Potential Valorization of Banana Production Waste in Developing Countries: Bio-Engineering Aspects
Abstract
:1. Introduction
2. Banana By-Product Utilization
2.1. Utilities
2.2. Animal Feed
2.3. Bioactive Compounds
2.4. Snacks
2.5. Fuel
2.6. Traditional Medicine and Disease Prevention
2.7. Bio-Sorbents
2.8. Natural Preservatives and Antimicrobial Compounds
3. Banana By-Product Utilization Disadvantages
4. Banana By-Products as Fibers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. Banana Market Review—Preliminary Results 2023. Rome. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/db25a6ba-e947-4755-b5f0-cb1ee643f266/content (accessed on 14 May 2024).
- FAO. Agricultural Production Statistics 2000–2022. Rome. 2023; Available online: https://openknowledge.fao.org/items/a514cd44-6613-4ada-b899-bbd408c41151 (accessed on 14 May 2024).
- Nayak, A.K.; Nahar, S. Growth, instability and export performance of banana in India—An economic analysis. Agric. Ind. 2018, 74, 25–33. [Google Scholar]
- Padam, B.S.; Tin, H.S.; Chye, F.Y.; Abdullah, M.I. Banana by-products: An under-utilized renewable food biomass with great potential. JFST 2014, 51, 3527–3545. [Google Scholar] [CrossRef]
- Kamdem, I.; Hiligsmann, S.; Vanderghem, C.; Bilik, I.; Paquot, M.; Thonart, P. Comparative biochemical analysis during the anaerobic digestion of lignocellulosic biomass from six morphological parts of Williams Cavendish banana (Triploid Musa AAA group) plants. World J. Microbiol. Biotechnol. 2013, 29, 2259–2270. [Google Scholar] [CrossRef]
- Sellin, N.; de Oliveiraa, B.G.; Marangonia, C.; Souzaa, O.; de Oliveirab, A.P.N.; de Oliveiraa, T.M.N. Use of banana culture waste to produce briquettes. Chem. Eng. 2013, 32, 349–354. [Google Scholar] [CrossRef]
- World Population Review. Available online: https://worldpopulationreview.com/country-rankings/developing-countries (accessed on 21 January 2023).
- Mohapatra, D.; Mishra, S.; Sutar, N. Banana and its by-product utilisation: An overview. J. Sci. Ind. Res. 2011, 69, 323–329. [Google Scholar]
- Vu, H.T.; Scarlett, C.J.; Vuong, Q.V. Phenolic compounds within banana peel and their potential uses: A review. JFF 2018, 40, 238–248. [Google Scholar] [CrossRef]
- Khatib, M.; Giuliani, C.; Rossi, F.; Adessi, A.; Al-Tamimi, A.; Mazzola, G.; Di Gioia, D.; Innocenti, M.; Mulinacci, N. Polysaccharides from by-products of the Wonderful and Laffan pomegranate varieties: New insight into extraction and characterization. Food Chem. 2017, 235, 58–66. [Google Scholar] [CrossRef]
- Rezić, T.; Presečki, A.V.; Kurtanjek, Ž. New approach to the evaluation of lignocellulose derived by-products impact on lytic-polysaccharide monooxygenase activity by using molecular descriptor structural causality model. Bioresour. Technol. 2021, 342, 125990. [Google Scholar] [CrossRef]
- Aquino, C.F.; Salomão, L.C.C.; Ribeiro, S.M.R.; De Siqueira, D.L.; Cecon, P.R. Carbohydrates, phenolic compounds and antioxidant activity in pulp and peel of 15 banana cultivars. Rev. Bras. Frutic. 2016, 38, e-090. [Google Scholar] [CrossRef]
- Atlas Big. Available online: https://www.atlasbig.com/en-gb/countries-by-banana-production (accessed on 14 January 2023).
- Cordeiro, N.; Belgacem, M.N.; Torres, I.C.; Moura, J.C.V.P. Chemical composition and pulping of banana pseudo-stems. Ind. Crop. Prod. 2004, 19, 147–154. [Google Scholar] [CrossRef]
- Oliveira, L.; Cordeiro, N.; Evtuguin, D.V.; Torres, I.C.; Silvestre, A.J.D. Chemical composition of different morphological parts from ‘Dwarf Cavendish’banana plant and their potential as a non-wood renewable source of natural products. Ind. Crop. Prod. 2007, 26, 163–172. [Google Scholar] [CrossRef]
- Zhang, P.; Whistler, R.L.; BeMiller, J.N.; Hamaker, B.R. Banana starch: Production, physicochemical properties, and digestibility—A review. Carbohydr. Polym. 2005, 59, 443–458. [Google Scholar] [CrossRef]
- Emaga, T.H.; Roberta, C.; Ronkart, S.N.; Wathelet, B.; Paquot, M. Characterization of pectins extracted from banana peels (Musa AAA) under different conditions using an experimental design. Food Chem. 2008, 108, 463–471. [Google Scholar] [CrossRef]
- Emaga, T.H.; Roberta, C.; Ronkart, S.N.; Wathelet, B.; Paquot, M. Dietary fibre components and pectin chemical features of peels during ripening in banana and plantain varieties. Biores Technol. 2008, 99, 4346–4354. [Google Scholar] [CrossRef] [PubMed]
