Next Issue
Volume 10, August
Previous Issue
Volume 10, June
 
 

Fibers, Volume 10, Issue 7 (July 2022) – 6 articles

Cover Story (view full-size image): In this study, the application of a magnetic carbon composite for the effective removal of NSAIDs from biological fluids was reported. The composite was produced by recycling wasted handkerchiefs to provide cellulose to the reactive system and was then transformed into carbon via calcination at a high temperature. The morphological and structural features of the prepared “Fe3O4@-activated carbon” samples were investigated via thermal analysis, X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. Magnetic solid-state extraction was carried out to reveal the adsorption capabilities of the magnetic carbon composite; it was then combined with UHPLC–PDA for the determination and quantification of five NSAIDs. The adsorbent could be reused for up to 10 cycles without a decrease in performance. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
17 pages, 6016 KiB  
Article
Isolation and Properties of Cellulose Nanocrystals Fabricated by Ammonium Persulfate Oxidation from Sansevieria trifasciata Fibers
by Nafiis Lazuardi Indirasetyo and Kusmono
Fibers 2022, 10(7), 61; https://doi.org/10.3390/fib10070061 - 13 Jul 2022
Cited by 13 | Viewed by 3609
Abstract
Cellulose nanocrystals (CNCs) were successfully prepared from Sansevieria trifasciata fibers (STFs) via ammonium persulfate (APS) oxidation in this study. The influences of the APS concentration (1.1, 1.5, and 1.9 M) and oxidation temperature (60, 70, and 80 °C) on the characteristics of CNCs [...] Read more.
Cellulose nanocrystals (CNCs) were successfully prepared from Sansevieria trifasciata fibers (STFs) via ammonium persulfate (APS) oxidation in this study. The influences of the APS concentration (1.1, 1.5, and 1.9 M) and oxidation temperature (60, 70, and 80 °C) on the characteristics of CNCs were studied. The resulting CNCs were characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The TEM observations revealed that the rod-like CNCs possessed average length and diameter ranges of 96 to 211 nm and 5 to 13 nm, respectively, which led to an aspect ratio range of 16–19. The optimum conditions for maximum crystallinity were achieved at an oxidation temperature of 70 °C, a reaction time of 16 h, and an APS concentration of 1.5 M. All CNCs exhibited lower thermal stability compared to the STFs. The CNCs could be produced from the STFs through the APS oxidation process and showed potential as nanocomposite reinforcement materials. Full article
(This article belongs to the Topic Cellulose and Cellulose Derivatives)
Show Figures

Figure 1

14 pages, 2513 KiB  
Article
Tribological Analysis of Jute/Coir Polyester Composites Filled with Eggshell Powder (ESP) or Nanoclay (NC) Using Grey Rational Method
by Ganesan Karuppiah, Kailasanathan Chidambara Kuttalam, Nadir Ayrilmis, Rajini Nagarajan, M. P. Indira Devi, Sivasubramanian Palanisamy and Carlo Santulli
Fibers 2022, 10(7), 60; https://doi.org/10.3390/fib10070060 - 12 Jul 2022
Cited by 12 | Viewed by 2297
Abstract
The wear performance of jute/coir unsaturated polyester composites, filled with eggshell powder (ESP) and nanoclay (NC), were examined, concentrating on two measured parameters, coefficient of friction (COF) and wear rate (WR). To assess the possibilities of this material, a Taguchi study, based on [...] Read more.
The wear performance of jute/coir unsaturated polyester composites, filled with eggshell powder (ESP) and nanoclay (NC), were examined, concentrating on two measured parameters, coefficient of friction (COF) and wear rate (WR). To assess the possibilities of this material, a Taguchi study, based on grey relational analysis (GRA), was carried out, based on three testing parameters of the wear performance, load (10, 20, and 30 N), speed (100, 150, and 200 rpm), and sliding distance (30, 40, and 50 m). The material showed promising characteristics especially at high load, low speed, and high sliding distance. When comparing the respective influence of the three different parameters, the speed proved to be the most critical, this suggested the possible application of the biocomposite only for very low values of it. On the other hand, it was also elucidated that the presence and interfacial adhesion of the two fillers considerably hindered the formation of ploughing during wear test, despite the fact that degradation might be continuous and critical as far as loading progresses. Full article
Show Figures

