobic agents in reducing water and chloride ion penetration in concrete. Mater. Struct. 2008, 41, 59–71. [Google Scholar] [CrossRef]
- Win, P.P.; Watanabe, M.; Machida, A. Penetration profile of chloride ion in cracked reinforced concrete. Cem. Concr. Res. 2004, 34, 1073–1079. [Google Scholar] [CrossRef]
- Conciatori, D.; Sadouki, H.; Brühwiler, E. Capillary suction and diffusion model for chloride ingress into concrete. Cem. Concr. Res. 2008, 38, 1401–1408. [Google Scholar] [CrossRef] [Green Version]
- McCarter, W.J. Influence of Surface Finish on Sorptivity on Concrete. J. Mater. Civ. Eng. 1993, 5, 130–136. [Google Scholar] [CrossRef]
- Ben Fraj, A.; Bonnet, S.; Khelidj, A. New approach for coupled chloride/moisture transport in non-saturated concrete with and without slag. Constr. Build. Mater. 2012, 35, 761–771. [Google Scholar] [CrossRef]
- Xu, J.; Jiang, L.; Wang, J. Influence of detection methods on chloride threshold value for the corrosion of steel reinforcement. Constr. Build. Mater. 2009, 23, 1902–1908. [Google Scholar] [CrossRef]
- Polder, R.B. Critical chloride content for reinforced concrete and its relationship to concrete resistivity. Mater. Corros. 2009, 60, 623–630. [Google Scholar] [CrossRef]
- El-Dieb, A.S. Mechanical, durability and microstructural characteristics of ultra-high-strength self-compacting concrete incorporating steel fibers. Mater. Des. 2009, 30, 4286–4292. [Google Scholar] [CrossRef]
- Barros, J. Steel fibre reinforced concrete: Material properties and structural applications. FibrousCompos. Mater. Civ. Eng. Appl. 2011, 95–155. [Google Scholar] [CrossRef] [Green Version]
- Kakooei, S.; Akil, H.M.; Dolati, A.; Rouhi, J. The corrosion investigation of rebar embedded in the fibers reinforced concrete. Constr. Build. Mater. 2012, 35, 564–570. [Google Scholar] [CrossRef]
- Abbas, S.; Soliman, A.M.; Nehdi, M.L. Exploring mechanical and durability properties of ultra-high performance concrete incorporating various steel fiber lengths and dosages. Constr. Build. Mater. 2015, 75, 429–441. [Google Scholar] [CrossRef]
- Yoo, D.-Y.; Shin, H.; Yang, J.-M.; Yoon, Y.-S. Material and bond properties of ultra high performance fiber reinforced concrete with micro steel fibers. Compos. Part B Eng. 2014, 58, 122–133. [Google Scholar] [CrossRef]
- Simões, T.; Costa, H.; Dias-Da-Costa, D.; Julio, E. Influence of fibres on the mechanical behaviour of fibre reinforced concrete matrixes. Constr. Build. Mater. 2017, 137, 548–556. [Google Scholar] [CrossRef] [Green Version]
- Romualdi, J.P.; Mandel, J.A. Tensile Strength of concrete Affected by UnigormlyDistributed and Closely Spaced Short Lengths of wire Reinforcement. ACI J. Proc. 1964, 61, 657–672. [Google Scholar] [CrossRef]
- Furlan, S.; de Hanai, J.B. Shear behaviour of fiber reinforced concrete beams. Cem. Concr. Compos. 1997, 19, 359–366. [Google Scholar] [CrossRef]
- Soroushian, P.; Elyamany, H.; Tlili, A.; Ostowari, K. Mixed-mode fracture properties of concrete reinforced with low volume fractions of steel and polypropylene fibers. Cem. Concr. Compos. 1998, 20, 67–78. [Google Scholar] [CrossRef]
- Lim, D.; Oh, B. Experimental and theoretical investigation on the shear of steel fibre reinforced concrete beams. Eng. Struct. 1999, 21, 937–944. [Google Scholar] [CrossRef]
- Bencardino, F.; Rizzuti, L.; Spadea, G.; Swamy, R. Experimental evaluation of fiber reinforced concrete fracture properties. Compos. Part B Eng. 2010, 41, 17–24. [Google Scholar] [CrossRef]
- Qi, C.; Weiss, J.; Olek, J. Characterization of plastic shrinkage cracking in fiber reinforced concrete using image analysis and a modified Weibull function. Mater. Struct. 2003, 36, 386–395. [Google Scholar] [CrossRef]
- Abrishami, H.H.; Mitchell, D. Influence of Steel Fibers on Tension Stiffening. ACI Struct. J. 1997, 94, 769–776. [Google Scholar] [CrossRef]
- Swamy, R.; Mangat, P. A theory for the flexural strength of steel fiber reinforced concrete. Cem. Concr. Res. 1974, 4, 313–325. [Google Scholar] [CrossRef]