- Sharif Hossain, A.B.M. Nano-particle preparation from lingo-cellulose based banana peel biomass as a tool of nano-biotechnology. Glob. J. Biol. Agric. Health Sci. 2015, 4, 19–21. [Google Scholar]
- Khamsucharit, P.; Laohaphatanalert, K.; Gavinlertvatana, P.; Sriroth, K.; Sangseethong, K. Characterization of pectin extracted from banana peels of different varieties. FSB 2018, 27, 623–629. [Google Scholar] [CrossRef]
- Suchaiya, V.; Choochouy, N.; Chokboribal, J.; Khammee, T.; Nueangnun, K.; Jaroennon, P. Effects of reaction time on degree of substitution, yield and morphology of carboxymethyl cellulose from banana peel. J. Phys. Conf. Ser. 2022, 2175, 012033. [Google Scholar] [CrossRef]
- Thanyapanich, N.; Jimtaisong, A.; Rawdkuen, S. Functional properties of banana starch (Musa spp.) and its utilization in cosmetics. Molecules 2021, 26, 3637. [Google Scholar] [CrossRef]
- Rana, G.K.; Singh, Y.; Mishra, S.P.; Rahangdale, H.K. Potential use of banana and its by-products: A review. Int. J. Curr. Microbiol. App. Sci. 2018, 7, 1827–1832. [Google Scholar] [CrossRef]
- Hernandez-Carmona, F.; Morales-Matos, Y.; Lambis-Miranda, H.; Pasqualino, J. Starch extraction potential from plantain peel wastes. J. Environ. Chem. Eng. 2017, 5, 4980–4985. [Google Scholar] [CrossRef]
- Mostafa, H.S. Banana plant as a source of valuable antimicrobial compounds and its current applications in the food sector. J. Food Sci. 2021, 86, 3778–3797. [Google Scholar] [CrossRef]
- Tin, H.S.; Padam, B.S.; Chye, F.Y.; Abdullah, M.I. Study on the potential of antimicrobial compounds from banana/plantain by-products against foodborne pathogens. In Proceedings of the National Biotechnology Seminar, Kuala Lumpur, Malaysia, 24–26 May 2010. [Google Scholar]
- Chowdhury, A.; Sarkar, J.; Chakraborti, T.; Pramanik, P.K.; Chakraborti, S. Protective role of epigallocatechin-3-gallate in health and disease: A perspective. Biomed. Pharmacother. 2016, 78, 50–59. [Google Scholar] [CrossRef]
- Novidiyanto, N.; Enardi, O.P.; Devriany, A.; Pratiwi, A.P.; Airuni, M. Acceptability and antioxidant activity level of shredded banana flower-chicken meat. Amerta Nutr. 2020, 4, 299–306. [Google Scholar] [CrossRef]
- Schmidt, M.M.; Kubota, E.H.; Prestes, R.C.; Mello, R.O.; Rosa, C.S.; Scapin, G.; Ferreira, S. Development and evaluation of pork burger with added natural antioxidant based on extract of banana inflorescence (Musa cavendishii). CYTA J. Food 2016, 14, 280–288. [Google Scholar] [CrossRef]
- Rodrigues, A.S.; Kubota, E.H.; da Silva, C.G.; dos Santos Alves, J.; Hautrive, T.P.; Rodrigues, G.S.; Campagnol, P.C.B. Banana inflorescences: A cheap raw material with great potential to be used as a natural antioxidant in meat products. Meat Sci. 2020, 161, 107991. [Google Scholar] [CrossRef]
- Vu, H.T.; Scarlett, C.J.; Vuong, Q.V. Optimization of ultrasound-assisted extraction conditions for recovery of phenolic compounds and antioxidant capacity from banana (Musa cavendish) peel. J. Food Process. Preserv. 2016, 41, e13148. [Google Scholar] [CrossRef]
- Schieber, A.; Stintzing, F.C.; Carle, R. By-products of plant food processing as a source of functional compounds—Recent developments. Trends Food Sci. Technol. 2001, 12, 401–413. [Google Scholar] [CrossRef]
- Archibald, J.G. Nutrient composition of banana skins. JDS 1949, 32, 969–971. [Google Scholar] [CrossRef]
- Lustre, A.O.; Soriano, M.S.; Morga, N.S.; Balagot, A.H.; Tunac, M.M. Physico-chemical changes in ‘Saba’ bananas during normal and acetylene-induced ripening. Food Chem. 1976, 1, 125–137. [Google Scholar] [CrossRef]
- Adisa, V.A.; Okey, E.N. Carbohydrate and protein composition of banana pulp and peel as influenced by ripening and mold contamination. Food Chem. 1987, 25, 85–91. [Google Scholar] [CrossRef]
- Anhwange, B.A.; Ugye, T.J.; Nyiaatagher, T.D. Chemical composition of Musa sapientum (banana) peels. Electron. J. Environ. J. Agric. Food Chem. 2009, 8, 437–442. [Google Scholar]
- Velumani, A.; Kandhavadivu, P.; Parthiban, M. Influence of blend proportion on mechanical properties of banana/cotton blended knit fabric. IJFTR 2021, 46, 41–47. [Google Scholar]
- Ritchie, H.; Roser, M. Clean Water and Sanitation, 2021, Our World in Data. Available online: https://ourworldindata.org/clean-water-sanitation (accessed on 20 January 2023).
