The Influence of Abaca Fiber Treated with Sodium Hydroxide on the Deformation Coefficients Cc, Cs, and Cv of Organic Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil
2.2. Abaca Fiber
2.3. Specimen Preparation
2.4. Testing Program
2.5. Obtaining Coefficients
- for the Taylor method: 0.848
- for the Casa Grande method: 0.197
2.6. Statistical Analysis
3. Results and Discussion
3.1. Compression and Expansion Coefficient
3.2. Consolidation Coefficient
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vettorelo, P.; Clariá, J. Suelos Reforzados con Fibras: Estado del Arte y Aplicaciones. Rev. Fac. Cienc. Exactas Físicas Nat. 2014, 1, 27. [Google Scholar]
- Vélez, E.; Rodríguez, R.; Gómez, N.B.Y.; Mora, E.D.; Hernández, L.; Albuja-Sánchez, J.; Calvo, M.I. Coconut-Fiber Composite Concrete: Assessment of Mechanical Performance and Environmental Benefits. Fibers 2022, 10, 96. [Google Scholar] [CrossRef]
- Gaafer, M.; Bassioni, H.; Mostafa, T. Soil improvement techniques. Int. J. Sci. Eng. Res. 2015, 6, 217–222. [Google Scholar]
- Rodríguez, A.R.; del Castillo, H. La Ingeniería De Suelos En Las Vias Terrestres; Editorial Limusa: Mexico City, Mexico, 2002; Volume 1. [Google Scholar]
- Hamdan, N.; Kavazanjian, J.E.; Rittmann, B.E.; Karatas, I. Carbonate Mineral Precipitation for Soil Improvement through Microbial Denitrification. Geomicrobiol. J. 2011, 34, 139–146. [Google Scholar] [CrossRef]
- Gray, D.H.; Ohashi, H. Mechanics of Fiber Reinforcement in Sand. J. Geotech. Eng. 1983, 109, 335–353. [Google Scholar] [CrossRef]
- Babu, G.L.S.; Vasudevan, A.K. Strength and Stiffness Response of Coir Fiber-Reinforced Tropical Soil. J. Mater. Civ. Eng. 2008, 20, 571–577. [Google Scholar] [CrossRef]
- Maher, M.H.; Gray, D.H. Static Response of Sands Reinforced with Randomly Distributed Fibers. J. Geotech. Eng. 1990, 116, 1661–1677. [Google Scholar] [CrossRef]
- Hussain, S.; Dhar, M. Influence of Lime and Fiber on Strength and Consolidation Characteristics of Expansive Soil. In Influence of Lime and Fiber on Strength and Consolidation Characteristics of Expansive Soil. Geotechnics for Transportation Infrastructure; Springer: Berlin/Heidelberg, Germany, 2019; pp. 505–515. [Google Scholar] [CrossRef]
- Puppala, A.J.; Musenda, C. Effects of Fiber Reinforcement on Strength and Volume Change in Expansive Soils. Transp. Res. Rec. J. Transp. Res. Board 2000, 1736, 134–140. [Google Scholar] [CrossRef]
- Jayawardane, V.S.; Anggraini, V.; Emmanuel, E.; Yong, L.L.; Mirzababaei, M. Expansive and Compressibility Behavior of Lime Stabilized Fiber-Reinforced Marine Clay. J. Mater. Civ. Eng. 2020, 32, 04020328. [Google Scholar] [CrossRef]
- Jiesheng, L.; Juan, Z.; Lin, X. Deformation and strength characteristics of sisal fibrous soil. Electron. J. Geotech. Eng. 2014, 19, 1585–1594. [Google Scholar]
- Maher, M.; Ho, Y. Mechanical Propierties of Kaolinite/Fiber Soil Composite. Am. Soc. Civ. Eng. 1994, 120, 1381–1393. [Google Scholar]
- Maity, J.; Chattopadhyay, B.C.; Mukherjee, S.P. Improvement of Characteristics of Clayey Soil Mixed with Randomly Distributed Natural Fibers. J. Inst. Eng. Ser. A 2018, 99, 55–65. [Google Scholar] [CrossRef]