- Kim, S.B.; Yi, N.H.; Kim, H.Y.; Kim, J.-H.J.; Song, Y.-C. Material and structural performance evaluation of recycled PET fiber reinforced concrete. Cem. Concr. Compos. 2010, 32, 232–240. [Google Scholar] [CrossRef]
- Jalasutram, S.; Sahoo, D.R.; Matsagar, V. Experimental investigation of the mechanical properties of basalt fiber-reinforced concrete. Struct. Concr. 2017, 18, 292–302. [Google Scholar] [CrossRef]
- Zia, A.; Ali, M. Behavior of fiber reinforced concrete for controlling the rate of cracking in canal-lining. Constr. Build. Mater. 2017, 155, 726–739. [Google Scholar] [CrossRef]
- Li, V.C.; Matsumoto, T. Fatigue crack growth analysis of fiber reinforced concrete with effect of interfacial bond degradation. Cem. Concr. Compos. 1998, 20, 339–351. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.; Bukhari, I.A.; Siddiqui, J.I.; Qureshi, S.A. A study on properties of polypropylene fiber reinforced concrete. In Proceedings of the 31st Conference on Our World in Concrete and Structures, Singapore, 16–17 August 2006; pp. 63–72. [Google Scholar]
- Barragan, B.; Gettu, R.; Agullo, L.; Zerbino, R. Shear failure of steel fiber-reinforced concrete based on push-off tests. ACI Mater. J. 2006, 103, 251. [Google Scholar]
- Gopu, G.N.; Sofi, A. Electrical Waste Fibers Impact on Mechanical and Durability Properties of Concrete. Civ. Eng. Archit. 2021, 9, 1854–1868. [Google Scholar] [CrossRef]
- Annamalai, S. Electrical conductivity of concrete. ARPN J. Eng. Appl. Sci. 2016, 11, 5979–5982. [Google Scholar]
- Lataste, J.-F. Electrical Resistivity for the Evaluation of Reinforced Concrete Structures; Elsevier: Amsterdam, The Netherlands, 2010; pp. 243–275. [Google Scholar]
- Saleem, M.; Shameem, M.; Hussain, S.; Maslehuddin, M. Effect of moisture, chloride and sulphate contamination on the electrical resistivity of Portland cement concrete. Constr. Build. Mater. 1996, 10, 209–214. [Google Scholar] [CrossRef]
- Elsener, B.; Vennesland, Ø. Test methods for on site measurement of resistivity of concrete—A RILEM TC-154 technical recommendation. Constr. Build. Mater. 2001, 15, 125–131. [Google Scholar]
- Lakshminarayanan, V.; Ramesh, P.S.; Rajagopalan, S.R. A new technique for the measurement of the electrical resistivity of concrete. Mag. Concr. Res. 1992, 44, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Sbartaï, Z.; Laurens, S.; Rhazi, J.; Balayssac, J.; Arliguie, G. Using radar direct wave for concrete condition assessment: Correlation with electrical resistivity. J. Appl. Geophys. 2007, 62, 361–374. [Google Scholar] [CrossRef]
- Sengul, O. Use of electrical resistivity as an indicator for durability. Constr. Build. Mater. 2014, 73, 434–441. [Google Scholar] [CrossRef]
- Ghods, P.; Alizadeh, A.R.; Salehi, M. Electrical Resistivity of Concrete. 2015, pp. 41–46. Available online: https://www.giatecscientific.com/wp-content/uploads/2015/05/Concrete_Electrical_Resistivity.pdf (accessed on 1 May 2015).
- Cheytani, M.; Chan, S. The applicability of the Wenner method for resistivity measurement of concrete in atmospheric conditions. Case Stud. Constr. Mater. 2021, 15, e00663. [Google Scholar] [CrossRef]
- Sun, W.; Mu, R.; Luo, X.; Miao, C. Effect of chloride salt, freeze-thaw cycling and externally applied load on the performance of the concrete. Cem. Concr. Res. 2002, 32, 1859–1864. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, Y.; Wu, C.; Jiao, Y. Experimental and Simulation Study on Diffusion Behavior of Chloride Ion in Cracking Concrete and Reinforcement Corrosion. Adv. Mater. Sci. Eng. 2018, 2018, 8475384. [Google Scholar] [CrossRef] [Green Version]
- Tammo, K.; Lundgren, K.; Thelandersson, S.; Högskola, T. Chalmers Publication Library Crack Widths Close to the Reinforcement Crack Widths Close to the Reinforcement. Available online: http://publications.lib.chalmers.se/publication/54301 (accessed on 16 November 2021).