- Faeth, P.; Weinthal, E. How access to clean water prevents conflict. Solut. J. 2012, 3, 70–76. [Google Scholar]
- Udosen, E.O.; Enang, M.I. Chemical composition and soaping characteristics of peels from plantain (Musa paradisiaca) and banana (Musa sapientum). GJPACR 2000, 6, 79–82. [Google Scholar] [CrossRef]
- Yavuz, Ö.; Aydin, A.H. Removal of direct dyes from aqueous solution using various adsorbents. Pol. J. Environ. Stud. 2006, 15, 155–161. [Google Scholar]
- Mia, R.; Selim, M.; Shamim, A.M.; Chowdhury, M.; Sultana, S.; Armin, M.; Hossain, M.; Akter, R.; Dey, S.; Naznin, H. Review on various types of pollution problem in textile dyeing & printing industries of Bangladesh and recommandation for mitigation. JTEFT 2019, 5, 220–226. [Google Scholar] [CrossRef]
- Sheng, Z.; Shen, Y.; Dai, H.; Pan, S.; Ai, B.; Zheng, L.; Zheng, X.; Xu, Z. Physicochemical characterization of raw and modified banana pseudostem fibers and their adsorption capacities for heavy metal Pb2+ and Cd2+ in water. Polym. Compos. 2018, 39, 1869–1877. [Google Scholar] [CrossRef]
- Faradilla, R.H.; Lee, G.; Roberts, J.; Martens, P.; Stenzel, M.; Arcot, J. Effect of glycerol, nanoclay and graphene oxide on physicochemical properties of biodegradable nanocellulose plastic sourced from banana pseudo-stem. Cellulose 2018, 25, 399–416. [Google Scholar] [CrossRef]
- Vishnu Vardhini, K.J.; Murugan, R.; Surjit, R. Effect of alkali and enzymatic treatments of banana fibre on properties of banana/polypropylene composites. J. Ind. Text. 2018, 47, 1849–1864. [Google Scholar] [CrossRef]
- Alpizar, F.; Carlsson, F.; Lanza, G.; Carney, B.; Daniels, R.C.; Jaime, M.; Ho, T.; Nie, Z.; Salazar, C.; Tibesigwa, B.; et al. A framework for selecting and designing policies to reduce marine plastic pollution in developing countries. Environ. Sci. Policy 2020, 109, 25–35. [Google Scholar] [CrossRef]
- Kennedy, J. Bananas and people in the homeland of genus Musa: Not just pretty fruit. Ethnobot. Res. Appl. 2009, 7, 179–197. [Google Scholar] [CrossRef]
- Sogi, D.S. Value-Added Processing and Utilization of Banana By-Products. In Handbook of Banana Production, Postharvest Science, Processing Technology, and Nutrition, 1st ed.; Siddiq, M., Ahmed, J., Lobo, M.G., Eds.; John Wiley & Sons Ltd.: West Sussex, UK, 2020; Volume 10, pp. 191–206. [Google Scholar] [CrossRef]
- Čolović, D.; Rakita, S.; Banjac, V.; Đuragić, O.; Čabarkapa, I. Plant food by-products as feed: Characteristics, possibilities, environmental benefits, and negative sides. Food Rev. Int. 2019, 35, 363–389. [Google Scholar] [CrossRef]
- Amarnath, R.; Balakrishnan, V. Evaluation of the banana (Musa paradisiaca) plant by-product’s fermentation characteristics to assess their fodder potential. Int. J. Dairy Sci. 2007, 2, 217–225. [Google Scholar] [CrossRef]
- Matekaire, T.; Mupangwa, J.F.; Kanyamura, E.F. The efficacy of banana plant (Musa paradisiaca) as a coccidiostat in rabbits. Int. J. Appl. Res. Vet. Med. 2005, 3, 326. [Google Scholar]
- Ogolla, K.O.; Chebet, J.; Gathumbi, P.K.; Waruiru, R.M.; Okumu, P.O.; Munyua, W.K.; Kitala, P.; Gichure, J.N.; Wanyoike, M.M.; Mailu, S.; et al. Farmer practices that influence risk factors, prevalence and control strategies of rabbit coccidiosis in Central Kenya. Livest. Res. Rural. Dev. 2017, 29, 1–20. [Google Scholar]
- Hamid, P.H.; Prastowo, S.; Kristianingrum, Y.P. Intestinal and hepatic coccidiosis among rabbits in Yogyakarta, Indonesia. Vet. World 2019, 12, 1256. [Google Scholar] [CrossRef]
- Essien, J.P.; Akpan, E.J.; Essien, E.P. Studies on mould growth and biomass production using waste banana peel. Bioresour. Technol. 2005, 96, 1451–1456. [Google Scholar] [CrossRef]
- Rathore, R.S.; Garg, N.; Garg, S.; Kumar, A. Starch phosphorylase: Role in starch metabolism and biotechnological applications. Crit. Rev. Biotechnol. 2009, 29, 214–224. [Google Scholar] [CrossRef]
- Hong, K.J.; Lee, C.H.; Kim, S.W. Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. J. Med. Food 2004, 7, 430–435. [Google Scholar] [CrossRef]
- Tartrakoon, T.; Chalearmsan, N.; Vearasilp, T.; Meulen, U.T. The nutritive value of banana peel (Musa sapieutum L.) in growing pigs. In Proceedings of the Deutscher Tropentag, Berlin, Germany, 14–15 October 1999. [Google Scholar]
- Baijal, M.; Singh, S.; Shukla, R.N.; Sanwal, G.G. Enzymes of the banana plant: Optimum conditions for extraction. Phytochemistry 1972, 11, 929–936. [Google Scholar] [CrossRef]
