Raman Spectra of Delignified Plant Fibers: Exploring the Impact of Xylan’s Presence on the Spectral Features of Cellulose
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Fiber Samples and Their Chemical Compositions
3.2. Raman Bands of Cellulose and Other Cell Wall Components
3.3. Cellulose/Xylan Mixture Samples
4. Application to Fibers
Comparing Band Intensities
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, J.S.; Rowell, J.S. Chemical Composition of Fibers. In Paper and Composites from Agro-Based Resources; Rowell, R.M., Young, R.A., Rowell, J.K., Eds.; CRC Press Inc.: Boca Raton, FL, USA, 1997; pp. 83–134. [Google Scholar]
- Albersheim, P.; Darvill, A.; Roberts, K.; Sederof, R.; Staehelin, A. Plant Cell Walls: From Chemistry to Biology, 1st ed.; Garland Science: New York, NY, USA, 2010. [Google Scholar]
- Terrett, O.M.; Dupree, P. Covalent interactions between lignin and hemicelluloses in plant secondary cell walls. Curr. Opin. Biotechnol. 2019, 56, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.B.; Cosgrove, D.J. Xyloglucan and its interactions with other components of the growing cell wall. Plant Cell Physiol. 2015, 56, 180–194. [Google Scholar] [CrossRef] [PubMed]
- Berglund, J.; Mikkelsen, D.; Flanagan, B.M.; Dhital, S.; Gaunitz, S.; Henriksson, G.; Lindström, M.E.; Yakubov, G.E.; Gidley, M.J.; Francisco Vilaplana, F. Wood hemicelluloses exert distinct biomechanical contributions to cellulose fibrillar networks. Nat. Commun. 2020, 11, 4692. [Google Scholar] [CrossRef] [PubMed]
- Salmén, L. On the organization of hemicelluloses in the wood cell wall. Cellulose 2022, 29, 1349–1355. [Google Scholar] [CrossRef]
- Terrett, O.M.; Lyczakowski, J.J.; Yu, L.; Iuga, D.; Franks, W.T.; Brown, S.P.; Dupree, R.; Dupree, P. Molecular architecture of softwood revealed by solid-state NMR. Nat. Commun. 2019, 10, 4978. [Google Scholar] [CrossRef] [PubMed]
- Pękala, P.; Szymańska-Chargot, M.; Zdunek, A. Interactions between non-cellulosic plant cell wall polysaccharides and cellulose emerging from adsorption studies. Cellulose 2023, 30, 9221–9239. [Google Scholar] [CrossRef]
- Spönla, E.; Rahikainen, J.; Potthast, A.; Grönqvist, S. High consistency enzymatic pretreatment of eucalyptus and softwood kraft fibres for regenerated fibre products. Cellulose 2023, 30, 4609–4622. [Google Scholar] [CrossRef]
- Wollboldt, R.P.; Zuckersta¨tter, G.; Weber, H.K.; Larsson, P.T.; Sixta, H. Accessibility, reactivity, and supramolecular structure of E. globulus pulps with reduced xylan content. Wood Sci. Technol. 2010, 44, 533–546. [Google Scholar] [CrossRef]
- Agarwal, U.P. 1064 nm FT-Raman spectroscopy for investigations of plant cell walls and other biomass materials. Front. Plant Sci. 2014, 5, 490. [Google Scholar] [CrossRef]
- Lupoi, J.S.; Singh, S.; Simmons, B.A.; Henry, R.J. Assessment of Lignocellulosic Biomass Using Analytical Spectroscopy: An Evolution to High-Throughput Techniques. BioEnergy Res. 2014, 7, 1–23. [Google Scholar] [CrossRef]
- Gierlinger, N. New Insights into Plant Cell Walls by Vibrational Microspectroscopy. Appl. Spectrosc. Rev. 2018, 53, 517–551. [Google Scholar] [CrossRef]
- Agarwal, U.P. Analysis of Cellulose and Lignocellulose Materials by Raman Spectroscopy: A Review of the Current Status. Molecules 2019, 24, 1659. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, U.P.; Ralph, S.A. FT-Raman Spectroscopy of Wood: Identifying contributions of lignin and carbohydrate polymers in the spectrum of black spruce (Picea mariana). Appl. Spectrosc. 1997, 51, 1648–1655. [Google Scholar] [CrossRef]
