Numerical Simulation of Convective Diffusion of Point Particles in a Laminar Flow Past a Row of Profiled Hollow Fibers
Abstract
:1. Introduction
2. Governing Equations and Simulation Methods
3. Simulation Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van der Waal, M.J.; Racz, L.G. Mass transfer in corrugated-plate membrane modules. I. Hyperfiltration experiments. J. Membr. Sci. 1989, 40, 243–260. [Google Scholar] [CrossRef]
- Nijdam, W.; de Jong, J.; van Rijn, C.J.M.; Visser, T.; Versteeg, L.; Kapantaidakis, G.; Koops, G.-H.; Wessling, M. High performance micro-engineered hollow fiber membranes by smart spinneret design. J. Membr. Sci. 2005, 256, 209–215. [Google Scholar] [CrossRef]
- Heinz, O.; Aghajani, M.; Greenberg, A.R.; Ding, Y. Surface-patterning of polymeric membranes: Fabrication and performance. Curr. Opin. Chem. Eng. 2018, 20, 1–12. [Google Scholar] [CrossRef]
- Culfaz, P.Z.; Wessling, M.; Lammertink, R.G.H. Hollow Fiber Ultrafiltration Membranes With Microstructured Inner Skin. J. Membr. Sci. 2011, 369, 221–227. [Google Scholar] [CrossRef]
- García-Fernández, L.; García-Payo, C.; Khayet, M. Hollow fiber membranes with different external corrugated surfaces for desalination by membrane distillation. Appl. Surf. Sci. 2017, 416, 932–946. [Google Scholar] [CrossRef]
- Chwojnowski, A.; Wojciechowski, C.; Dudzinski, K.; Lukowska, E. Polysulphone and Polyethersulphone Hollow Fiber Membranes with Developed Inner Surface as Material for Bio-medical Applications. Biocybern. Biomed. Eng. 2009, 29, 47–59. Available online: http://www.pup.prudnik.ibib.pl/images/ibib/grupy/Wydawnictwa-Tomy/dokumenty/2009/BBE_29_3_047_FT.pdf (accessed on 1 September 2022).
- Culfaz, P.Z.; Rolevink, E.; van Rijn, C.J.M.; Lammertink, R.G.H.; Wessling, M. Microstructured Hollow Fibers for Ultrafiltration. J. Membr. Sci. 2010, 347, 32–41. [Google Scholar] [CrossRef]
- Brewers, J.M.; Goren, S.L. Evaluation of metal oxide whiskers grown on screens for use as aerosol filtration medium. Aerosol. Sci. Techn. 1984, 3, 411–429. [Google Scholar] [CrossRef]
- Kirsh, V.A. Aerosol filters made of porous fibers. Colloid. J. 1996, 58, 786–790. [Google Scholar]
- Kirsh, V.A. Deposition of aerosol nanoparticles in filters composed of fibers with porous shells. Colloid J. 2007, 69, 615–619. [Google Scholar] [CrossRef]
- Kirsch, A.A.; Stechkina, I.B. The theory of aerosol filtration with fibrous filters. In Fundamentals of Aerosol Science; Shaw, D.T., Ed.; John Wiley & Sons: New York, NY, USA, 1978; Chapter 4, pp. 165–256; ISBN 0471029491. [Google Scholar]
- Slezkin, N.A. Dynamics of Viscous Incompressible Fluids; Gostekhizdat: Moscow, Russia, 1955. (In Russian) [Google Scholar]
- Happel, J. Viscous flow relative to arrays of cylinders. J. Amer. Inst. Chem. Eng. 1959, 5, 174–177. [Google Scholar] [CrossRef]
- Kuwabara, S. The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds number. J. Phys. Soc. Jpn. 1959, 14, 527–532. [Google Scholar] [CrossRef]
- Kvashnin, A.G. Cell model of suspension of spherical particles. Fluid Dyn. 1979, 14, 598–602. [Google Scholar] [CrossRef]
- Golovin, A.M.; Lopatin, V.A. The flow of a viscous fluid through a doubly periodic rows of cylinders (English transl.). J. Appl. Mech. Tech. Phys. 1968, 9, 198–201. [Google Scholar] [CrossRef]
- Kirsh, V.A. Deposition of aerosol nanoparticles in fibrous filters. Colloid J. 2003, 65, 726–732. [Google Scholar] [CrossRef]
- Tamada, K.; Fujikawa, H. The steady two-dimensional flow of viscous fluid at low Re numbers passing through an infinite row of equal parallel circular cylinders. Quart. J. Mech. Appl. Math. 1957, 10, 425–432. [Google Scholar] [CrossRef]
- Miyagi, T. Viscous flow at low Reynolds numbers past an infinite row of equal circular cylinders. J. Phys. Soc. Jpn. 1958, 13, 493–496. [Google Scholar] [CrossRef]
- Sangani, A.; Acrivos, A. Slow flow past periodic arrays of cylinders with application to heat transfer. Int. J. Multiph. Flow 1982, 8, 193–206. [Google Scholar] [CrossRef]
- Wang, W.; Sangani, A.S. Nusselt number for flow perpendicular to arrays of cylinders in the limit of small Reynolds and large Peclet numbers. Phys. Fluids 1997, 9, 1529–1539. [Google Scholar] [CrossRef]
- Wang, C.Y. Stokes flow through a rectangular array of circular cylinders. Fluid Dyn. Res. 2001, 29, 65–80. [Google Scholar] [CrossRef]
