Coating of Hemp Fibres with Hydrophobic Compounds Extracted from Pine Bark
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Materials Preparation
2.2.1. Emulsion Preparation
2.2.2. Dry Blending of Fibres and Emulsions
2.2.3. Compounding
2.2.4. Injection Moulding
2.3. Characterisation
2.3.1. Gas Chromatography—Mass Spectrometry (GC-MS) Analysis of Waxes
2.3.2. Thermal Testing (Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC))
2.3.3. Fourier Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) Spectroscopies
2.3.4. Water Contact Angle Measurements
2.3.5. Microscopy
2.3.6. Mechanical Testing
3. Results and Discussions
3.1. Characterisation of Starting Materials
3.2. Water/Wax Emulsions
3.3. Dry Blending Process
3.4. Composites
3.4.1. Thermal Characteristics
3.4.2. Mechanical Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kanokpanont, S.; Damrongsakkul, S.; Ratanavaraporn, J.; Aramwit, P. Physico-chemical properties and efficacy of silk fibroin fabric coated with different waxes as wound dressing. Int. J. Biol. Macromol. 2013, 55, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Abbass, A.; Paiva, M.C.; Oliveira, D.V.; Lourenço, P.B.; Fangueiro, R.; Alves, N.M. The Potential of Beeswax Colloidal Emulsion/Films for Hydrophobization of Natural Fibers Prior to NTRM Manufacturing. Key Engin. Mater. 2022, 916, 82–90. [Google Scholar] [CrossRef]
- Forsman, N.; Lozhechnikova, A.; Khakalo, A.; Johansson, L.S.; Vartiainen, J.; Österberg, M. Layer-by-layer assembled hydrophobic coatings for cellulose nanofibril films and textiles, made of polylysine and natural wax particles. Carbohydr. Polym. 2017, 173, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Forsman, N.; Johansson, L.S.; Koivula, H.; Tuure, M.; Kääriäinen, P.; Österberg, M. Open coating with natural wax particles enable scalable, non-toxic hydrophobation of cellulose-based textiles. Carbohydr. Polym. 2020, 227, 115363. [Google Scholar] [CrossRef]
- Bachchan, A.A.; Das, P.P.; Chaudhary, V. Effect of moisture absorption on the properties of natural fiber reinforced polymer composites: A review. Mater. Today Proc. 2022, 49, 3403–3408. [Google Scholar] [CrossRef]
- Zwawi, M. A review on natural fiber bio-composites, surface modifications and applications. Molecules 2021, 26, 404. [Google Scholar] [CrossRef]
- Nurazzi, N.; Harussani, M.M.; Aisya, H.A.; Ilyas, R.A.; Norrrahim, M.N.F.; Khalina, A.; Abdulla, N. Treatments of natural fiber as reinforcement in polymer composites—A short review. Funct. Comp. Struct. 2021, 3, 024002. [Google Scholar] [CrossRef]
- Qaiss, A.E.K.; Bouhfid, R.; Essabir, H. Natural fibers reinforced polymeric matrix: Thermal, mechanical and interfacial properties. In Biomass and Bioenergy: Processing and Properties; Hakeem, K.R., Jawaid, M., Rashid, U., Eds.; Springer International Publishing: Cham, Switzerland, 2014; Volume 1, pp. 225–245. [Google Scholar]
- Nhlapo, L.; Luyt, A. Thermal and mechanical properties of LDPE/sisal fiber composites compatibilized with functionalized paraffin waxes. J. Appl. Polym. Sci. 2012, 123, 3627–3634. [Google Scholar] [CrossRef]
- Atthikumaran, N.; Kannakumar, K.; Kanakarajan, P.; Sathishkumar, S.; Augastin Santhiyagu, I.; Hasane Ahammad, S. Investigation of the thermal and mechanical behavior of recycled low-density polyethylene/Hemp fiber composites containing paraffin wax. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Floros, M.C.; Raghunanan, L.; Narine, S.S. A toolbox for the characterization of biobased waxes. Eur. J. Lipid Sci. Technol. 2017, 119, 1600360. [Google Scholar] [CrossRef]