Figure 1

15 pages, 6194 KiB  
Article
Interlaminar Shear Properties of Bamboo Composite for Structural Applications
by Ali Rajabipour, Alireza Javadian, Milad Bazli and Mark Masia
Fibers 2022, 10(7), 59; https://doi.org/10.3390/fib10070059 - 12 Jul 2022
Cited by 5 | Viewed by 2344
Abstract
Interlaminar shear strength in bamboo composite (BC) is mainly provided by epoxy resin as the matrix in BC. This may greatly change due to humidity. This study aims at evaluating the shear strength of BC by testing and developing probabilistic relationships. The interlaminar [...] Read more.
Interlaminar shear strength in bamboo composite (BC) is mainly provided by epoxy resin as the matrix in BC. This may greatly change due to humidity. This study aims at evaluating the shear strength of BC by testing and developing probabilistic relationships. The interlaminar shear strength of bamboo composite (BC) in different moisture conditions was tested according to ASTM D2344. The results show that the maximum shear stress does not generally occur at the centroid of samples, which could be associated with imperfections in BC layers. An extreme value theory-based model is suggested to evaluate the probability of shear failure in BC samples. The shear capacity decreased from 20.4 MPa to 14 MPa as the humidity increased from 60% to 90%. A summary of findings is as follows: It was found that under transient moisture conditions, local failure is likely to happen before the first significant crack occurs. Local failure is suggested to be considered in the design for serviceability. Stress drop caused by the local failure could exceed 10% of total shear strength and, therefore, should be regarded as a serviceability design. The probabilistic model developed in this study could be used for developing structural design safety factors. Full article
(This article belongs to the Collection Feature Papers in Fibers)
Show Figures

Figure 1

15 pages, 8391 KiB  
Article
Simple Synthesis of Fe3O4@-Activated Carbon from Wastepaper for Dispersive Magnetic Solid-Phase Extraction of Non-Steroidal Anti-Inflammatory Drugs and Their UHPLC–PDA Determination in Human Plasma
by Vincenzo Ferrone, Pantaleone Bruni, Valentino Canale, Leonardo Sbrascini, Francesco Nobili, Giuseppe Carlucci and Stefania Ferrari
Fibers 2022, 10(7), 58; https://doi.org/10.3390/fib10070058 - 1 Jul 2022
Cited by 5 | Viewed by 3647
Abstract
In the present society, the recycling and reuse of valuable substances are of utmost importance for economic and environmental purposes. At the same time, there is a pressing need to develop new methods to protect the ecosystem from many human activities, including those [...] Read more.
In the present society, the recycling and reuse of valuable substances are of utmost importance for economic and environmental purposes. At the same time, there is a pressing need to develop new methods to protect the ecosystem from many human activities, including those that have contributed to an ever-increasing presence of pharmaceutical pollutants. In this study, a straightforward approach that applies a magnetic carbon composite for the effective removal of NSAIDs from biological fluids is reported. The composite was produced by recycling wasted handkerchiefs, to provide cellulose to the reactive system and then transformed into carbon via calcination at high temperature. The morphological and structural features of the prepared “Fe3O4@-activated carbon” samples were investigated via thermal analysis, X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. Magnetic solid-state extraction was carried out to reveal the adsorption capabilities of the magnetic carbon composite and then combined with UHPLC–PDA for the determination and quantification of five NSAIDs (furprofen, indoprofen, ketoprofen, flurbiprofen, and indomethacin). The method developed herein proved to be fast and accurate. The adsorbent could be reused for up to 10 cycles, without any decrease in performance; thus, it contributes to an intelligent and sustainable economic strategy projected toward minimal waste generation. Full article
(This article belongs to the Special Issue Carbon Fibers from Sustainable Precursors)
Show Figures