- Da Mota, R.V.; Cordenunsi, B.R.; Do Nascimento, J.R.; Purgatto, E.; Rosseto, M.R.; Lajolo, F.M. Activity and expression of banana starch phosphorylases during fruit development and ripening. Planta 2002, 216, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Idrees, M.; Adnan, A.; Malik, F.; Qureshi, F.A. Enzymatic saccharification and lactic acid production from banana pseudo-stem through optimized pretreatment at lowest catalyst concentration. EXCLI J. 2013, 12, 269–281. [Google Scholar] [PubMed]
- de Jesus, L.C.L.; Santos, R.C.V.; Quaresma, L.S.; Américo, M.F.; Rodrigues, T.V.; Freitas, A.d.S.; Campos, G.M.; Dutra, J.d.C.F.; Barroso, F.A.L.; Laguna, J.G.; et al. Health-Promoting Effects and Safety Aspects of Lactobacillus delbrueckii: A Food Industry Species. Trends Food Sci. 2024, 150, 104605. [Google Scholar] [CrossRef]
- Tsapekos, P.; Alvarado-Morales, M.; Baladi, S.; Bosma, E.F.; Angelidaki, I. Fermentative production of lactic acid as a sustainable approach to valorize household bio-waste. Front. Sustain. 2020, 1, 4. [Google Scholar] [CrossRef]
- Huang, J.; Wang, J.; Liu, S. Advanced fermentation techniques for lactic acid production from agricultural waste. Fermentation 2023, 9, 765. [Google Scholar] [CrossRef]
- Tian, X.; Chen, H.; Liu, H.; Chen, J. Recent advances in lactic acid production by lactic acid bacteria. Appl. Biochem. Biotechnol. 2021, 193, 4151–4171. [Google Scholar] [CrossRef]
- Martínez-Trujillo, M.A.; Bautista-Rangel, K.; García-Rivero, M.; Martínez-Estrada, A.; Cruz-Díaz, M.R. Enzymatic saccharification of banana peel and sequential fermentation of the reducing sugars to produce lactic acid. Bioprocess Biosyst. Eng. 2020, 43, 413–427. [Google Scholar] [CrossRef]
- Mohd Sharif, N.S.A.; Thor, E.S.; Zainol, N.; Jamaluddin, M.F. Optimization of ferulic acid production from banana stem waste using central composite design. Environ. Prog. Sustain. 2017, 36, 1217–1223. [Google Scholar] [CrossRef]
- Saravanan, K.; Aradhya, S.M. Polyphenols of pseudostem of different banana cultivars and their antioxidant activities. J. Agric. Food Chem. 2011, 59, 3613–3623. [Google Scholar] [CrossRef]
- Sharma, M.; Patel, S.N.; Sangwan, R.S.; Singh, S.P. Biotransformation of banana pseudostem extract into a functional juice containing value added biomolecules of potential health benefits. Indian J. Exp. Biol. 2017, 55, 453–462. [Google Scholar]
- Ramu, R.; Shirahatti, P.S.; Zameer, F.; Nagendra Prasad, M.N. Investigation of antihyperglycaemic activity of banana (Musa sp. var. Nanjangud rasa bale) pseudostem in normal and diabetic rats. J. Sci. Food Agric. 2015, 95, 165–173. [Google Scholar] [CrossRef]
- Kuo, J.M.; Hwang, A.; Yeh, D.B.; Pan, M.H.; Tsai, M.L.; Pan, B.S. Lipoxygenase from banana leaf: Purification and characterization of an enzyme that catalyzes linoleic acid oxygenation at the 9-position. J. Agric. Food Chem. 2006, 54, 3151–3156. [Google Scholar] [CrossRef] [PubMed]
- Morais, D.R.; Rotta, E.M.; Sargi, S.C.; Schmidt, E.M.; Bonafe, E.G.; Eberlin, M.N.; Sawaya, A.C.H.F.; Visentainer, J.V. Antioxidant activity, phenolics and UPLC–ESI (–)–MS of extracts from different tropical fruits parts and processed peels. Food Res. Int. 2015, 77, 392–399. [Google Scholar] [CrossRef]
- Oliveira, T.Í.S.; Rosa, M.F.; Cavalcante, F.L.; Pereira, P.H.F.; Moates, G.K.; Wellner, N.; Mazzetto, S.E.; Waldron, K.W.; Azeredo, H.M. Optimization of pectin extraction from banana peels with citric acid by using response surface methodology. Food Chem. 2016, 198, 113–118. [Google Scholar] [CrossRef]
- Eixenberger, D.; Carballo-Arce, A.F.; Vega-Baudrit, J.R.; Trimino-Vazquez, H.; Villegas-Peñaranda, L.R.; Stöbener, A.; Aguilar, F.; Mora-Villalobos, J.A.; Sandoval-Barrantes, M.; Bubenheim, P.; et al. Tropical agroindustrial biowaste revalorization through integrative biorefineries—Review part II: Pineapple, sugarcane and banana by-products in Costa Rica. Biomass Convers. Biorefinery 2022, 14, 4391–4418. [Google Scholar] [CrossRef]
- Ji, L.; Srzednicki, G. Extraction of aromatic compounds from banana peels. Acta Hortic. 2015, 1088, 541–546. [Google Scholar] [CrossRef]