- Wu, Y.K.; Li, Y.B.; Niu, B. Investigation of mechanical properties of randomly distributed sisal fibre reinforced soil. Mater. Res. Innov. 2014, 18, S2-953–S2-959. [Google Scholar] [CrossRef]
- Jeludin, N.; Suffri, M. The Effects of Coir Fibre on Consolidation Behaviour of Soft Clay. In Lecture Notes in Civil Engineering; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1323–1330. [Google Scholar] [CrossRef]
- Tran, K.Q.; Satomi, T.; Takahashi, H. Effect of waste cornsilk fiber reinforcement on mechanical properties of soft soils. Transp. Geotech. 2018, 16, 76–84. [Google Scholar] [CrossRef]
- Tang, C.; Shi, B.; Gao, W.; Chen, F.; Cai, Y. Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotext. Geomembr. 2007, 25, 194–202. [Google Scholar] [CrossRef]
- Gregory, G.H. Shear Strength, Creep and Stability of Fiber-Reinforced Soil Slopes; Oklahoma State University: Stillwater, OK, USA, 2006. [Google Scholar]
- Diambra, A.; Ibraim, E.; Wood, D.M.; Russell, A. Fibre Reinforced Sands: Experiments and Modelling. Geotext. Geomembr. 2010, 28, 238–250. [Google Scholar] [CrossRef]
- Ray, D.; Sarkar, B.K. Characterization of alkali-treated jute fibers for physical and mechanical properties. J. Appl. Polym. Sci. 2001, 80, 1013–1020. [Google Scholar] [CrossRef]
- Ramirez, S. Influencia de la Concentraión de NaOH en la Resistencia Mecánica a la Tensión de un Material Compuesto Reforzado Con Fibra de Bambú. Ph.D. Thesis, Universidad ECCI, Bogotá, Colombia, 2017. [Google Scholar]
- Ali, A.; Shaker, K.; Nawab, Y.; Jabbar, M.; Hussain, T.; Militky, J.; Baheti, V. Hydrophobic treatment of natural fibers and their composites—A review. J. Ind. Text. 2018, 47, 2153–2183. [Google Scholar] [CrossRef]
- Tampi, R.; Parung, H.; Djamaluddin, R.; Amiruddin, A. Elasticity modulus concrete of abaca fiber. IOP Conf. Ser. Earth Environ. Sci. 2020, 473, 012146. [Google Scholar] [CrossRef]
- Tampi, R.; Parung, H.; Djamaluddin, R.; Amiruddin, A. Reinforced concrete mixture using abaca fiber. IOP Conf. Ser. Earth Environ. Sci. 2020, 419, 012060. [Google Scholar] [CrossRef]
- Albuja-Sánchez, J.; Alcívar, E.; Escobar, D.; Montero, J.; Realpe, G.; Muñoz, A.; Peñaherrera-Aguirre, M. Influence of Abaca Fiber Inclusion on the Unconfined Compressive Strength of Reconstituted Sandy Silts. Fibers 2022, 10, 99. [Google Scholar] [CrossRef]
- Sánchez Albuja, J. Determination of the undrained shear strength of organic soils using the Cone Penetration Test and Marchetti’s Flat Dilatometer Test. In Proceedings of the 6th International Conference on Geotechnical and Geophysical Site Characterization, Hungary, Budapest, 26–29 September 2021; Volume 106, pp. 3–39. [Google Scholar]
- ASTM D6913_D6913M-17; Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. ASTM International: West Conshohocken, PA, USA, 2021; pp. 1–34. [CrossRef]
- ASTM D7928; Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis. ASTM International: West Conshohocken, PA, USA, 2021; pp. 1–27. [CrossRef]
- ASTM D2487-17e1; Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International: West Conshohocken, PA, USA, 2020; pp. 1–10. [CrossRef]
- Sachan, A.; Vikash, G.; Prashant, A. Development of Intermediate Microfabric in Kaolin Clay and Its Consolidation Behaviour. Geotech. Geol. Eng. 2013, 31, 23–34. [Google Scholar] [CrossRef]