- Fratini, F.; Cilia, G.; Turchi, B.; Felicioli, A. Beeswax: A minireview of its antimicrobial activity and its application in medicine. Asian Pac. J. Trop. Med. 2016, 9, 839–843. [Google Scholar] [CrossRef] [PubMed]
- Gigante, V.; Cinelli, P.; Righetti, M.C.; Sandroni, M.; Polacco, G.; Seggiani, M.; Lazzeri, A. On the use of biobased waxes to tune thermal and mechanical properties of polyhydroxyalkanoates–bran biocomposites. Polymers 2020, 12, 2615. [Google Scholar] [CrossRef] [PubMed]
- Sobol, Ł.; Sabat, D.; Dyjakon, A. Assessment of Bark Properties from Various Tree Species in Terms of Its Hydrophobicity and Energy Suitability. Energies 2023, 16, 6586. [Google Scholar] [CrossRef]
- Huang, Z.; Yan, N. Characterization of major components in barks from five Canadian tree species. Wood Fiber Sci. 2014, 46, 167–174. [Google Scholar]
- Sandoval-Rivas, D.; Moczko, E.; Morales, D.V.; Hepp, M.I. Evaluation and characterization of a new method of extracting bark wax from Pinus radiata D. Don. Ind. Crops Prod. 2021, 174, 114161. [Google Scholar] [CrossRef]
- Sandoval-Rivas, D.; Morales, D.V.; Hepp, M.I. Toxicity evaluation of Pinus radiata D. Don bark wax for potential cosmetic application. Food Chem. Toxicol. 2023, 178, 113896. [Google Scholar] [CrossRef]
- Bento, A.; Escórcio, R.; Tomé, A.S.; Robertson, M.; Gaugler, E.C.; Malthus, S.J.; Raymond, L.G.; Hill, S.J.; Silva Pereira, C. Pinus radiata bark sequentially processed using scCO2 and an ionic liquid catalyst yields plentiful resin acids and alkanoic acids enriched suberin. Ind. Crops Prod. 2022, 185, 115172. [Google Scholar] [CrossRef]
- Quilter, H.C.; Risani, R.; Gallagher, S.; Robertson, M.; Thumm, A.; Thomas, H.P.; Abbel, R. Synthesis of hydrophobic biopolyesters from depolymerized Pinus radiata bark suberin. Holzforschung 2024, 78, 303–316. [Google Scholar] [CrossRef]
- Rogers, D.L. In situ genetic conservation of a naturally restricted and commercially widespread species, Pinus radiata. For. Ecol. Manag. 2004, 197, 311–322. [Google Scholar] [CrossRef]
- Nixon, C.; Gamperle, D.; Pambudi, D.; Clough, P. Plantation forestry statistics: Contribution of forestry to New Zealand; New Zealand Institute of Economic Research: Wellington, New Zealand, 2017; p. 14. [Google Scholar]
- Chen, H.; Chauhan, P.; Yan, N. “Barking” up the right tree: Biorefinery from waste stream to cyclic carbonate with immobilization of CO2 for non-isocyanate polyurethanes. Green Chem. 2020, 22, 6874–6888. [Google Scholar] [CrossRef]
- Alonso-Esteban, J.I.; Carocho, M.; Barros, D.; Velho, M.V.; Heleno, S.; Barros, L. Chemical composition and industrial applications of Maritime pine (Pinus pinaster Ait.) bark and other non-wood parts. Rev. Environ. Sci. Bio. 2022, 21, 583–633. [Google Scholar] [CrossRef]
- Passialis, C.N.; Voulgaridis, E.V. Water repellent efficiency of organic solvent extractives from Aleppo pine leaves and bark applied to wood. Holzforschung 1999, 53, 151–155. [Google Scholar] [CrossRef]
- Manaia, J.P.; Manaia, A.T.; Rodriges, L. Industrial hemp fibers: An overview. Fibers 2019, 7, 106. [Google Scholar] [CrossRef]