- Tao, Y.; Gou, Z.; Yu, Z.; Fu, J.; Chen, X. The challenge of creating age-friendly indoor environments in a high-density city: Case study of Hong Kong’s care and attention homes. J. Build. Eng. 2020, 30, 101280. [Google Scholar] [CrossRef]
- Kobayashi, K.; Le Ahn, D.; Rokugo, K. Effects of crack properties and water-cement ratio on the chloride proofing performance of cracked SHCC suffering from chloride attack. Cem. Concr. Compos. 2016, 69, 18–27. [Google Scholar] [CrossRef]
- Jaffer, S.; Hansson, C. The influence of cracks on chloride-induced corrosion of steel in ordinary Portland cement and high performance concretes subjected to different loading conditions. Corros. Sci. 2008, 50, 3343–3355. [Google Scholar] [CrossRef]
- Marsavina, L.; Audenaert, K.; De Schutter, G.; Faur, N.; Marsavina, D. Experimental and numerical determination of the chloride penetration in cracked concrete. Constr. Build. Mater. 2009, 23, 264–274. [Google Scholar] [CrossRef]
- Park, S.-S.; Kwon, S.-J.; Jung, S.H. Analysis technique for chloride penetration in cracked concrete using equivalent diffusion and permeation. Constr. Build. Mater. 2012, 29, 183–192. [Google Scholar] [CrossRef]
- Kim, Y.Y.; Kim, J.-M.; Bang, J.-W.; Kwon, S.-J. Effect of cover depth, w/c ratio, and crack width on half cell potential in cracked concrete exposed to salt sprayed condition. Constr. Build. Mater. 2014, 54, 636–645. [Google Scholar] [CrossRef]
- Ye, H.; Tian, Y.; Jin, N.; Jin, X.; Fu, C. Influence of cracking on chloride diffusivity and moisture influential depth in concrete subjected to simulated environmental conditions. Constr. Build. Mater. 2013, 47, 66–79. [Google Scholar] [CrossRef]
- Yu, L.; Francois, R.; Dang, V.H.; L’Hostis, V.; Gagné, R. Development of chloride-induced corrosion in pre-cracked RC beams under sustained loading: Effect of load-induced cracks, concrete cover, and exposure conditions. Cem. Concr. Res. 2015, 67, 246–258. [Google Scholar] [CrossRef]
- Otieno, M.; Beushausen, H.; Alexander, M. Chloride-induced corrosion of steel in cracked concrete—Part I: Experimental studies under accelerated and natural marine environments. Cem. Concr. Res. 2016, 79, 373–385. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, Y.; Zhang, P.; Ma, Y.; Zhao, T.; Wang, H.; Zhang, Z. Water absorption and chloride diffusivity of concrete under the coupling effect of uniaxial compressive load and freeze-thaw cycles. Constr. Build. Mater. 2019, 209, 566–576. [Google Scholar] [CrossRef]
- Guo, Y.; Hu, X.; Lv, J. Experimental study on the resistance of basalt fibre-reinforced concrete to chloride penetration. Constr. Build. Mater. 2019, 223, 142–155. [Google Scholar] [CrossRef]
- ASTM G109-07; Standard Test Method for Determining the Effects of Chemical Admixtures on the Corrosion of Embedded Steel Reinforcement in Concrete Exposed to Chloride Environments. ASTM International: West Conshohocken, PA, USA, 2000.
- Andrade, C.; Prieto, M.; Tanner, P.; Tavares, F.; D’Andrea, R. Testing and modelling chloride penetration into concrete. Constr. Build. Mater. 2013, 39, 9–18. [Google Scholar] [CrossRef]
- Zhang, W.; François, R.; Yu, L. Influence of load-induced cracks coupled or not with top-casting-induced defects on the corrosion of the longitudinal tensile reinforcement of naturally corroded beams exposed to chloride environment under sustained loading. Cem. Concr. Res. 2020, 129, 105972. [Google Scholar] [CrossRef]
- Güneyisi, E.; Gesoğlu, M.; Karaboğa, F.; Mermerdaş, K. Corrosion behavior of reinforcing steel embedded in chloride contaminated concretes with and without metakaolin. Compos. Part B Eng. 2013, 45, 1288–1295. [Google Scholar] [CrossRef]
- Jing, L.; Yin, S.; Lv, H. Bonding Behavior of Textile Reinforced Concrete (TRC)-Confined Concrete and Reinforcement under Chloride Erosion Environment. KSCE J. Civ. Eng. 2020, 24, 826–834. [Google Scholar] [CrossRef]
- Daghe, L.E.; Legione, D. Covariance structure analysis of health-related indicators in the elderly at home with a focus on subjective health. J-GLOBAL 1987, 17, 105–120. (In Japanese) [Google Scholar]
- El Maaddawy, T.; Chahrour, A.; Soudki, K. Effect of Fiber-Reinforced Polymer Wraps on Corrosion Activity and Concrete Cracking in Chloride-Contaminated Concrete Cylinders. J. Compos. Constr. 2006, 10, 139–147. [Google Scholar] [CrossRef]
- Soudki, K.; El-Salakawy, E.; Craig, B. Behavior of CFRP Strengthened Reinforced Concrete Beams in Corrosive Environment. J. Compos. Constr. 2007, 11, 291–298. [Google Scholar] [CrossRef] [Green Version]
- Banthia, N. Durability enhancements in concrete with fiber reinforcement. In Proceedings of the Conference on Sustainable Construction Materials and Technologies, Coventry, UK, 11–13 June 2007; pp. 209–219. [Google Scholar]