- ASTM D2435/D2435M-11; Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading. ASTM International: West Conshohocken, PA, USA, 2011; pp. 1–114. [CrossRef]
- Murthy, V.N.S. Geotechnical Engineering: Principles and Practices of Soil Mechanics and Foundation Engineering; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Fonseca, H.; Farias, R.; Gongora, I.; Garcia, D.L.; Viana, M. Employment of Sisal Natural Fibers as Soil Reinforcement. In Advances in Geosynthetics Engineering; Meguid, M., Guler, E., Giroud, J.P., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 12–24. [Google Scholar]
- Abdi, M.R.; Parsa-Pajouh, A.; Arjomand, M.A. Effects of Random Fiber Inclusion on Consolidation, Hydraulic Conductivity, Swelling, Shrinkage Limit and Desiccation Cracking of Clays. Int. J. Civ. Eng. 2008, 6, 284–292. [Google Scholar]
- Jeludin, M.; Suffri, N.; Rahim, S. The consolidation properties of natural fibre clay composite. World Congr. Civ. Struct. Environ. Eng. 2019, 148, 1–9. [Google Scholar] [CrossRef]
- Qu, J.; Sun, Z. Strength Behavior of Shanghai Clayey Soil Reinforced with Wheat Straw Fibers. Geotech. Geol. Eng. 2016, 34, 515–527. [Google Scholar] [CrossRef]
- Moslemi, A.; Tabarsa, A.; Mousavi, S.Y.; Monfared, M.H.A. Shear strength and microstructure characteristics of soil reinforced with lignocellulosic fibers-Sustainable materials for construction. Constr. Build. Mater. 2022, 356, 129246. [Google Scholar] [CrossRef]
- Widianti, A.; Diana, W.; Bahti, F.N. Effect of fiber length on the consolidation parameters of coir fiber-reinforced soft clay. E3S Web Conf. 2023, 429, 04021. [Google Scholar] [CrossRef]
Soil Properties | Values | Grain Size Analysis | % Pass |
---|---|---|---|
Specific Gravity | 2.54 | Gravel | 0.00% |
Water Content | 32% | Sand | 0.30% |
Liquid Limit | 35 | Slit | 20.53% |
Plastic Limit | 36 | Clay | 79.10% |
Plastic Index | 1.5 | ||
USCS Classification | ML or OL |
Physical Properties | Values |
---|---|
Linear Density | 100 [Tex*] |
Water Content | 8.6% |
Tenacity | 0.81 [N/tex] |
Strain at Break | 81.3 [N] |
NAOH Concentration (%) | Length (mm) | Number of Samples |
---|---|---|
0.00% | 0 | 4 |
0.50% | 5 | 4 |
0.50% | 10 | 4 |
0.50% | 15 | 4 |
1.00% | 5 | 4 |
1.00% | 10 | 4 |
1.00% | 15 | 4 |
1.50% | 5 | 4 |
1.50% | 10 | 4 |
1.50% | 15 | 4 |
Parameter | Estimate | Standard Error | t-Value | p-Value |
---|---|---|---|---|
Criterion: Curve intercept (a) | ||||
Intercept | 1.871 | 0.046 | 41.01 | <0.0001 |
Type Casa Grande | 0.093 | 0.048 | 1.95 | 0.0564 |
Type Taylor | 0.000 | |||
Percent 0.0 | −0.245 | 0.062 | −3.99 | 0.0002 |
Percent 0.5 | −0.198 | 0.055 | −3.60 | 0.0006 |
Percent 1.0 | 0.000 | |||
Criterion: Curve slope (b) | ||||
Intercept | 0.007 | 0.001 | 13.21 | <0.0001 |
Curve Intercept (a) | −0.003 | 0.000 | −11.78 | <0.0001 |
Type Casa Grande | 0.000 | 0.000 | 0.65 | 0.5194 |
Type Taylor | 0.000 | |||
Percent 0.0 | −0.001 | 0.000 | −3.36 | 0.0014 |
Percent 0.5 | 0.000 | 0.000 | −1.21 | 0.231 |
Percent 1.0 | 0.000 |
Parameter | Estimate | Standard Error | t-Value | p-Value |
---|---|---|---|---|
Criterion: Curve intercept (a) | ||||