- Alkarkhi, A.F.; bin Ramli, S.; Yong, Y.S.; Easa, A.M. Comparing physicochemical properties of banana pulp and peel flours prepared from green and ripe fruits. Food Chem. 2011, 129, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, H.M. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. JRRAS 2015, 8, 265–275. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Vaseeharan, B.; Malaikozhundan, B.; Gopi, N.; Ekambaram, P.; Pachaiappan, R.; Velusamy, P.; Murugan, K.; Benelli, G.; Kumar, R.S.; et al. Therapeutic effects of gold nanoparticles synthesized using Musa paradisiaca peel extract against multiple antibiotic resistant Enterococcus faecalis biofilms and human lung cancer cells (A549). Microb. Pathog. 2017, 102, 173–183. [Google Scholar] [CrossRef]
- Aehla, P.F.; Vijayalakshmi, D.; Suvarna, V.C.; Yatnatti, S. Processing of banana blossom and its application in food product. Int. J. Curr. Microbiol. App. Sci 2018, 7, 1243–1250. [Google Scholar]
- Amornlerdpison, D.; Choommongkol, V.; Narkprasom, K.; Yimyam, S. Bioactive compounds and antioxidant properties of banana inflorescence in a beverage for maternal breastfeeding. Appl. Sci. 2020, 11, 343. [Google Scholar] [CrossRef]
- Ovando-Martinez, M.; Sáyago-Ayerdi, S.; Agama-Acevedo, E.; Goñi, I.; Bello-Pérez, L.A. Unripe banana flour as an ingredient to increase the undigestible carbohydrates of pasta. Food Chem. 2009, 113, 121–126. [Google Scholar] [CrossRef]
- bin Ramli, S.; Alkarkhi, A.F.M.; Yong, Y.S.; Easa, A.M. Physicochemical Properties of Banana Flour as Influenced by Variety and Stage of Ripeness: Multivariate Statistical Analysis. Nong Ye Ke Xue Yu Ji Shu 2010, 4, 69. [Google Scholar]
- Wang, Y.; Zhang, M.; Mujumdar, A.S. Influence of green banana flour substitution for cassava starch on the nutrition, color, texture and sensory quality in two types of snacks. LWT 2012, 47, 175–182. [Google Scholar] [CrossRef]
- Kraithong, S.; Issara, U. A strategic review on plant by-product from banana harvesting: A potentially bio-based ingredient for approaching novel food and agro-industry sustainability. J. Saudi Soc. Agric. Sci. 2021, 20, 530–543. [Google Scholar] [CrossRef]
- Lockwood, M. Fossil fuel subsidy reform, rent management and political fragmentation in developing countries. New Political Econ. 2015, 20, 475–494. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, Z.; Song, N.; Li, X. High-performance supercapacitors and batteries derived from activated banana-peel with porous structures. Electrochim. Acta 2016, 222, 1257–1266. [Google Scholar] [CrossRef]
- Ahmad, K.K.; Sazali, K.; Kamarolzaman, A.A. Characterization of fuel briquettes from banana tree waste. Mater. Today Proc. 2018, 5, 21744–21752. [Google Scholar] [CrossRef]
- Singh, D.; Singh, A.; Sengar, M.; Singh, S.; Mishra, V.; Singh, D.; Mishra, A.; Shankar, R.; Giri, B.S. An eco-friendly approach for bioelectricity production through microbial fuel cell using Musa acuminata as waste biomass. J. Indian Chem. Soc. 2024, 101, 101180. [Google Scholar] [CrossRef]
- Verma, M.; Mishra, V. Bioelectricity generation by microbial degradation of banana peel waste biomass in a dual-chamber S. cerevisiae-based microbial fuel cell. Biomass Bioenergy 2023, 168, 106677. [Google Scholar] [CrossRef]
- Kumar, K.S.; Bhowmik, D.; Duraivel, S.; Umadevi, M. Traditional and medicinal uses of banana. J. Pharmacogn. Phytochem. 2012, 1, 51–63. [Google Scholar]
- Imam, M.Z.; Akter, S. Musa paradisiaca L. and Musa sapientum L.: A phytochemical and pharmacological review. J. Appl. Pharm. Sci. 2011, 5, 14–20. [Google Scholar]
- Kurtoglu, G.; Yildiz, S. Extraction of fructo-oligosaccaride components from banana peels. GUJS 2011, 24, 877–882. [Google Scholar]
- Rabbani, G.H.; Teka, T.; Zaman, B.; Majid, N.; Khatun, M.; Fuchs, G.J. Clinical studies in persistent diarrhea: Dietary management with green banana or pectin in Bangladeshi children. Gastroenterology 2001, 121, 554–560. [Google Scholar] [CrossRef]
- Höllein, L.; Kaale, E.; Mwalwisi, Y.H.; Schulze, M.H.; Holzgrabe, U. Routine quality control of medicines in developing countries: Analytical challenges, regulatory infrastructures and the prevalence of counterfeit medicines in Tanzania. TrAC 2016, 76, 60–70. [Google Scholar] [CrossRef]
- Acosta, A.; Vanegas, E.P.; Rovira, J.; Godman, B.; Bochenek, T. Medicine shortages: Gaps between countries and global perspectives. Front. Pharmacol. 2019, 10, 763. [Google Scholar] [CrossRef] [PubMed]
- Boots, A.W.; Haenen, G.R.; Bast, A. Health effects of quercetin: From antioxidant to nutraceutical. Eur. J. Pharmacol. 2008, 585, 325–337. [Google Scholar] [CrossRef]