Figure 1

19 pages, 6663 KiB  
Article
Influence of the Strengthening Configuration on the Shear Capacity of Reinforced Concrete Beams Strengthened with SRG (Steel-Reinforced Grout) Composites
by Luciano Ombres and Salvatore Verre
Fibers 2022, 10(7), 57; https://doi.org/10.3390/fib10070057 - 29 Jun 2022
Cited by 3 | Viewed by 2138
Abstract
In this paper, the influence of the strengthening configuration on the structural response of U-wrapped SRG (Steel-Reinforced Grout) shear-strengthened reinforced concrete beams was analyzed both experimentally and theoretically. The parameters varied were the ratio sf/wf, sf being [...] Read more.
In this paper, the influence of the strengthening configuration on the structural response of U-wrapped SRG (Steel-Reinforced Grout) shear-strengthened reinforced concrete beams was analyzed both experimentally and theoretically. The parameters varied were the ratio sf/wf, sf being the distance between two consecutive U-shaped strips and wf the width of the strips, and the number of steel fabric layers (one and two). Two series of real-scale beams, eleven beams in total with one un-strengthened and ten strengthened, were tested up to failure (the results obtained in the first series of tests were reported in a previously published paper). The obtained results highlighted that the debonding phenomena, which occurred for all the examined strengthening configurations, strongly affected the shear capacity of strengthened beams. An analytical model found based on the “effective strain” of the SRG strips was developed to predict the shear capacity of SRG shear-strengthened reinforced concrete beams. Two analytical relationships were proposed to evaluate the “effective strain” of the SRG strips: The first one was based on a statistical analysis of results obtained by tests on FRCM (Fabric-Reinforced Cementitious Mortar) and SRG shear-strengthened reinforced concrete beams, while the second was developed through the results of single lap direct shear tests performed on SRG-to-concrete joints. The effectiveness of the proposed analytical methods was evaluated through the comparison of their predictions and available experimental results. Full article
(This article belongs to the Topic Fiber-Reinforced Cementitious Composites)
Show Figures

Figure 1

16 pages, 4390 KiB  
Article
Experimental Investigation of Effect of Fiber Length on Mechanical, Wear, and Morphological Behavior of Silane-Treated Pineapple Leaf Fiber Reinforced Polymer Composites
by Praveena Bindiganavile Anand, Avinash Lakshmikanthan, Manjunath Patel Gowdru Chandrashekarappa, Chithirai Pon Selvan, Danil Yurievich Pimenov and Khaled Giasin
Fibers 2022, 10(7), 56; https://doi.org/10.3390/fib10070056 - 29 Jun 2022
Cited by 45 | Viewed by 5796
Abstract
The development of the best properties in polyester composite from pineapple leaf fiber (PALF) as a reinforcing material is a subject of interest. The properties of PALF are reliant upon fiber length, wherein technical difficulties in production of long fibers and processing for [...] Read more.
The development of the best properties in polyester composite from pineapple leaf fiber (PALF) as a reinforcing material is a subject of interest. The properties of PALF are reliant upon fiber length, wherein technical difficulties in production of long fibers and processing for better characteristics in polyester composites possess inherent challenges. The PALFs are subjected to silane treatment for altering fiber properties. This research attempts to analyze the impact of silane-treated PALF with varying fiber lengths (5, 10, 15, 20, and 25 mm) on the performance of natural fiber composites (NFC) properties. Open mold and hand lay-up techniques were employed to develop the polyester composites. The prepared PALF-based polyester composites were examined for different properties (impact, flexural, tensile strength, and wear rate). Coefficient of friction and wear studies are performed on the prepared composites subjected to different loads (10, 20, and 30 N) via a pin on disc test rig. Polymer composite fracture surfaces were analyzed to observe the interfacial bonding between fibers and matrix via scanning electron microscopy (SEM). SEM results showed that the application of silane treatment resulted in better surface topography (fiber length of 5–10 mm showed smooth surface resulted in crack proliferation possessing low fracture toughness of 15–32 MPa; whereas a 15–20 mm fiber length resulted in better fiber–matrix bonding, improving the fracture toughness from 42–55 MPa) as a result of change in chemical structure in PALF. The 20 mm length of PALF resulted in better properties (flexural, tensile, impact, and wear resistance) which are attributed to fiber–matrix interfacial bonding. These properties ensure the developed polymer composites can be applied to walls, building insulation, and artificial ceilings. Full article
(This article belongs to the Collection Feature Papers in Fibers)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop