The Influence of Dew Retting on the Mechanical Properties of Single Flax Fibers Measured Using Micromechanical and Nanomechanical Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Single-Flax-Fiber Manual Extraction Method
2.2.2. Polypropylene/Flax Fiber-Based Cantilever Sample Preparation
2.2.3. Dynamic Micromechanical Measurement of the Flexural Modulus of Single Flax Fibers
2.2.4. Static Micromechanical Measurements of the Flexural Strength of Single Flax Fibers
2.2.5. Atomic Force Microscopy (AFM) and AFM-Based Nanoindentation Measurements on the Surface of Single Flax Fibers
3. Results and Discussion
3.1. Dynamic Micromechanical Measurements of the Flexural Modulus of Single Flax Fibers as a Function of Dew Retting Period
3.2. Static Micromechanical Measurements of the Flexural Strength of Single Flax Fibers as a Function of Dew Retting Period
3.3. AFM Measurements on the Lateral Surface of Flax Fibers as a Function of Retting Period
3.4. AFM-Based Nanoindentation Measurements on Flax Fibers as a Function of Retting Period
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yan, L.; Chouw, N.; Jayaraman, K. Flax Fibre and Its Composites—A Review. Compos. Part B Eng. 2014, 56, 296–317. [Google Scholar] [CrossRef]
- Foulk, J.; Akin, D.; Dodd, R.; Ulven, C. Production of Flax Fibers for Biocomposites. In Cellulose Fibers: Bio- and Nano-Polymer Composites; Kalia, S., Kaith, B.S., Kaur, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 61–95. ISBN 978-3-642-17369-1. [Google Scholar]
- Baley, C.; Gomina, M.; Breard, J.; Bourmaud, A.; Drapier, S.; Ferreira, M.; Le Duigou, A.; Liotier, P.J.; Ouagne, P.; Soulat, D.; et al. Specific Features of Flax Fibres Used to Manufacture Composite Materials. Int. J. Mater. Form. 2019, 12, 1023–1052. [Google Scholar] [CrossRef]
- Zhang, J.; Henriksson, H.; Szabo, I.J.; Henriksson, G.; Johansson, G. The Active Component in the Flax-Retting System of the Zygomycete Rhizopus Oryzae Sb Is a Family 28 Polygalacturonase. J. Ind. Microbiol. Biotechnol. 2005, 32, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Akin, D.E. Linen Most Useful: Perspectives on Structure, Chemistry, and Enzymes for Retting Flax. ISRN Biotechnol. 2013, 2013, 186534. [Google Scholar] [CrossRef] [PubMed]
- Réquilé, S.; Le Duigou, A.; Bourmaud, A.; Baley, C. Peeling Experiments for Hemp Retting Characterization Targeting Biocomposites. Ind. Crop. Prod. 2018, 123, 573–580. [Google Scholar] [CrossRef]
- Tahir, P.M.; Ahmed, A.B.; SaifulAzry, S.O.A.; Ahmed, Z. Retting Process of Some Bast Plant Fibers and Its Effect on Fibre Quality: A Review. BioResources 2011, 6, 5260–5281. [Google Scholar] [CrossRef]
- Baley, C. Analysis of the Flax Fibres Tensile Behaviour and Analysis of the Tensile Stiffness Increase. Compos. Part Appl. Sci. Manuf. 2002, 33, 939–948. [Google Scholar] [CrossRef]
- Bos, H.L.; Van Den Oever, M.J.A.; Peters, O.C.J.J. Tensile and compressive properties of flax fibres for natural fibre reinforced composites. J. Mater. Sci. 2002, 37, 1683–1692. [Google Scholar] [CrossRef]
- Andersons, J.; Sparnins, E.; Joffe, R.; Wallstrom, L. Strength Distribution of Elementary Flax Fibres. Compos. Sci. Technol. 2005, 65, 693–702. [Google Scholar] [CrossRef]
- Gourier, C.; Le Duigou, A.; Bourmaud, A.; Baley, C. Mechanical Analysis of Elementary Flax Fibre Tensile Properties after Different Thermal Cycles. Compos. Part Appl. Sci. Manuf. 2014, 64, 159–166. [Google Scholar] [CrossRef]
- Lefeuvre, A.; Bourmaud, A.; Morvan, C.; Baley, C. Elementary Flax Fibre Tensile Properties: Correlation between Stress–Strain Behaviour and Fibre Composition. Ind. Crop. Prod. 2014, 52, 762–769. [Google Scholar] [CrossRef]
- Reda, A.; Dargent, T.; Arscott, S. Dynamic Micromechanical Measurement of the Flexural Modulus of Micrometre-Sized Diameter Single Natural Fibres Using a Vibrating Microcantilever Technique. J. Micromech. Microeng. 2024, 34, 015009. [Google Scholar] [CrossRef]
- Reda, A.; Arscott, S. Static Micromechanical Measurements of the Flexural Modulus and Strength of Micrometre-Diameter Single Fibres Using Deflecting Microcantilever Techniques. Sci. Rep. 2024, 14, 2967. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Akin, D.E. Flax—Structure, Chemistry, Retting and Processing. In Industrial Applications of Natural Fibres; Müssig, J., Ed.; Wiley: Hoboken, NJ, USA, 2010; pp. 87–108. ISBN 978-0-470-69508-1. [Google Scholar]