- Himmelsbach, D.S.; Akin, D.E. Near-Infrared Fourier-Transform Raman Spectroscopy of Flax (Linum usitatissimum L.) Stems. J. Agric. Food Chem. 1998, 46, 991–998. [Google Scholar] [CrossRef]
- Agarwal, U.P.; Reiner, R.S.; Ralph, S.A. Estimation of cellulose crystallinity of lignocelluloses using near-IR FT-Raman spectroscopy and comparison of the Raman and Segal-WAXS methods. J. Agric. Food Chem. 2013, 61, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.; Chen, S.; Liu, Q. Review of fluorescence suppression techniques. Appl. Spectro. Rev. 2015, 50, 387–406. [Google Scholar] [CrossRef]
- Agarwal, U.P. Raman imaging to investigate ultrastructure and composition of plant cell walls: Distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta 2006, 224, 1141–1153. [Google Scholar] [CrossRef]
- Kanbayashi, T.; Kataoka, Y.; Ishikawa, A.; Matsunaga, M.; Kobayashi, M.; Kiguchi, M. Depth profiling of photodegraded wood surfaces by confocal Raman microscopy. J. Wood Sci. 2018, 64, 169. [Google Scholar] [CrossRef]
- Saletnik, A.; Saletnik, B.; Puchalski, C. Overview of popular techniques of Raman spectroscopy and their potential in the study of plant tissues. Molecules 2021, 26, 1537. [Google Scholar] [CrossRef]
- Agarwal, U.P.; McSweeny, J.D.; Ralph, S.A. FT–Raman Investigation of Milled-wood Lignins: Softwood, hardwood, and chemically modified black spruce lignins. J. Wood Chem. Technol. 2011, 17, 324–344. [Google Scholar] [CrossRef]
- Schenzel, K.; Fischer, S.; Brendler, E. New method for determining the degree of cellulose I crystallinity by means of FT Raman spectroscopy. Cellulose 2005, 12, 223–231. [Google Scholar] [CrossRef]
- Agarwal, U.P.; Ralph, S.A.; Reiner, R.S.; Baez, C. New cellulose crystallinity estimation method that differentiates between organized and crystalline phases. Carbohydr. Poly. 2018, 190, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Browning, B.L. Methods of Wood Chemistry; Wiley-Interscience: New York, NY, USA, 1967; Volume II. [Google Scholar]
- TAPPI Test Method. In Acid Insoluble Lignin in Wood and Pulp; Official Test Method T-222 (Om); TAPPI: Atlanta, GA, USA, 1983.
- Davis, M.W. A rapid method for compositional carbohydrate analysis of lignocellulosics by high pH anion-exchange chromatography with pulse amperometric detection (HPAE/PAD). J. Wood Chem. Technol. 1998, 18, 235–252. [Google Scholar] [CrossRef]
- Pelletier, M.J. Quantitative Analysis Using Raman Spectrometry. Appl. Spectrosc. 2003, 57, 20A–42A. [Google Scholar] [CrossRef]
- Ebringerová, A.; Heinze, T. Xylan and Xylan Derivatives–Biopolymers with Valuable Properties. Macromol. Rapid Commun. 2000, 21, 542–556. [Google Scholar] [CrossRef]
Fiber Samples | Glucan, % | Xylan, % | Mannan, % | Klason Lignin,% | Glucan/Xylan Ratio d |
---|---|---|---|---|---|
Cotton MCC | 92.2 | 0.1 | ND c | 3.1 | 99.9:0.1 |
Flax, delignified a | 78.8 | 1.34 | 5.02 | 1.9 | 98.3:1.7 |
HWBKP b | 73.8 | 14.8 | ND | 4.2 | 83.3:16.7 |
Kenaf core, delignified | 56.9 | 19.3 | ND | 2.1 | 74.7:25.3 |
Corn stalk, delignified | 53.7 | 24.4 | 0.5 | 2.13 | 68.8:31.2 |
Willow, delignified | 47.9 | 14.4 | 1.2 | 4.3 | 76.9:23.1 |
Aspen, delignified | 44.6 | 16.7 | 1.4 | 3.3 | 72.8:27.2 |
Kenaf bast, delignified | 44.6 | 17.5 | 1.4 | 3.3 | 71.8:28.2 |
Cellulose (MCC) | Xylan a | Glucomannan a | Lignin b | Comments |
---|---|---|---|---|
93 (m) c | ― | ― | ― | Detected only in crystalline cellulose |
172 (vw) | ― | ― | ― | Detected only in crystalline cellulose |
331 (w) | ― | ― | ― | ― |
345 (w) | ― | 346 (w) | ― | ― |
380 (m) | 377 (w) | ― | 384 (w) | Cellulose contribution is predominant |
437 (m) | ― | ― | ― | ― |