- Cheng, J.C.; Dai, F.; Zhou, B.; Yang, L.; Liu, Z.L. Antioxidant activity of hydroxycinnamic acid derivatives in human low density lipoprotein: Mechanism and structure–activity relationship. Food Chem. 2007, 104, 132–139. [Google Scholar] [CrossRef]
- Delgado, A.M.; Issaoui, M.; Chammem, N. Analysis of main and healthy phenolic compounds in foods. J. AOAC Int. 2019, 102, 1356–1364. [Google Scholar] [CrossRef]
- González-Montelongo, R.; Lobo, M.G.; González, M. Antioxidant activity in banana peel extracts: Testing extraction conditions and related bioactive compounds. Food Chem. 2010, 119, 1030–1039. [Google Scholar] [CrossRef]
- Hernández-Carranza, P.; Ávila-Sosa, R.; Guerrero-Beltrán, J.A.; Navarro-Cruz, A.R.; Corona-Jiménez, E.; Ochoa-Velasco, C.E. Optimization of antioxidant compounds extraction from fruit by-products: Apple pomace, orange and banana peel. J. Food Process. Preserv. 2016, 40, 103–115. [Google Scholar] [CrossRef]
- Sulaiman, S.F.; Yusoff, N.A.M.; Eldeen, I.M.; Seow, E.M.; Sajak, A.A.B.; Ooi, K.L. Correlation between total phenolic and mineral contents with antioxidant activity of eight Malaysian bananas (Musa sp.). J. Food Compos. Anal. 2011, 24, 1–10. [Google Scholar] [CrossRef]
- Kanazawa, K.; Sakakibara, H. High content of dopamine, a strong antioxidant, in cavendish banana. J. Agric. Food Chem. 2000, 48, 844–848. [Google Scholar] [CrossRef]
- Aziz, N.H.; Farag, S.E.; Mousa, L.A.; Abo-Zaid, M.A. Comparative antibacterial and antifungal effects of some phenolic compounds. Microbios 1998, 93, 43–54. [Google Scholar] [PubMed]
- Jallow, A.; Xie, H.; Tang, X.; Qi, Z.; Li, P. Worldwide aflatoxin contamination of agricultural products and foods: From occurrence to control. CRFSFS 2021, 20, 2332–2381. [Google Scholar] [CrossRef]
- Memon, J.R.; Memon, S.Q.; Bhanger, M.I.; Memon, G.Z.; El-Turki, A.; Allen, G.C. Characterization of banana peel by scanning electron microscopy and FT-IR spectroscopy and its use for cadmium removal. Colloids Surf B Biointerfaces 2008, 66, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Memon, J.R.; Memon, S.Q.; Bhanger, M.I.; El-Turki, A.; Hallam, K.R.; Allen, G.C. Banana peel: A green and economical sorbent for the selective removal of Cr (VI) from industrial wastewater. Colloids Surf B Biointerfaces 2009, 70, 232–237. [Google Scholar] [CrossRef]
- Castro, R.S.; Caetano, L.; Ferreira, G.; Padilha, P.M.; Saeki, M.J.; Zara, L.F.; Martines, M.A.U.; Castro, G.R. Banana peel applied to the solid phase extraction of copper and lead from river water: Preconcentration of metal ions with a fruit waste. Ind. Eng. Chem. Res. 2011, 50, 3446–3451. [Google Scholar] [CrossRef]
- Oyewo, O.A.; Onyango, M.S.; Wolkersdorfer, C. Application of banana peels nanosorbent for the removal of radioactive minerals from real mine water. J. Environ. Radioact. 2016, 164, 369–376. [Google Scholar] [CrossRef]
- Getachew, T.; Hussen, A.; Rao, V.M. Defluoridation of water by activated carbon prepared from banana (Musa paradisiaca) peel and coffee (Coffea arabica) husk. IJEST 2015, 12, 1857–1866. [Google Scholar] [CrossRef]
- Reddy, C.A.; Prashanthi, N.; Babu, P.H.; Mahale, J.S. Banana peel as a biosorbent in removal of nitrate from water. Development 2015, 2, 94–98. [Google Scholar] [CrossRef]
- Kamsonlian, S.; Suresh, S.; Majumder, C.B.; Chand, S. Characterization of banana and orange peels: Biosorption mechanism. Int. J. Sci. Technol. 2011, 2, 1–7. [Google Scholar]
- Low, K.S.; Lee, C.K.; Leo, A.C. Removal of metals from electroplating wastes using banana pith. Bioresour. Technol. 1995, 51, 227–231. [Google Scholar] [CrossRef]
- Ogunleye, O.O.; Ajala, M.A.; Agarry, S.E. Evaluation of biosorptive capacity of banana (Musa paradisiaca) stalk for lead (II) removal from aqueous solution. J. Environ. Prot. 2014, 5, 1451. [Google Scholar] [CrossRef]
- Sumiyati, S.; Huboyo, H.S.; Ramadan, B.S. Potential Use of Banana Plant (Musa spp.) as Bio-sorbent Materials for Controlling Gaseous Pollutants. In Proceedings of the 4th International Conference on Energy, Environment, Epidemiology and Information System (ICENIS 2019), Semarang, Indonesia, 7–8 August 2019. [Google Scholar]
- Mordi, R.C.; Fadiaro, A.E.; Owoeye, T.F.; Olanrewaju, I.O.; Uzoamaka, G.C.; Olorunshola, S.J. Identification by GC-MS of the components of oils of banana peels extract, phytochemical and antimicrobial analyses. Res. J. Phytochem. 2016, 10, 39–44. [Google Scholar] [CrossRef]