- Promhuad, K.; Srisa, A.; San, H.; Laorenza, Y.; Wongphan, P.; Sodsai, J.; Tansin, K.; Phropmphen, P.; Chartvivatpornchai, N.; Ngoenchai, P.; et al. Applications of Hemp Polymers and Extracts in Food, Textile and Packaging: A Review. Polymers 2022, 14, 4274. [Google Scholar] [CrossRef]
- Ingrao, C.; Giudice, A.L.; Bacenetti, J.; Tricase, C.; Dotelli, G.; Fiala, M.; Siracusa, V.; Mbohwa, C. Energy and environmental assessment of industrial hemp for building applications: A review. Renew. Sust. Energy Rev. 2015, 51, 29–42. [Google Scholar] [CrossRef]
- Mohanty, A.; Tummala, P.; Liu, W.; Misra, M.; Mulukutla, P.V.; Drzal, L.T. Injection molded biocomposites from soy protein based bioplastic and short industrial hemp fiber. J. Polym. Environ. 2005, 13, 279–285. [Google Scholar] [CrossRef]
- Wróbel-Kwiatkowska, M.; Czemplik, M.; Kulma, A.; Żuk, M.; Kaczmar, J.; Dymińska, L.; Hanuza, J.; Ptak, M.; Szopa, J. New biocomposites based on bioplastic flax fibers and biodegradable polymers. Biotechnol. Prog. 2012, 28, 1336–1346. [Google Scholar] [CrossRef]
- Tanasă, F.; Zănoagă, M.; Teacă, C.A.; Nechifor, M.; Shahzad, A. Modified hemp fibers intended for fiber-reinforced polymer composites used in structural applications—A review. I. Methods of modification. Polym. Comp. 2020, 41, 5–31. [Google Scholar] [CrossRef]
- Song, Y.S.; Lee, J.T.; Ji, D.S.; Kim, M.W.; Lee, S.H.; Youn, J.R. Viscoelastic and thermal behavior of woven hemp fiber reinforced poly(lactic acid) composites. Comp. Part B Engin. 2012, 42, 856–860. [Google Scholar] [CrossRef]
- Song, Y.; Liu, J.; Chen, S.; Zheng, Y.; Ruan, S.; Bin, Y. Mechanical Properties of Poly(Lactic Acid)/Hemp Fiber Composites Prepared with a Novel Method. J. Polym. Environ. 2013, 21, 1117–1127. [Google Scholar] [CrossRef]
- Kremensas, A.; Kairytė, A.; Vaitkus, S.; Vėjelis, S.; Balčiūnas, G. Mechanical Performance of Biodegradable Thermoplastic Polymer-Based Biocomposite Boards from Hemp Shivs and Corn Starch for the Building Industry. Materials 2019, 12, 845. [Google Scholar] [CrossRef] [PubMed]
- Gill, A.R.; Boveys, B.R.; Cavagnaro, T.R.; Burton, R.A. The potential of industrial hemp (Cannabis sativa L.) as an emerging drought resistant fibre crop. Plant Soil 2023, 493, 7–16. [Google Scholar] [CrossRef]
- Chawla, R.; Fang, Z. Hemp macromolecules: Crafting sustainable solutions for food and packaging innovation. Int. J. Biol. Macromol. 2024, 273, 132823. [Google Scholar] [CrossRef] [PubMed]
- De Costa Santos, A.C.; Archbold, P. Suitability of Surface-Treated Flax and Hemp Fibers for Concrete Reinforcement. Fibers 2022, 10, 101. [Google Scholar] [CrossRef]
- Lawan, I.; Qiang, L.; Zhou, W.; Yi, J.; Song, J.; Zhang, M.; Huang, Z.; Pang, J.; Yuan, Z. Modifications of hemp twine for use as a fiber in cement composite: Effects of hybrid treatments. Cellulose 2018, 25, 2009–2020. [Google Scholar] [CrossRef]
- Fuller, G.T.; Considine, T.; MacGibbon, A.; Golding, M.; Matia-Merino, L. Effect of Tween emulsifiers on the shear stability of partially crystalline oil-in-water emulsions stabilized by sodium caseinate. Food Biophys. 2018, 13, 80–90. [Google Scholar] [CrossRef]
- Silva, S.C.; Almeida, T.; Colucci, G.; Santamaria-Echart, A.; Manrique, Y.A.; Dias, M.M.; Barros, L.; Fernandes, Â.; Colla, E.; Filomena Barreiro, M. Spirulina (Arthrospira platensis) protein-rich extract as a natural emulsifier for oil-in-water emulsions: Optimization through a sequential experimental design strategy. Colloids Surf. A Physicochem. Eng. Asp. 2022, 648, 129264. [Google Scholar] [CrossRef]