459 (m) | ― | ― | 463 (vw) | ― |
494 (w) | 494 (s) | 492 (w) | 491 (vw) | Xylan contribution is predominant |
520 (m) | ― | ― | 522 (sh) | 522 (sh) is only in syringyl lignins |
567 (vw) | ― | ― | ― | ― |
614 (vw) | 614 (m) | ― | ― | ― |
898 (m) | 900 (m) | 897 (w) | 895 (w) | Contributions mostly made by MCC and xylan |
911 (sh) | ― | ― | ― | ― |
968 (w) | ― | ― | 969 (vw) | ― |
998 (w) | ― | ― | ― | ― |
1096 (s) | 1091 (s) | 1089 (m) | 1090 (w) | Order of contribution: MCC > xylan > glucomannan >> lignin |
1121 (s) | 1126 (s) | 1121 (m) | 1134 (m) | Order of contribution: MCC > xylan > glucomannan > lignin |
1152 (m) | ― | ― | ― | ― |
1294 (m) | ― | ― | 1297 (sh) | Both MCC and lignin contribute |
1339 (m) | ― | ― | 1333 (m) | Both MCC and lignin contribute |
1380 (m) | 1378 (m) | 1374 (m) | 1363 (sh) | Order of contribution: MCC > xylan = glucomannan |
1409 (sh) | 1413 (m) | ― | Both MCC and xylan contribute | |
1460 (sh) | ― | 1463 (m) | 1454 (m) | All components but xylan contribute |
1480 (m) | 1469 (m) | ― | ― | Both MCC and xylan contribute |
Sample ID | Xylan, % | MCC, % | Changes in Selected MCC Band Intensities % * | |||||||
---|---|---|---|---|---|---|---|---|---|---|
ΔI1480 | ΔI1460 | ΔI1121 | ΔI1096 | ΔI911 | ΔI898 | ΔI520 | ΔI494 | |||
MCC | 0 | 100 | NA | NA | NA | NA | NA | NA | NA | NA |
Xylan | 100 | 0 | NA | NA | NA | NA | NA | NA | NA | NA |
X1 | 10 | 90 | −4.8 | 11.1 | 7.1 | 1.9 | 48.1 | 85.2 | −25.9 | 122.2 |
X2 | 20 | 80 | 7.1 | 25.0 | 16.1 | 7.6 | 66.7 | 108.3 | −37.5 | 275.0 |
X3 | 30 | 70 | 2.0 | 42.9 | 22.4 | 11.1 | 42.9 | 138.1 | −28.6 | 471.4 |
X4 | 40 | 60 | 19.0 | 122.2 | 36.9 | 25.0 | 122.2 | 233.3 | −16.7 | 733.3 |
X5 | 50 | 50 | 42.9 | 166.7 | 57.1 | 38.9 | 166.7 | 300.0 | −33.3 | 1100.0 |
Sample ID | Ratio of Glucan to Xylan | Band Intensities a, a.u. | |||||||
---|---|---|---|---|---|---|---|---|---|
I1480 | I1460 | I1121 | I1096 | I911 | I898 | I520 | I494 | ||
Cotton MCC | 99.9:0.1 | 0.157 | 0.07 | 0.673 | 0.871 | 0.074 | 0.081 | 0.156 | 0.031 |
Flax, delignified | 98.3:1.7 | 0.041 | 0.027 | 0.202 | 0.248 | 0.027 | 0.034 | 0.024 | 0.007 |
HWBKP | 83.3:16.7 | 0.05 | 0.041 | 0.291 | 0.335 | 0.04 | 0.068 | −0.02 | 0.038 |
Kenaf core, delignified | 74.7:25.3 | 0.038 | 0.063 | 0.215 | 0.234 | 0.039 | 0.061 | 0.019 | 0.023 |
Corn stalk, delignified | 68.8:31.2 | 0.04 | 0.053 | 0.274 | 0.289 | 0.047 | 0.073 | 0.021 | 0.039 |
Willow, delignified | 76.9:23.1 | 0.053 | 0.069 | 0.319 | 0.359 | 0.048 | 0.075 | 0.015 | 0.032 |
Aspen, delignified | 72.8:27.2 | 0.04 | 0.053 | 0.274 | 0.289 | 0.047 | 0.073 | 0.021 | 0.039 |
Kenaf bast, delignified | 71.8:28.2 | 0.047 | 0.070 | 0.247 | 0.275 | 0.04 | 0.059 | 0.028 | 0.022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agarwal, U.P.; Ralph, S.A. Raman Spectra of Delignified Plant Fibers: Exploring the Impact of Xylan’s Presence on the Spectral Features of Cellulose. Fibers 2024, 12, 5. https://doi.org/10.3390/fib12010005
Agarwal UP, Ralph SA. Raman Spectra of Delignified Plant Fibers: Exploring the Impact of Xylan’s Presence on the Spectral Features of Cellulose. Fibers. 2024; 12(1):5. https://doi.org/10.3390/fib12010005
Chicago/Turabian StyleAgarwal, Umesh P., and Sally A. Ralph. 2024. "Raman Spectra of Delignified Plant Fibers: Exploring the Impact of Xylan’s Presence on the Spectral Features of Cellulose" Fibers 12, no. 1: 5. https://doi.org/10.3390/fib12010005
APA StyleAgarwal, U. P., & Ralph, S. A. (2024). Raman Spectra of Delignified Plant Fibers: Exploring the Impact of Xylan’s Presence on the Spectral Features of Cellulose. Fibers, 12(1), 5. https://doi.org/10.3390/fib12010005