Intercept | 1.888 | 0.053 | 35.91 | <0.0001 |
Type Casa Grande | 0.093 | 0.047 | 1.97 | 0.0534 |
Type Taylor | 0.000 | |||
Length 0 mm | −0.262 | 0.066 | −3.95 | 0.0002 |
Length 5 mm | −0.261 | 0.066 | −3.92 | 0.0002 |
Length 10 mm | −0.087 | 0.066 | −1.31 | 0.1938 |
Length 15 mm | 0.000 | |||
Criterion: Curve slope (b) | ||||
Intercept | 0.007 | 0.001 | 11.74 | <0.0001 |
Curve Intercept (a) | −0.003 | 0.000 | −10.61 | <0.0001 |
Type Casa Grande | 0.000 | 0.000 | 0.44 | 0.6603 |
Type Taylor | 0.000 | |||
Length 0 mm | 0.000 | 0.000 | −2.36 | 0.0215 |
Length 5 mm | 0.000 | 0.000 | 0.51 | 0.6135 |
Length 10 mm | 0.000 | 0.000 | −0.58 | 0.5642 |
Length 15 mm | 0.000 |
Solution for Fixed Effects | |||||
---|---|---|---|---|---|
Parameter | Estimate | Standard Error | DF | t-Value | p-Value |
Intercept | 2.058 | 0.036 | 3 | 57.78 | <0.0001 |
Type Casa Grande | 0.070 | 0.013 | 242 | 5.18 | <0.0001 |
Type Taylor | 0.000 | ||||
Load 25 | −0.200 | 0.019 | 242 | −10.5 | <0.0001 |
Load 50 | −0.122 | 0.019 | 242 | −6.43 | <0.0001 |
Load 100 | −0.032 | 0.019 | 242 | −1.69 | 0.0924 |
Load 200 | 0.000 | ||||
Length and Percent 0.0, 0.0 | −0.230 | 0.023 | 242 | −9.87 | <0.0001 |
Length and Percent 5.0, 1.0 | 0.001 | 0.027 | 242 | 0.05 | 0.9593 |
Length and Percent 10.0, 1.0 | −0.044 | 0.027 | 242 | −1.63 | 0.1045 |
Length and Percent 5.0, 0.5 | −0.366 | 0.027 | 242 | −13.6 | <0.0001 |
Length and Percent 10.0, 0.5 | −0.111 | 0.027 | 242 | −4.13 | <0.0001 |
Length and Percent 15.0, 0.5 | −0.015 | 0.027 | 242 | −0.57 | 0.5693 |
Length and Percent 15.0, 1.0 | 0.000 | ||||
Solution for Random Effects | |||||
Parameter | Estimate | Standard Error Predicted | DF | t-Value | p-Value |
Intercept (sample 1) | −0.064 | 0.029 | 242 | −2.18 | 0.03 |
Intercept (sample 2) | −0.022 | 0.029 | 242 | −0.74 | 0.4604 |
Intercept (sample 3) | 0.046 | 0.029 | 242 | 1.57 | 0.1187 |
Intercept (sample 4) | 0.040 | 0.029 | 242 | 1.36 | 0.1761 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contreras, C.; Albuja-Sánchez, J.; Proaño, O.; Ávila, C.; Damián-Chalán, A.; Peñaherrera-Aguirre, M. The Influence of Abaca Fiber Treated with Sodium Hydroxide on the Deformation Coefficients Cc, Cs, and Cv of Organic Soils. Fibers 2024, 12, 89. https://doi.org/10.3390/fib12100089
Contreras C, Albuja-Sánchez J, Proaño O, Ávila C, Damián-Chalán A, Peñaherrera-Aguirre M. The Influence of Abaca Fiber Treated with Sodium Hydroxide on the Deformation Coefficients Cc, Cs, and Cv of Organic Soils. Fibers. 2024; 12(10):89. https://doi.org/10.3390/fib12100089
Chicago/Turabian StyleContreras, Carlos, Jorge Albuja-Sánchez, Oswaldo Proaño, Carlos Ávila, Andreina Damián-Chalán, and Mateo Peñaherrera-Aguirre. 2024. "The Influence of Abaca Fiber Treated with Sodium Hydroxide on the Deformation Coefficients Cc, Cs, and Cv of Organic Soils" Fibers 12, no. 10: 89. https://doi.org/10.3390/fib12100089
APA StyleContreras, C., Albuja-Sánchez, J., Proaño, O., Ávila, C., Damián-Chalán, A., & Peñaherrera-Aguirre, M. (2024). The Influence of Abaca Fiber Treated with Sodium Hydroxide on the Deformation Coefficients Cc, Cs, and Cv of Organic Soils. Fibers, 12(10), 89. https://doi.org/10.3390/fib12100089