- Rattanavichai, W.; Cheng, W. Dietary supplement of banana (Musa acuminata) peels hot-water extract to enhance the growth, anti-hypothermal stress, immunity and disease resistance of the giant freshwater prawn, Macrobrachium rosenbergii. Fish Shellfish. Immunol. 2015, 43, 415–426. [Google Scholar] [CrossRef]
- Subasinghe, R.P. Epidemiological approach to aquatic animal health management: Opportunities and challenges for developing countries to increase aquatic production through aquaculture. Prev. Vet. Med. 2005, 67, 117–124. [Google Scholar] [CrossRef]
- Preeti, J.; Mahmood, H.B.; Khondker, R.H.; Sitesh, C.B. Antibacterial and antioxidant activities of local seeded banana fruits. AJPP 2011, 5, 1398–1403. [Google Scholar] [CrossRef]
- Devatkal, S.K.; Kumboj, R.; Paul, D. Comparative antioxidant effect of BHT and water extracts of banana and sapodilla peels in raw poultry meat. JFST 2014, 51, 387–391. [Google Scholar] [CrossRef]
- Kurhade, A.H.; Waghmare, J.S. Effect of banana peel oleoresin on oxidative stability of sunflower and soybean oil. J. Food Process. Preserv. 2015, 39, 1788–1797. [Google Scholar] [CrossRef]
- Hammond, S.T.; Brown, J.H.; Burger, J.R.; Flanagan, T.P.; Fristoe, T.S.; Mercado-Silva, N.; Nekola, J.C.; Okie, J.G. Food spoilage, storage, and transport: Implications for a sustainable future. BioScience 2015, 65, 758–768. [Google Scholar] [CrossRef]
- Walker, P. Food Residuals: Waste Product, by-Product, or Coproduct. In Food Waste to Animal Feed, 1st ed.; Westendorf, M.L., Ed.; Iowa State University Press: Ames, IA, USA, 2000; pp. 17–30. [Google Scholar] [CrossRef]
- Sugiura, K.; Yamatani, S.; Watahara, M.; Onodera, T. Ecofeed, animal feed produced from recycled food waste. Vet. Ital. 2009, 45, 397–404. [Google Scholar] [PubMed]
- Kwak, W.S.; Kang, J.S. Effect of feeding food waste-broiler litter and bakery by-product mixture to pigs. Bioresour. Technol. 2006, 97, 243–249. [Google Scholar] [CrossRef]
- Mohiuddin, A.K.M.; Saha, M.K.; Hossian, M.S.; Aysha Ferdoushi, A.F. Usefulness of banana (Musa paradisiaca) wastes in manufacturing of bio-products: A review. Agriculturists 2014, 12, 148–158. [Google Scholar] [CrossRef]
- Ramesh, M.; Atreya, T.S.A.; Aswin, U.S.; Eashwar, H.; Deepa, C. Processing and mechanical property evaluation of banana fiber reinforced polymer composites. Procedia Eng. 2014, 97, 563–572. [Google Scholar] [CrossRef]
- Bhatnagar, R.; Gupta, G.; Yadav, S. A review on composition and properties of banana fibers. Int. J. Sci. Eng. Res. 2015, 6, 49–52. [Google Scholar]
- Vigneswaran, C.; Pavithra, V.; Gayathri, V.; Mythili, K. Banana fiber: Scope and value added product development. J. Text. Appar. Technol. 2015, 9, 1–7. [Google Scholar]
- Sapuan, S.M.; Leenie, A.; Harimi, M.; Beng, Y.K. Mechanical properties of woven banana fibre reinforced epoxy composites. Mater. Des. 2006, 27, 689–693. [Google Scholar] [CrossRef]
- Preethi, P.; Balakrishna Murthy, G. Physical and chemical properties of banana fibre extracted from commercial banana cultivars grown in Tamilnadu State. Agrotechnol 2013, 11, 1–3. [Google Scholar] [CrossRef]
- Kulkarni, A.G.; Satyanarayana, K.G.; Rohatgi, P.K.; Vijayan, K. Mechanical properties of banana fibres (Musa sepientum). J. Mater. Sci. 1983, 18, 2290–2296. [Google Scholar] [CrossRef]
- Soiraya, B.; Phuenpipob, C.; Duangkamol, T.; Siripun, A.; Theeramongkol, P. The Development of Green Packaging from Banana Fiber for Instant Food Products; Intellectual Repository at Rahamangala University of Technology: Phra Nakhon, Thailand, 2012; pp. 3–4. [Google Scholar]
- Zou, F.; Tan, C.; Zhang, B.; Wu, W.; Shang, N. The Valorization of Banana By-Products: Nutritional Composition, Bioactivities, Applications, and Future Development. Foods 2022, 11, 3170. [Google Scholar] [CrossRef] [PubMed]
- Nazir, N.; Olabisi, L.S.; Ahmad, S. Forest wood consumption and wood shortage in Pakistan: Estimation and projection through system dynamics. Pak. Dev. Rev. 2018, 57, 73–98. [Google Scholar] [CrossRef]
- Agriculture Information. Available online: https://www.agricultureinformation.com/ (accessed on 20 April 2024).
- Ecosilky. Available online: https://ecosilky.com.vn/en/ (accessed on 20 April 2024).
- Musa Pacta. Available online: https://musapacta.com.vn/ (accessed on 20 April 2024).