- Abbas, S.; Soliman, A.M.; Nehdi, M.L. Chloride Ion Penetration in RC and SFRC Precast Tunnel Lining Segments. ACI Mater. J. 2014, 111, 613–622. [Google Scholar] [CrossRef]
- Corinaldesi, V.; Moriconi, G. Mechanical and thermal evaluation of Ultra High Performance Fiber Reinforced Concretes for engineering applications. Constr. Build. Mater. 2012, 26, 289–294. [Google Scholar] [CrossRef]
- Šavija, B.; Luković, M.; Hosseini, S.A.S.; Pacheco, J.; Schlangen, E. Corrosion induced cover cracking studied by X-ray computed tomography, nanoindentation, and energy dispersive X-ray spectrometry (EDS). Mater. Struct. 2015, 48, 2043–2062. [Google Scholar] [CrossRef]
- Luković, M.; Šavija, B.; Ye, G.; Schlangen, E.; Van Breugel, K. Failure Modes in Concrete Repair Systems due to Ongoing Corrosion. Adv. Mater. Sci. Eng. 2017, 2017, 9649187. [Google Scholar] [CrossRef] [Green Version]
- Michel, A.; Solgaard, A.; Pease, B.J.; Geiker, M.R.; Stang, H.; Olesen, J.F. Experimental investigation of the relation between damage at the concrete-steel interface and initiation of reinforcement corrosion in plain and fibre reinforced concrete. Corros. Sci. 2013, 77, 308–321. [Google Scholar] [CrossRef]
- Sahmaran, M.; Li, M.; Li, V.C. Transport Properties of Engineered Cementitious Composites under Chloride Exposure. ACI Mater. J. 2007, 104, 604–611. [Google Scholar] [CrossRef]
- Şahmaran, M.; Li, V.C. Durability properties of micro-cracked ECC containing high volumes fly ash. Cem. Concr. Res. 2009, 39, 1033–1043. [Google Scholar] [CrossRef]
- Bhargava, A.; Banthia, N. Permeability of concrete with fiber reinforcement and service life predictions. Mater. Struct. 2007, 41, 363–372. [Google Scholar] [CrossRef]
- Liu, J.; Jia, Y.; Wang, J. Calculation of chloride ion diffusion in glass and polypropylene fiber-reinforced concrete. Constr. Build. Mater. 2019, 215, 875–885. [Google Scholar] [CrossRef]
- Söylev, T.A.; Özturan, T. Durability, physical and mechanical properties of fiber-reinforced concretes at low-volume fraction. Constr. Build. Mater. 2014, 73, 67–75. [Google Scholar] [CrossRef]
- Akhavan, A.; Rajabipour, F. Evaluating ion diffusivity of cracked cement paste using electrical impedance spectroscopy. Mater. Struct. 2012, 46, 697–708. [Google Scholar] [CrossRef]
- Ramli, M.; Kwan, W.H.; Abas, N.F. Strength and durability of coconut-fiber-reinforced concrete in aggressive environments. Constr. Build. Mater. 2013, 38, 554–566. [Google Scholar] [CrossRef]
- Berrocal, C.G.; Löfgren, I.; Lundgren, K.; Tang, L. Corrosion initiation in cracked fibre reinforced concrete: Influence of crack width, fibre type and loading conditions. Corros. Sci. 2015, 98, 128–139. [Google Scholar] [CrossRef] [Green Version]
- Niu, D.; Huang, D.; Fu, Q. Experimental investigation on compressive strength and chloride permeability of fiber-reinforced concrete with basalt-polypropylene fibers. Adv. Struct. Eng. 2019, 22, 2278–2288. [Google Scholar] [CrossRef]
- Corrosion-Induced Cracking Time in Steel Fiber-Reinforced Concrete: Experiment and Finite Element Method. ACI Mater. J. 2020, 117, 3–12. [CrossRef]
- Örnek, C.; Leygraf, C.; Pan, J. Passive film characterisation of duplex stainless steel using scanning Kelvin probe force microscopy in combination with electrochemical measurements. NPJ Mater. Degrad. 2019, 3, 8. [Google Scholar] [CrossRef] [Green Version]
- Ann, K.Y.; Song, H.-W. Chloride threshold level for corrosion of steel in concrete. Corros. Sci. 2007, 49, 4113–4133. [Google Scholar] [CrossRef]
- Berrocal, C.G.; Fernandez, I.; Lundgren, K.; Lofgren, I. Corrosion-induced cracking and bond behaviour of corroded reinforcement bars in SFRC. Compos. Part B Eng. 2017, 113, 123–137. [Google Scholar] [CrossRef] [Green Version]
- Stefanoni, M.; Angst, U.; Elsener, B. Corrosion Challenges and Opportunities in Digital Fabrication of Reinforced Concrete. In RILEM International Conference on Concrete and Digital Fabrication; Springer: Amsterdam, The Netherlands, 2019; pp. 225–233. [Google Scholar] [CrossRef]
- Fang, C.; Lundgren, K.; Chen, L.; Zhu, C. Corrosion influence on bond in reinforced concrete. Cem. Concr. Res. 2004, 34, 2159–2167. [Google Scholar] [CrossRef]
- Šavija, B.; Luković, M. Carbonation of cement paste: Understanding, challenges, and opportunities. Constr. Build. Mater. 2016, 117, 285–301. [Google Scholar] [CrossRef] [Green Version]
- Mangat, P.; Gurusamy, K. Corrosion resistance of steel fibres in concrete under marine exposure. Cem. Concr. Res. 1988, 18, 44–54. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, X.; Chen, S. Effect of different environments on bond strength of glass fiber-reinforced polymer and steel reinforcing bars. KSCE J. Civ. Eng. 2012, 16, 994–1002. [Google Scholar] [CrossRef]