- Petersen, S.; Ulrich, J. Effectiveness of Polyoxyethylene Nonionic Emulsifiers in Emulsification Processes Using Disc Systems. Chem. Engin. Technol. 2011, 34, 1869–1875. [Google Scholar] [CrossRef]
- Park, J.-Y.; Choi, M.J.; Yu, H.; Choi, Y.; Park, K.M.; Chang, P.S. Multi-functional behavior of food emulsifier erythorbyl laurate in different colloidal conditions of homogenous oil-in-water emulsion system. Colloids Surf. A Physicochem. Eng. Asp. 2022, 636, 128127. [Google Scholar] [CrossRef]
- Kamaruding, N.A.; Muhammad Daud, N.A.; Ismail, N.; Shaharuddin, S. Effect of Different Solubilization pH Values on the Functional Properties of Protein Spirulina platensis Isolated Through Acidic Precipitation. J. Aquat. Food Prod. Technol. 2022, 31, 1025–1037. [Google Scholar] [CrossRef]
- Paswan, M.B.; Chudasama, M.M.; Mitra, M.; Bhayani, K.; George, B.; Chatterjee, S.; Mishra, S. Fluorescence Quenching Property of C-Plycocyanin from Spirulina platensis and its Binding Efficacy with Viable Cell Components. J. Fluoresc. 2016, 26, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Loxton, C.; Thumm, A.; Grigsby, W.J.; Adams, T.A.; Ede, R.M. Resin distribution in medium density fiberboard. Quantification of UF resin distribution on blowline-and dry-blended MDF fiber and panels. Wood Fiber Sci. 2003, 35, 370–380. [Google Scholar]
- Gigante, V.; Aliotta, L.; Canesi, I.; Sandroni, M.; Lazzeri, A.; Coltelli, M.B.; Cinelli, P. Improvement of interfacial adhesion and thermomechanical properties of PLA based composites with wheat/rice bran. Polymers 2022, 14, 3389. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Duarte, M.E.; Estrada-Moreno, I.A.; López-Martínez, E.I.; Vega-Rios, A. Effect of the Addition of Different Natural Waxes on the Mechanical and Rheological Behavior of PLA—A Comparative Study. Polymers 2023, 15, 305. [Google Scholar] [CrossRef]
- Ouakarrouch, M.; Bousshine, S.; Bybi, A.; Laaroussi, N.; Garoum, M. Acoustic and thermal performances assessment of sustainable insulation panels made from cardboard waste and natural fibers. Appl. Acoust. 2022, 199, 109007. [Google Scholar] [CrossRef]
- Chungsiriporn, J.; Khunthongkaew, P.; Wongnoipla, Y.; Sopajarn, A.; Karrila, S.; Iewkittayakorn, J. Fibrous packaging paper made of oil palm fiber with beeswax-chitosan solution to improve water resistance. Ind. Crops Prod. 2022, 177, 114541. [Google Scholar] [CrossRef]
- Khan, A.; Nadeem, M.; Imran, M.; Khalique, A. Impact of winterization on fatty acids’ composition, isomers, and oxidative stability of conjugated linoleic acids produced from selected vegetable oils. J. Food Process. Preserv. 2021, 45, e15254. [Google Scholar] [CrossRef]
- Mayer-Laigle, C.; Beaugrand, J.; Bourmaud, A.; Brionne, L.; Colinart, T.; Dervaux, S.; Fabre, C.; le Guen, M.J.; Konschak, K.; Paës, G.; et al. Datasets on the production routs and the properties of plant powders for manufacturing of green products. Data in Brief 2024, 56, 110787. [Google Scholar] [CrossRef]
- International Standard ISO 527-2:2012(E); Plastics—Determination of Tensile Properties—Part 2: Test Conditions for Moulding and Extrusion Plastics. International Organization for Standardization: Geneva, Switzerland, 2012.