- Tibolla, H.; Pelissari, F.M.; Menegalli, F.C. Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. LWT 2014, 59, 1311–1318. [Google Scholar] [CrossRef]
Compound | Inflorescence | Leaf Sheaths | Leaf Blade | Petioles/mid rib | Pseudostem | Rachis |
---|---|---|---|---|---|---|
Arabinose | 5.1 m | 7.5 m | 15.5 m | 4.9 m | 9.1 m | 4.1 m |
Cellulose | 15.7 m | 37.3 m | 20.4 | 31.0 m | 34–40 m | 31.0 m |
Galactose | 2.9 m | 2.2 m | 3.8 m | 1.1 m | 2.5 m | 1.7 m |
Glucose | 79.8 m | 74.2 m | 60 m | 68.1 m | 74.0 m | 31.8 m |
Holocellulose | 20.3 m | 49.7 m | 32.1 m | 62.7 m | 60–65 m | 37.9 m |
Lignin | 10.7 m | 13.3 m | 24.3 m | 18.0 m | 12.0 m | 10.5 m |
Mannose | 2.2 m | 1.5 m | 2.3 m | 1.5 m | 1.3 m | 2.9 m |
Rhamnose | 0.7 m | 0.8 m | 0.9 m | 0.8 m | - | 0.7 m |
Xylose | 9.3 m | 13.8 m | 17.5 m | 23.6 m | 13.1 m | 14.0 m |
Ash | 26.1% | 19.0% | 19.4% | 11.6% | 14.0% | 26.8% |
Calcium | 0.6% | 5.5% | 8.0% | 32.3% | 7.5% | 0.6% |
Magnesium | 0.5% | 1.9% | 1.1% | 2.9% | 4.3% | 0.3% |
Phosphorous | 0.7% | 0.9% | 0.7% | 0.7% | 2.2% | 1.7% |
Potassium | 23.1% | 21.4% | 11.6% | 9.4% | 33.4% | 28.0% |
Silicon | 7.8% | 2.7% | 24.9% | 7.0% | 2.7% | 1.2% |
Pentosans | 8.0 m | 12.4 m | 12.1 m | 16.2 m | - | 8.3 m |
Proteins | 3.2 m | 1.9 m | 8.3 m | 1.6 m | - | 2.0 m |
Starch | 26.3 m | 8.4 | 1.1 m | 0.4 m | - | 1.4 m |
Compound | Peel |
---|---|
Moisture | 83.50% |
Total sugar | 29% |
Cellulose | 8.40% |
Fructose | 6.20% |
Sucrose | 2.60% |
Glucose | 2.40% |
Proteins | 1.80% |
Fat | 1.70% |
Starch | 1.20% |
Maltose | 0% |
Potassium (K) | 78.10 ± 6.580 * mg/100 g |
Manganese (Mn) | 76.20 ± 0.001 mg/100 g |
Sodium (Na) | 24.30 ± 0.120 mg/100 g |
Calcium (Ca) | 19.20 ± 0.001 mg/100 g |
Iron (Fe) | 0.61 ± 0.001 mg/100 g |
Rubidium (Rb) | 0.21 ± 0.050 mg/100 g |
Bromine (Br) | 0.04 ± 0.001 mg/100 g |
Strontium (Sr) | 0.03 ± 0.010 mg/100 g |
Niobium (Nb) | 0.02 ± 0.001 mg/100 g |
Zirconium (Zr) | 0.02 ± 0.001 mg/100 g |
Phosphorylase I | Phosphorylase II | |
---|---|---|
KCl concentration for extraction | 0.125–0.2 M | 0.25–0.35 M |
Subunit size [kDa] | 90.6 | 112 |
Native molecular weight [kDa] | 155 | 290 |
Affinity | High affinity towards branched glucans | Low affinity towards branched glucans; the highest affinity and specificity for maltopentaose and maltohexaose |
Form | Dimer | Dimer |
Isoelectric point [pH] | 5.0 | N/E |
Other characteristics | Similar to the cytosolic phosphorylases from other plant tissues | N/E |
N/E | Has an ability to attack starch granules when associated with a-amylases |
Compound | Content, % |
---|---|
Cellulose | 50–60 |
Hemicelluloses | 25–30 |
Lignin | 12–18 |
Pectin | 3–5 |
Water-soluble materials | 2–3 |
Fat and wax | 3–5 |
Ash | 1–1.5 |
Mechanical Property | Value |
---|---|
Density | 1–1.5 g/m3 |
Elongation at break | 4.5–6.5% |
Young’s modulus | 20 GPa |
Microfibrillar angle | 11 deg |
Lumen size | 5 mm |
Average strength | 3.93 cN/dtex |
Medial fineness | 2386 Nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waraczewski, R.; Sołowiej, B.G. Potential Valorization of Banana Production Waste in Developing Countries: Bio-Engineering Aspects. Fibers 2024, 12, 72. https://doi.org/10.3390/fib12090072
Waraczewski R, Sołowiej BG. Potential Valorization of Banana Production Waste in Developing Countries: Bio-Engineering Aspects. Fibers. 2024; 12(9):72. https://doi.org/10.3390/fib12090072
Chicago/Turabian StyleWaraczewski, Robert, and Bartosz G. Sołowiej. 2024. "Potential Valorization of Banana Production Waste in Developing Countries: Bio-Engineering Aspects" Fibers 12, no. 9: 72. https://doi.org/10.3390/fib12090072
APA StyleWaraczewski, R., & Sołowiej, B. G. (2024). Potential Valorization of Banana Production Waste in Developing Countries: Bio-Engineering Aspects. Fibers, 12(9), 72. https://doi.org/10.3390/fib12090072