- Kirsch, V.A.; Roldugin, V.I.; Bildyukevich, A.V.; Volkov, V.V. Simulation of convective-diffusional processes in hollow fiber membrane contactors. Sep. Purif. Technol. 2016, 167, 63–69. [Google Scholar] [CrossRef]
- Kirsch, V.A.; Bildyukevich, A.V.; Bazhenov, S.D. Simulation of convection-diffusion transport in a laminar flow past a row of parallel absorbing fibers. Fibers 2018, 6, 90–100. [Google Scholar] [CrossRef] [Green Version]
- Kirsch, V.A.; Bazhenov, S.D. Numerical simulation of solute removal from a cross-flow past a row of parallel hollow-fiber membranes. Sep. Purif. Technol. 2020, 242, 116834. [Google Scholar] [CrossRef]
- Launder, B.E.; Massey, T.H. The Numerical Prediction of Viscous Flow and Heat Transfer in Tube Banks. ASME J. Heat Transfer. 1978, 100, 565–571. [Google Scholar] [CrossRef]
- Samarskii, A.A.; Vabishchevich, P.N. Computational Heat Transfer, Volume 2: The Finite Difference Methodology, 2nd ed.; John Wiley & Sons: Chichester, UK, 1995; ISBN 0471956600/9780471956600. [Google Scholar]
- Berkovskii, B.M.; Polevikov, V.K. Effect of the Prandtl number on the convection field and the heat transfer during natural convection (English translation). J. Eng. Phys. 1973, 24, 598–603. [Google Scholar] [CrossRef]
- Allen, D.N.; Southwell, R.V. Relaxation methods applied to determine the motion, in two dimensions of a viscous fluid past a fixed cylinder. Quart. J. Mech. Appl. Math. 1955, 8, 129–143. [Google Scholar] [CrossRef]
- Fletcher, C.A.J. Computational Techniques for Fluid Dynamics 2, Specific Techniques for Different Flow Categorie; Springer: Berlin/Heidelberg, Germany, 1991; ISBN 1434-8322. [Google Scholar] [CrossRef]
- Berkovskii, B.M.; Nogotov, E.F. Difference Methods for Investigating Heat Exchange Problems; Nauka i Tekhnika: Minsk, Belarus, 1976. (In Russian) [Google Scholar]
- Roos, H.-G.; Stynes, M.; Tobiska, L. Numerical Methods for Singularly Perturbed Differential Equations. In Convection-Diffusion and Flow Problems; Springer: Berlin/Heidelberg, Germany, 1996; ISBN 3-540-60718-8. [Google Scholar]
- Miller, J.J.H.; O’Riordan, E.; Shishkin, G.I. Fitted Numerical Methods for Singular Perturbation Problems, Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions, Revised Edition; World Scientific Publishing Company: Singapore, 2012; ISBN 9814390739. [Google Scholar] [CrossRef]
- Yu, Y.; Luo, X.; Zhang, H.Y.; Zhang, Q. The Solution of Backward Heat Conduction Problem with Piecewise Linear Heat Transfer Coefficient. Mathematics 2019, 7, 388–404. [Google Scholar] [CrossRef]
- Savović, S.; Drljača, B.; Djordjevich, A. A comparative study of two different finite difference methods for solving advection–diffusion reaction equation for modeling exponential traveling wave. Ric. Di Mat. 2022, 71, 245–252. [Google Scholar] [CrossRef]
- Ivanovic, M.; Svicevic, M.; Savovic, S. Numerical solution of Stefan problem with variable space grid method based on mixed finite element/finite difference approach. Int. J. Numer. Methods Heat Fluid Flow 2017, 27, 2682–2695. [Google Scholar] [CrossRef]
- Natanson, G.L. Diffusional precipitation of aerosols on a streamlined cylinder with a small capture coefficient (English translation, Dokl. Akad. Nauk SSSR). Proc. Acad. Sci. USSR Phys. Chem. Sect. 1957, 112, 21–25. Available online: http://mi.mathnet.ru/eng/dan21504 (accessed on 1 September 2022).
- Polyanin, A.D.; Kutepov, A.M.; Kazenin, D.A.; Vyazmin, A.V. Hydrodynamics, Mass and Heat Transfer in Chemical Engineering. Series: Topics in Chemical Engineering (Book 14), 1st ed.; CRC Press: Boca Raton, FL, USA, 2001; ISBN 0415272378. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirsch, V.A. Numerical Simulation of Convective Diffusion of Point Particles in a Laminar Flow Past a Row of Profiled Hollow Fibers. Fibers 2022, 10, 77. https://doi.org/10.3390/fib10090077
Kirsch VA. Numerical Simulation of Convective Diffusion of Point Particles in a Laminar Flow Past a Row of Profiled Hollow Fibers. Fibers. 2022; 10(9):77. https://doi.org/10.3390/fib10090077
Chicago/Turabian StyleKirsch, Vasily A. 2022. "Numerical Simulation of Convective Diffusion of Point Particles in a Laminar Flow Past a Row of Profiled Hollow Fibers" Fibers 10, no. 9: 77. https://doi.org/10.3390/fib10090077
APA StyleKirsch, V. A. (2022). Numerical Simulation of Convective Diffusion of Point Particles in a Laminar Flow Past a Row of Profiled Hollow Fibers. Fibers, 10(9), 77. https://doi.org/10.3390/fib10090077