- Neale, K.W.; Labossière, P.; Thériault, M. FRPs for Strengthening and Rehabilitation: Durability Issues. In Composites in Construction; American Society of Civil Engineers: Reston, VA, USA, 2001; pp. 102–109. [Google Scholar]
- Yu, A.-P.; Naqvi, M.W.; Hu, L.-B.; Zhao, Y.-L. An experimental study of corrosion damage distribution of steel bars in reinforced concrete using acoustic emission technique. Constr. Build. Mater. 2020, 254, 119256. [Google Scholar] [CrossRef]
- Roussel, N.; Cussigh, F. Distinct-layer casting of SCC: The mechanical consequences of thixotropy. Cem. Concr. Res. 2008, 38, 624–632. [Google Scholar] [CrossRef]
- Wangler, T.; Lloret, E.; Reiter, L.; Hack, N.; Gramazio, F.; Kohler, M.; Bernhard, M.; Dillenburger, B.; Buchli, J.; Roussel, N.; et al. Digital Concrete: Opportunities and Challenges. RILEM Tech. Lett. 2016, 1, 67–75. [Google Scholar] [CrossRef]
- Kim, H.-Y.; Park, Y.-H.; You, Y.-J.; Moon, C.-K. Short-term durability test for GFRP rods under various environmental conditions. Compos. Struct. 2008, 83, 37–47. [Google Scholar] [CrossRef]
- Ding, Y.; Ning, X.; Zhang, Y.; Pacheco-Torgal, F.; Aguiar, J. Fibres for enhancing of the bond capacity between GFRP rebar and concrete. Constr. Build. Mater. 2014, 51, 303–312. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.-Y.; Zhang, P.; Li, Q.-F.; Hu, S.-W.; Ling, Y.-F. Durability Assessment of PVA Fiber-Reinforced Cementitious Composite Containing Nano-SiO2 Using Adaptive Neuro-Fuzzy Inference System. Crystals 2020, 10, 347. [Google Scholar] [CrossRef]
- Behnood, A.; Van Tittelboom, K.; De Belie, N. Methods for measuring pH in concrete: A review. Constr. Build. Mater. 2016, 105, 176–188. [Google Scholar] [CrossRef]
- Almusallam, A.A.; Al-Gahtani, A.S.; Aziz, A.R. Rasheeduzzafar Effect of reinforcement corrosion on bond strength. Constr. Build. Mater. 1996, 10, 123–129. [Google Scholar] [CrossRef]
- Zhang, R.; Castel, A.; Francois, R. Concrete cover cracking with reinforcement corrosion of RC beam during chloride-induced corrosion process. Cem. Concr. Res. 2010, 40, 415–425. [Google Scholar] [CrossRef]
- Rivera-Corral, J.; Fajardo, G.; Arliguie, G.; Orozco-Cruz, R.; Deby, F.; Valdez, P. Corrosion behavior of steel reinforcement bars embedded in concrete exposed to chlorides: Effect of surface finish. Constr. Build. Mater. 2017, 147, 815–826. [Google Scholar] [CrossRef]
- Jia, D.; Guo, Q.; Mao, J.; Lv, J.; Yang, Z. Durability of glass fibre-reinforced polymer (GFRP) bars embedded in concrete under various environments. I: Experiments and analysis. Compos. Struct. 2020, 234, 111687. [Google Scholar] [CrossRef]
- Perna, I. Microscopic study of the concrete/geopolymer coating interface. Ceram. Silik. 2019, 64, 68–74. [Google Scholar] [CrossRef]
- Granju, J.-L.; Balouch, S.U. Corrosion of steel fibre reinforced concrete from the cracks. Cem. Concr. Res. 2005, 35, 572–577. [Google Scholar] [CrossRef]
- Fu, C.; Zhou, K.; Ling, Y.; Jin, X.; Fang, D.; Zhou, J. Chloride transport behavior in bending-shear section of reinforced concrete beam under combined effect of load and environment. Constr. Build. Mater. 2020, 257, 119533. [Google Scholar] [CrossRef]
- Murad, Y.; Tarawneh, A.; Arar, F.; Al-Zu’bi, A.; Al-Ghwairi, A.; Al-Jaafreh, A.; Tarawneh, M. Flexural strength prediction for concrete beams reinforced with FRP bars using gene expression programming. Structures 2021, 33, 3163–3172. [Google Scholar] [CrossRef]
- Balouch, S.; Forth, J.; Granju, J.-L. Surface corrosion of steel fibre reinforced concrete. Cem. Concr. Res. 2010, 40, 410–414. [Google Scholar] [CrossRef]
- Nkurunziza, G.; Benmokrane, B.; Debaiky, A.S.; Masmoudi, R. Effect of sustained load environment on long-term tensile properties of glass fiber-reinforcing polymer reinforcing bars. ACI Mater. J. 2005, 102, 615–621. [Google Scholar]
- Shepherd, D.A.; Kotan, E.; Dehn, F. Plastic concrete for cut-off walls: A review. Constr. Build. Mater. 2020, 255, 119248. [Google Scholar] [CrossRef]
- Stefanoni, M.; Angst, U.; Elsener, B. Corrosion rate of carbon steel in carbonated concrete—A critical review. Cem. Concr. Res. 2018, 103, 35–48. [Google Scholar] [CrossRef]
- Chen, Y.; Davalos, J.F.; Ray, I. Durability Prediction for GFRP Reinforcing Bars Using Short-Term Data of Accelerated Aging Tests. J. Compos. Constr. 2006, 10, 279–286. [Google Scholar] [CrossRef]
- Dai, J.-G.; Yokota, H.; Iwanami, M.; Kato, E. Experimental Investigation of the Influence of Moisture on the Bond Behavior of FRP to Concrete Interfaces. J. Compos. Constr. 2010, 14, 834–844. [Google Scholar] [CrossRef]
- Jiradilok, P.; Wang, Y.; Nagai, K.; Matsumoto, K. Development of discrete meso-scale bond model for corrosion damage at steel-concrete interface based on tests with/without concrete damage. Constr. Build. Mater. 2020, 236, 117615. [Google Scholar] [CrossRef]
- Benmokrane, B.; Tighiouart, B.; Chaallal, O. Bond strength and load distribution of composite GFRP reinforcing bars in concrete. ACI Mater. J. 1996, 93, 246–253. [Google Scholar]
- Suescún, L.; Sanchez, E.; Gómez, M.; Garcia-Arias, F.L.; NúñezZarantes, V.M. Producción de Plantasgenéticamentepuras de Uchuva; Editorial Kimpres Ltd.: Kennedy, Colombia, 2011. [Google Scholar]
- Pakravan, H.R.; Latifi, M.; Jamshidi, M. Hybrid short fiber reinforcement system in concrete: A review. Constr. Build. Mater. 2017, 142, 280–294. [Google Scholar] [CrossRef]
- Malvar, L.J. Tensile and bond properties of GFRP reinforcing bars. ACI Mater. J. 1995, 92, 276–285. [Google Scholar]
- Fan, X.; Guan, X.; Ma, J.; Ai, H. Kinetics and corrosion products of aqueous nitrate reduction by iron powder without reaction conditions control. J. Environ. Sci. 2009, 21, 1028–1035. [Google Scholar] [CrossRef]
- Kamal, A.S.M.; Boulfiza, M. Durability of GFRP Rebars in Simulated Concrete Solutions under Accelerated Aging Conditions. J. Compos. Constr. 2011, 15, 473–481. [Google Scholar] [CrossRef]
- Barneyback, R.; Diamond, S. Expression and analysis of pore fluids from hardened cement pastes and mortars. Cem. Concr. Res. 1981, 11, 279–285. [Google Scholar] [CrossRef]
- Stefanoni, M.; Angst, U.; Elsener, B. Local electrochemistry of reinforcement steel—Distribution of open circuit and pitting potentials on steels with different surface condition. Corros. Sci. 2015, 98, 610–618. [Google Scholar] [CrossRef]
- Gartner, E.; Hirao, H. A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete. Cem. Concr. Res. 2015, 78, 126–142. [Google Scholar] [CrossRef] [Green Version]
- Mangat, P.S.; Gurusamy, K. Permissible crack widths in steel fibre reinforced marine concrete. Mater. Struct. 1987, 20, 338–347. [Google Scholar] [CrossRef]
- Nemegeer, D.; Vanbrabant, J.; Stang, H. Brite Euram program on steel fibre concrete subtask: DurabilityCorrosion resistance of cracked fibre reinforced concrete. In International RILEM Workshop on Test and Design Methods for Steelfibre Reinforced Concrete; RILEM Publications SARL: Paris, France, 2003; pp. 47–66. [Google Scholar]
- Kim, D.J.; Wille, K.; Naaman, A.E.; El-Tawil, S. Strength Dependent Tensile Behavior of Strain Hardening Fiber Reinforced Concrete. RILEM Bookser. 2012, 2, 3–10. [Google Scholar] [CrossRef]
- Mihashi, H.; Ahmed, S.F.U.; Kobayakawa, A. Corrosion of Reinforcing Steel in Fiber Reinforced Cementitious Composites. J. Adv. Concr. Technol. 2011, 9, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Parra-Montesinos, G.J.; Reinhardt, H.W.; Naaman, A.E. High Performance Fiber Reinforced Cement Composites 6; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Angst, U.M.; Geiker, M.R.; Michel, A.; Gehlen, C.; Wong, H.; Isgor, O.B.; Elsener, B.; Hansson, C.M.; François, R.; Hornbostel, K.; et al. The steel—Concrete interface. Mater. Struct. 2017, 50, 143. [Google Scholar] [CrossRef]
- Liu, P.; Hu, Y.; Chen, Y.; Geng, B.; Xu, D. Investigation of novel embedded piezoelectric ultrasonic transducers on crack and corrosion monitoring of steel bar. Constr. Build. Mater. 2020, 235, 117495. [Google Scholar] [CrossRef]
- Farhan, N.A.; Sheikh, M.N.; Hadi, M.N. Experimental Investigation on the Effect of Corrosion on the Bond between Reinforcing Steel Bars and Fibre Reinforced Geopolymer Concrete. Structure 2018, 14, 251–261. [Google Scholar] [CrossRef]
- Harajli, M.H. Bond Stress—Slip Model for Steel Bars in Unconfined or Steel, FRC, or FRP Confined Concrete under Cyclic Loading. J. Struct. Eng. 2009, 135, 509–518. [Google Scholar] [CrossRef]
- Pyo, S.; Koh, T.; Tafesse, M.; Kim, H.-K. Chloride-induced corrosion of steel fiber near the surface of ultra-high performance concrete and its effect on flexural behavior with various thickness. Constr. Build. Mater. 2019, 224, 206–213. [Google Scholar] [CrossRef]
- Hou, L.; Li, Y.; Sun, J.; Zhang, S.H.; Wei, H.; Wei, Y. Enhancement corrosion resistance of Mg Al layered double hydroxides films by anion-exchange mechanism on magnesium alloys. Appl. Surf. Sci. 2019, 487, 101–108. [Google Scholar] [CrossRef]
- Ramanathan, S.; Benzecry, V.; Suraneni, P.; Nanni, A. Condition assessment of concrete and glass fiber reinforced polymer (GFRP) rebar after 18 years of service life. Case Stud. Constr. Mater. 2021, 14, e00494. [Google Scholar] [CrossRef]