- Chen, R.-Y.; Zou, W.; Zhang, H.C.; Zhang, G.Z.; Yang, Z.T.; Jin, G.; Qu, J.P. Thermal behavior, dynamic mechanical properties and rheological properties of poly (butylene succinate) composites filled with nanometer calcium carbonate. Polym. Test. 2015, 42, 160–167. [Google Scholar] [CrossRef]
- Gowman, A.; Wang, T.; Rodriguez-Uribe, A.; Mohanty, A.K.; Misra, M. Bio-poly (butylene succinate) and its composites with grape pomace: Mechanical performance and thermal properties. ACS Omega 2018, 3, 15205–15216. [Google Scholar] [CrossRef]
- International Standard ASTM D790-17; Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International: West Conshohocken, PE, USA, 2017.
- International Standard ISO 180:2023; Plastics—Determination of Izod Impact Strength. International Organization for Standardization: Geneva, Switzerland, 2023.
- Buchwald, R.; Breed, M.D.; Greenberg, A.R. The thermal properties of beeswaxes: Unexpected findings. J. Exp. Biol. 2008, 211, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Dobrosielska, M.; Dobrucka, R.; Kozera, P.; Brząkalski, D.; Gabriel, E.; Głowacka, J.; Jałbrzykowski, M.; Kurzydłowski, K.J.; Przekop, R.E. Beeswax as a natural alternative to synthetic waxes for fabrication of PLA/diatomaceous earth composites. Sci. Rep. 2023, 13, 1161. [Google Scholar] [CrossRef] [PubMed]
- Jankauskiené, Z.; Butuké, B.; Gruzdeviené, E.; Cesevičiené, J.; Fernando, A.L. Chemical composition and physical properties of dew- and water retted hemp fibres. Ind. Crops Prod. 2015, 74, 206–211. [Google Scholar] [CrossRef]
- Larrosa, A.P.Q.; Camara, Á.S.; Pohndorf, R.S.; da Rocha, S.F.; Pinto, L.A.A. Physicochemical, biochemical, and thermal properties of Arthrospira (Spirulina) biomass dried in spouted bed at different conditions. J. Appl. Phycol. 2018, 30, 1019–1029. [Google Scholar] [CrossRef]
- Borriello, A.; Miele, N.A.; Masi, P.; Aiello, A.; Cavella, S. Effect of fatty acid composition of vegetable oils on crystallization and gelation kinetics of oleogels based on natural wax. Food Chem. 2022, 375, 131805. [Google Scholar] [CrossRef]
- Qiyuan, L.; Jinmei, D.; Ruguang, L.; Chenggong, C.; Yangyuanxiang, X.; Jing, W.; Weixin, Z.; Derong, W.; Shengxia, A. Preparation and properties of fatty acid/alcohol composite phase change mortar. Constr. Build. Materials 2024, 416, 135195. [Google Scholar] [CrossRef]
- Shi, K.; Liu, G.; Sun, H.; Yang, B.; Weng, Y. Effect of biomass as nucleating agents on crystallization behavior of polylactic acid. Polymers 2022, 14, 4305. [Google Scholar] [CrossRef]