- Martin, N.; Mouret, N.; Davies, P.; Baley, C. Influence of the Degree of Retting of Flax Fibers on the Tensile Properties of Single Fibers and Short Fiber/Polypropylene Composites. Ind. Crop. Prod. 2013, 49, 755–767. [Google Scholar] [CrossRef]
- Ruan, P.; Raghavan, V.; Gariepy, Y.; Du, J. Characterization of Flax Water Retting of Different Durations in Laboratory Condition and Evaluation of Its Fiber Properties. BioResources 2015, 10, 3553–3563. [Google Scholar] [CrossRef]
- Dey, P.; Mahapatra, B.S.; Pramanick, B.; Kumar, A.; Negi, M.S.; Paul, J.; Shukla, D.K.; Singh, S.P. Quality Optimization of Flax Fibre through Durational Management of Water Retting Technology under Sub-Tropical Climate. Ind. Crop. Prod. 2021, 162, 113277. [Google Scholar] [CrossRef]
- Réquilé, S.; Goudenhooft, C.; Bourmaud, A.; Le Duigou, A.; Baley, C. Exploring the Link between Flexural Behaviour of Hemp and Flax Stems and Fibre Stiffness. Ind. Crop. Prod. 2018, 113, 179–186. [Google Scholar] [CrossRef]
- Lecoublet, M.; Khennache, M.; Leblanc, N.; Ragoubi, M.; Poilâne, C. Physico-Mechanical Performances of Flax Fiber Biobased Composites: Retting and Process Effects. Ind. Crop. Prod. 2021, 173, 114110. [Google Scholar] [CrossRef]
- Chabbert, B.; Philippe, F.; Thiébeau, P.; Alavoine, G.; Gaudard, F.; Pernes, M.; Day, A.; Kurek, B.; Recous, S. How the Interplay between Harvest Time and Climatic Conditions Drives the Dynamics of Hemp (Cannabis sativa L.) Field Retting. Ind. Crop. Prod. 2023, 204, 117294. [Google Scholar] [CrossRef]
- Melelli, A.; Arnould, O.; Beaugrand, J.; Bourmaud, A. The Middle Lamella of Plant Fibers Used as Composite Reinforcement: Investigation by Atomic Force Microscopy. Molecules 2020, 25, 632. [Google Scholar] [CrossRef] [PubMed]
- Pallesen, B.E. The Quality of Combine-Harvested Fibre Flax for Industrials Purposes Depends on the Degree of Retting. Ind. Crop. Prod. 1996, 5, 65–78. [Google Scholar] [CrossRef]
- Akin, D.E.; Morrison, W.H.; Gamble, G.R.; Rigsby, L.L.; Henriksson, G.; Eriksson, K.-E.L. Effect of Retting Enzymes on the Structure and Composition of Flax Cell Walls. Text. Res. J. 1997, 67, 279–287. [Google Scholar] [CrossRef]
- Akin, D.E.; Rigsby, L.L.; Henriksson, G.; Eriksson, K.-E.L. Structural Effects on Flax Stems of Three Potential Retting Fungi. Text. Res. J. 1998, 68, 515–519. [Google Scholar] [CrossRef]
- Richely, E.; Bourmaud, A.; Placet, V.; Guessasma, S.; Beaugrand, J. A Critical Review of the Ultrastructure, Mechanics and Modelling of Flax Fibres and Their Defects. Prog. Mater. Sci. 2022, 124, 100851. [Google Scholar] [CrossRef]
- Kontomaris, S.V.; Malamou, A. Hertz Model or Oliver & Pharr Analysis? Tutorial Regarding AFM Nanoindentation Experiments on Biological Samples. Mater. Res. Express 2020, 7, 033001. [Google Scholar] [CrossRef]
- Goudenhooft, C.; Bourmaud, A.; Baley, C. Flax (Linum usitatissimum L.) Fibers for Composite Reinforcement: Exploring the Link Between Plant Growth, Cell Walls Development, and Fiber Properties. Front. Plant Sci. 2019, 10, 411. [Google Scholar] [CrossRef]
- Arnould, O.; Siniscalco, D.; Bourmaud, A.; Le Duigou, A.; Baley, C. Better Insight into the Nano-Mechanical Properties of Flax Fibre Cell Walls. Ind. Crop. Prod. 2017, 97, 224–228. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reda, A.; Dargent, T.; Thomas, L.; Grec, S.; Buchaillot, L.; Arscott, S. The Influence of Dew Retting on the Mechanical Properties of Single Flax Fibers Measured Using Micromechanical and Nanomechanical Approaches. Fibers 2024, 12, 91. https://doi.org/10.3390/fib12100091
Reda A, Dargent T, Thomas L, Grec S, Buchaillot L, Arscott S. The Influence of Dew Retting on the Mechanical Properties of Single Flax Fibers Measured Using Micromechanical and Nanomechanical Approaches. Fibers. 2024; 12(10):91. https://doi.org/10.3390/fib12100091
Chicago/Turabian StyleReda, Ali, Thomas Dargent, Louis Thomas, Sebastien Grec, Lionel Buchaillot, and Steve Arscott. 2024. "The Influence of Dew Retting on the Mechanical Properties of Single Flax Fibers Measured Using Micromechanical and Nanomechanical Approaches" Fibers 12, no. 10: 91. https://doi.org/10.3390/fib12100091
APA StyleReda, A., Dargent, T., Thomas, L., Grec, S., Buchaillot, L., & Arscott, S. (2024). The Influence of Dew Retting on the Mechanical Properties of Single Flax Fibers Measured Using Micromechanical and Nanomechanical Approaches. Fibers, 12(10), 91. https://doi.org/10.3390/fib12100091