- Maalej, M.; Chhoa, C.; Quek, S.T. Effect of cracking, corrosion and repair on the frequency response of RC beams. Constr. Build. Mater. 2010, 24, 719–731. [Google Scholar] [CrossRef]
- El Refai, A.; Ammar, M.-A.; Masmoudi, R. Bond Performance of Basalt Fiber-Reinforced Polymer Bars to Concrete. J. Compos. Constr. 2015, 19, 04014050. [Google Scholar] [CrossRef]
- Arya, C.; Ofori-Darko, F. Influence of crack frequency on reinforcement corrosion in concrete. Cem. Concr. Res. 1996, 26, 345–353. [Google Scholar] [CrossRef]
- Berrocal, C.G.; Löfgren, I.; Lundgren, K. The effect of fibres on steel bar corrosion and flexural behaviour of corroded RC beams. Eng. Struct. 2018, 163, 409–425. [Google Scholar] [CrossRef] [Green Version]
- Morcous, G.; Cho, Y.; El-Safty, A.; Chen, G. Structural behavior of FRP sandwich panels for bridge decks. KSCE J. Civ. Eng. 2010, 14, 879–888. [Google Scholar] [CrossRef]
- Kim, H.-Y.; Park, Y.-H.; You, Y.-J.; Moon, C.-K. Durability of GFRP composite exposed to various environmental conditions. KSCE J. Civ. Eng. 2006, 10, 291–295. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, J.; Younas, H.; Leung, C.K. Experimental and numerical investigation on bond between steel rebar and high-strength Strain-Hardening Cementitious Composite (SHCC) under direct tension. Cem. Concr. Compos. 2020, 112, 103666. [Google Scholar] [CrossRef]
W/C | Concrete Depth (mm) | Exposure Time | Details | Reference |
---|---|---|---|---|
0.46 | 1.6 | 5 years | 0.2 kg/m2 of NaCl applied once a week | Lankard et al. [106] |
0.75 | 6.4 | 325 days | At the coastal ambient temperature, combined exposure | Hanant et al. [107] |
0.60 | 3 | 12 months | Containing 35 g/L NaCl on a weekly basis | Granju et al. [108] |
0.40 | 2 | 130 days | Experiment with a 10% NaCl aqueous solution | Corinaldesi et al. [72] |
0.6 | 6.4 | 6 months | Flow device for specimens that are only half-submerged in seawater. | Rider et al. [109] |
0.44 | 3.2 | 67 days | CaCl2 salt solution that is 5% by weight in the fog chamber | Aitcin et al. [110] |
0.78 | 1 | 7 months | Containing 35 g/L NaCl on a weekly basis | Balounch et al. [111] |
Type of Fiber (Aspect Ratio-Content (% Volume)) | W/B | Exposure | Period | Pre-Cracking | Diameter/Cover Thickness | Phase Investigated | Effect | Authors |
---|---|---|---|---|---|---|---|---|
Glass (500-1.5) Steel (80-0.75) | Concrete 0.45 OPC | 3% NaCl sol. + drying under 20 °C and 60% RH with 3V DC voltage cyclic wetting | 52 weeks | No | 12/25 | Propagation | Positive | Mihashi et al. [111] |
Steel (zinc-coated) (60-1.5) | Concrete 0.55 OPC | 3 kg/m3 NaCl mixed-in + 12-hour wet–dry cycles | 6 months | No | 10/25 | Initiation | Positive | Someh and Saeki [129] |
Steel (65-0.5) | Concrete 0.65 OPC | Cyclic ponding with 3.5% NaCl sol. | Not provided | Fixed load Sustained/Dynamic | 14/25 | Initiation Propagation | Unclear | Nis et al. [86] |
Steel (50-4.5) | Mortar 0.45/0.55 OPC | Immersion in a solution of 3.5% NaCl with water | 7 months | No | 9.52/32.7 | Initiation Propagation | Unclear Positive | Grubb et al. [130] |
Glass fiber (1000-1.5) | Mortar 0.3/0.6 OPC | 2 days of cyclic wetting in 3.1% NaCl solution + 5 days of drying at 60% RH | Not provided | Fixed load sustained | 9/20 | Propagation | Positive | Haraishi et al. [131] |
Steel (57-1.0) | Concrete 0.65 OPC | 3 days of cyclic immersion in 10% NaCl + air drying at 55% RH for 4 days | 95 weeks | No | 19/25 | Initiation Propagation | None | Matsumoto et al. [37] |
Steel (55-1.0) Glass (90-0.5) Polypropylene (45-0.75) | Concrete 0.44 OPC | 16.5% NaCl sol for cyclic ponding for 2 weeks, then air drying for 2 more weeks | 660 days | No | Not provided | Initiation Propagation | Unclear None | Kim et al. [132] |
Carbon (330-0.35) | Concrete 0.5 Admixtures | Immersion in 0.5 N NaCl sol. | 25 weeks | No | 9.52/34.2 | Initiation Propagation | Unclear Negative | Hou and Chung [133] |
Glass fiber (530-0.1/0.3) | Concrete 0.55 OPC | 3 days of cyclic immersion in 3.5% NaCl + air drying at 55% RH for 4 days | 56 weeks | Fixed load Sustained | 10/25 | Initiation Propagation | Positive | Sappakittiparkorn et al. [134] |
Steel (80-1.0) PVA (300-1.5) | Concrete 0.45 OPC + FA | 3.5 days of cyclic wetting in a % NaCl sol. + 8V DC drying | 141 days | No | 16/52 | Propagation | Positive | Maalej et al. [135] |
Polyethylene (500-1.5) Basalt fiber (80-1.5) | Mortar 0.45 OPC + SF | % NaCl sol. + drying at 20 °C and 60% RH with 3V DC voltage cyclic wetting | 60 weeks | Yes | 13/20 | Propagation | Positive | Ahmed et al. [136] |
Nondestructive Methods | Principles | Merits | Demerits | Corrosion Evaluation | Specific Tools |
---|---|---|---|---|---|