- Donaldson, L.A. Localizing Molecules in Plant Cell Walls Using Fluorescence Microscopy. In Histochemistry of Single Molecules: Methods and Protocols, 2nd ed.; Pellicciari, C., Biggiogera, M., Malatesta, M., Eds.; Springer Nature: New York, NY, USA, 2022; pp. 243–259. [Google Scholar]
- Dal Fovo, A.; Mattana, S.; Chaban, A.; Quintero Balbas, D.; Lagarto, J.L.; Striova, J.; Cicchi, R.; Fontana, R. Fluorescence lifetime phasor analysis and Raman spectroscopy of pigmented organic binders and coatings used in artworks. Appl. Sci. 2021, 12, 179. [Google Scholar] [CrossRef]
- Isidore, E.; Karim, H.; Ioannou, I. Extraction of phenolic compounds and terpenes from Cannabis sativa L. by-products: From conventional to intensified processes. Antioxidants 2021, 10, 942. [Google Scholar] [CrossRef]
- Lee, E.J.; Lim, K.-H. Preparation of eco-friendly wax-coated paper and its rheological and water-resistance characteristics. Korean J. Chem. Eng. 2021, 38, 2479–2492. [Google Scholar] [CrossRef]
- Chen, C.; Chen, J.; Zhang, S.; Cao, J.; Wang, W. Forming textured hydrophobic surface coatings via mixed wax emulsion impregnation and drying of poplar wood. Wood Sci. Technol. 2020, 54, 421–439. [Google Scholar] [CrossRef]
- Dent, F.J.; Tyagi, G.; Esat, F.; Cabral, J.T.; Khodaparast, S. Tuneable Topography and Hydrophobicity Mode in Biomimetic Plant-Based Wax Coatings. Adv. Funct. Mater. 2024, 34, 2307977. [Google Scholar] [CrossRef]
- Salimi, A.; Mirabedini, M.; Atai, M.; Mohseni, M. Studies on the Mechanical Properties and Practical Coating Adhesion of PP Modified by Oxidized Wax. J. Adh. Sci. Technol. 2010, 24, 1113–1129. [Google Scholar] [CrossRef]
Composite | Emulsifier | Wax Type | Coated Hf 6 (wt%) | bPBS 7 (wt%) |
---|---|---|---|---|
bPBS-Hf-CPW-T20 | T20 1 | CPW 3 | 10 | 90 |
bPBS-Hf-CPW-Sp | Sp 2 | CPW | 10 | 90 |
bPBS-Hf-RPW-T20 | T20 | RPW 4 | 10 | 90 |
bPBS-Hf-RPW-Sp | Sp | RPW | 10 | 90 |
bPBS-Hf-BW-T20 | T20 | BW 5 | 10 | 90 |
bPBS-Hf-BW-Sp | Sp | BW | 10 | 90 |
bPBS-Hf-Control | - | - | 10 | 90 |
bPBS | - | - | 0 | 100 |
Process Parameter | Value(s) |
---|---|
Barrel positions (mm) | 66/20/15/10/5/2 |
Injection pressure (bar) | 50 |
Injection speed (mm/s) | 45 |
Screw speed (rpm) | 100 |
Back pressure (bar) | 15 |
Hold time (s) | 3/20 |
Hold pressure (bar) | 60/40 |
Cooling time | 30 |
Nozzle temperature (°C) | 160 |
Barrel temperature (°C) | 160 |
Mould temperature (°C) | 25 |
Melting Enthalpy (J/g) | Peak Maximum (°C) | |
---|---|---|
CPW | 60.1 ± 1.3 | 50.6 ± 0.1 |
CPW-T20 | 61.6 ± 2.5 | 54.4 ± 0.1 |
CPW-Sp | 68.0 ± 0.2 | 48.7 ± 0.1 |
RPW | 130.6 ± 0.4 | 57.4 ± 2.8 |
RPW-T20 | 106.7 ± 1.9 | 61.5 ± 0.1 |
RPW-Sp | 122.5 ± 0.4 | 59.8 ± 0.3 |