Resistivity method [47] | RC resistance which current can simply switch connecting areas of anode and concrete cathode. | A simple, fast, compact, and cost-effective approach that can be used for regular inspection is available. | “Short circuit” and incorrect estimations might be caused by reinforcement in the test area. | Resistivity (Ω cm) | Current and potential electrode, volt units or resistance and insulation cable (working electrode) |
Acoustic emission (AE) [96] | Acoustic emission can be characterized as a transient elastic wave created by the rapid release of energy inside a material. | It can recognize harmful defects that are hard to access with conventional nondestructive testing methods. | It might be slower than other nondestructive testing methods. | AE parameter | Transducer, preamplifier, filter, amplifier, and storage equipment |
Polarization resistance [105] | The estimation of the linear polarization resistance of steel in concrete is regularly used to assess the kinetics of steel dissolution inside a proven corrosion area. | Shorter time required for estimation and causes very little disturbances that do not interfere with the existing electrochemical procedures. | It requires some investment to get a total reaction because of electrical limit through the steel and concrete. | Corrosion current (Icorr) (A/cm2) | Associating cable, security ring, counter-electrode (working electrode), and reference electrode |
Infrared thermography (IRT) [133] | IR radiation emitted by concrete is converted into an electrical signal and used to create temperature maps on the surface of the ground. | Easy explanation of results without radiation, quick setup, portable and helpful method. | Corrosion damage is not quantifiable in any way. | Radiation power (E) | Multispectrum camera |
Ultrasonic pulse velocity (UPV) [134] | When the pulse is introduced into the concrete by a transducer, it is subjected to multiple reflections at the limits of the different material stages inside the concrete. | Concrete testing equipment utilizing ultrasonic pulses gives faster and progressively exact results. | Fragment of ability and operator integrity is required. Subsequently, there is a requirement for trained and certified NDT personnel. | Pulse velocity (V) | Transducers (transmitter and receiver), amplifier, and oscillator |
Galvanostatic pulse method (GPV) [138] | GPM corrosion evaluation depends on the existing measurement wanted to change the potential dissimilarity between the reinforcement and a standard reference electrode. The current is a result of electrons from the anodic and cathode sides in concrete. | Simple to learn, requiring a medium–low level of experience for equipment configuration and information collection. | Unstable estimations when resistance to concrete cover is high. | Potential resistance (Rct) (kΩ·cm2) | Associating cable, security ring, counter-electrode (working electrode), and reference electrode |
Open-circuit potential (OCP) monitoring [145] | The open-circuit voltage (OCV) refers to the entire electrochemical cell and the capacity of the open circuit to an electrode. This measure is intended to record the progress of the potential of the rest, e.g., when no current flow flows through the cell and a potential is applied to the electrode against a reference electrode or a potential contrast is applied to the cell. | The results are not equivalent contours, but a unique value that gives a sign of the state of the steel. | It requires a longer period of time and must be closed for a number of hours throughout the inspection. | Potential level (mV or V) | Potential electrode, voltmeter, and interfacing cable (working electrode) |
Fiber Bragg grating (FBG) [146] | With an increase in steel reinforcement cross-section comes an increase in fiber stress, which is measured by FBG wavelength shifts. | Displays a linear response when measuring voltage, pressure, and temperature. | It is rather expensive to build and maintain. | Bragg wavelength (λB) | Bragg meter, Fiber optic sensor, and computer |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naidu Gopu, G.; Joseph, S.A. Corrosion Behavior of Fiber-Reinforced Concrete—A Review. Fibers 2022, 10, 38. https://doi.org/10.3390/fib10050038
Naidu Gopu G, Joseph SA. Corrosion Behavior of Fiber-Reinforced Concrete—A Review. Fibers. 2022; 10(5):38. https://doi.org/10.3390/fib10050038
Chicago/Turabian StyleNaidu Gopu, Ganesh, and Sofi Androse Joseph. 2022. "Corrosion Behavior of Fiber-Reinforced Concrete—A Review" Fibers 10, no. 5: 38. https://doi.org/10.3390/fib10050038
APA StyleNaidu Gopu, G., & Joseph, S. A. (2022). Corrosion Behavior of Fiber-Reinforced Concrete—A Review. Fibers, 10(5), 38. https://doi.org/10.3390/fib10050038