BW | 171.6 ± 0.8 | 64.2 ± 0.1 |
BW-T20 | 138.7 ± 4.1 | 63.8 ± 0.2 |
BW-Sp | 153.5 ± 0.9 | 63.6 ± 0.2 |
Integral (%) | Carbon Ratio (Aliphatic–Cellulosic) | Increase 1 (%) | ||
---|---|---|---|---|
Hf-Control | Cellulose | 98.76 | 0.0126 | 0 |
Aliphatic | 1.24 | |||
Hf-CPW-T20 | Cellulose | 97.53 | 0.0253 | 102 |
Aliphatic | 2.47 | |||
Hf-CPW-Sp | Cellulose | 97.68 | 0.0238 | 89 |
Aliphatic | 2.32 | |||
Hf-RPW-T20 | Cellulose | 98.28 | 0.0299 | 138 |
Aliphatic | 1.72 | |||
Hf-RPW-Sp | Cellulose | 96.85 | 0.0233 | 86 |
Aliphatic | 3.15 | |||
Hf-BW-T20 | Cellulose | 97.1 | 0.0175 | 39 |
Aliphatic | 2.90 | |||
Hf-BW-Sp | Cellulose | 97.72 | 0.0325 | 159 |
Aliphatic | 2.28 |
Glass Transition (°C) | Melting Enthalpy (J/g) | Crystallinity (%) | Peak Maximum (°C) | |
---|---|---|---|---|
bPBS | −31.5 ± 0.2 | 61.9 ± 1.6 | 30.9 ± 0.8 | 113.9 ± 0.1 |
bPBS-Hf-Control | −32.9 ± 1.2 | 54.6 ± 0.6 | 30.3 ± 0.3 | 113.9 ± 0.1 |
bPBS-Hf-CPW-T20 | −31.9 ± 0.7 | 53.2 ± 0.5 | 29.5 ± 0.3 | 114.0 ± 0.1 |
bPBS-Hf-CPW-Sp | −31.8 ± 0.1 | 52.0 ± 0.3 | 28.9 ± 0.2 | 113.8 ± 0.1 |
bPBS-Hf-RPW-T20 | −32.9 ± 0.7 | 53.0 ± 0.7 | 29.5 ± 0.4 | 113.9 ± 0.1 |
bPBS-Hf-RPW-Sp | −32.9 ± 0.9 | 54.4 ± 0.8 | 30.3 ± 0.5 | 114.0 ± 0.1 |
bPBS-Hf-BW-T20 | −32.4 ± 0.2 | 52.9 ± 0.5 | 29.4 ± 0.3 | 113.8 ± 0.1 |
bPBS-Hf-BW-Sp | −33.5 ± 1.0 | 52.8 ± 0.7 | 29.3 ± 0.4 | 113.8 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbel, R.; Risani, R.; Nourtier, M.; Donaldson, L.; Brunschwig, C.; Mayer-Laigle, C.; Bridson, J.H.; Thumm, A.; Dickson, A.; Murray, R.; et al. Coating of Hemp Fibres with Hydrophobic Compounds Extracted from Pine Bark. Fibers 2024, 12, 96. https://doi.org/10.3390/fib12110096
Abbel R, Risani R, Nourtier M, Donaldson L, Brunschwig C, Mayer-Laigle C, Bridson JH, Thumm A, Dickson A, Murray R, et al. Coating of Hemp Fibres with Hydrophobic Compounds Extracted from Pine Bark. Fibers. 2024; 12(11):96. https://doi.org/10.3390/fib12110096
Chicago/Turabian StyleAbbel, Robert, Regis Risani, Maxime Nourtier, Lloyd Donaldson, Christel Brunschwig, Claire Mayer-Laigle, James H. Bridson, Armin Thumm, Alan Dickson, Rachel Murray, and et al. 2024. "Coating of Hemp Fibres with Hydrophobic Compounds Extracted from Pine Bark" Fibers 12, no. 11: 96. https://doi.org/10.3390/fib12110096
APA StyleAbbel, R., Risani, R., Nourtier, M., Donaldson, L., Brunschwig, C., Mayer-Laigle, C., Bridson, J. H., Thumm, A., Dickson, A., Murray, R., Harris, J., Beaugrand, J., & Hill, S. (2024). Coating of Hemp Fibres with Hydrophobic Compounds Extracted from Pine Bark. Fibers, 12(11), 96. https://doi.org/10.3390/fib12110096