A High-Flexibility Contact Force Sensor Based on the 8-Shaped Wound Polymer Optical Fiber for Human Safety in Human–Robot Collaboration
Abstract
:1. Introduction
2. Principle and Fabrication of Sensors
2.1. Structure and Principle of Sensors
2.2. Model of the Sensor
2.3. Fabrication and Calibration of Sensors
3. Experiments and Results
3.1. Sensitivity and Hysteresis
3.2. Response Rate
3.3. Repeatability
4. Discussion
4.1. Simulation Analysis
4.2. Comparison with Other Force Sensors
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- ISO/TS 15066; Robots and Robotic Devices—Collaborative Robots. ISO: Geneva, Switzerland, 2016.
- Marvel, J.A. Sensors for safe, collaborative robots in smart manufacturing. In Proceedings of the 2017 IEEE Sensors, Glasgow, UK, 29 October–1 November 2017; Volume 2017, pp. 1–3. [Google Scholar]
- Ge, C.; Wang, Z.; Liu, Z.; Wu, T.; Wang, S.; Ren, X.; Chen, D.; Zhao, J.; Hu, P.; Zhang, J. A Capacitive and Piezoresistive Hybrid Sensor for Long-Distance Proximity and Wide-Range Force Detection in Human-Robot Collaboration. Adv. Intell. Syst. 2022, 4, 2100213. [Google Scholar] [CrossRef]
- Hua, H.; Liao, Z.; Liu, Y.; Wu, X.; Zhao, J.; Song, J. Compliant human-robot object transfer based on modular 3-axis force sensor for collaborative manufacturing. ISA Trans. 2023, 141, 482–495. [Google Scholar] [CrossRef] [PubMed]
- Zareinia, K.; Maddahi, Y.; Gan, L.S.; Ghasemloonia, A.; Lama, S.; Sugiyama, T.; Yang, F.W.; Sutherland, G.R. A Force-sensing Bipolar Forceps to Quantify Tool-tissue Interaction Forces in Microsurgery. IEEE/ASME Trans. Mechatron. 2016, 21, 2365–2377. [Google Scholar] [CrossRef]
- Yim, H.; Kang, H.; Moon, S.; Kim, Y.; Nguyenb, T.D.; Choi, H.R. Multi-functional safety sensor coupling capacitive and inductive measurement for physical Human–Robot Interaction. Sens. Actuators A Phys. 2023, 354, 114285. [Google Scholar] [CrossRef]
- Iandolo, R.; Marini, F.; Semprini, M.; Laffranchi, M.; Mugnosso, M.; Cherif, A.; De Michieli, L.; Chiappalone, M.; Zenzeri, J. Perspectives and Challenges in Robotic Neurorehabilitation. Appl. Sci. 2019, 9, 3183. [Google Scholar] [CrossRef]
- Pippo, L.; Albanese, G.A.; Zenzeri, J.; Torazza, D.; Berselli, G. Understanding human-robot interaction forces: A new mechanical solution. Int. J. Interact. Des. Manuf. 2024, 18, 4765–4774. [Google Scholar] [CrossRef]
- Yang, H.; Chen, Y.; Sun, Y.; Hao, L. A novel pneumatic soft sensor for measuring contact force and curvature of a soft gripper. Sens. Actuators A Phys. 2017, 266, 318–327. [Google Scholar] [CrossRef]
- Cho, H.; Lee, H.; Kim, Y.; Kim, J. Design of an Optical Soft Sensor for Measuring Fingertip Force and Contact Recognition. Int. J. Control Autom. Syst. 2017, 15, 16–24. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J. Model study of the influence of ambient temperature and installation types on surface temperature measurement by using a fiber bragg grating sensor. Sensors 2016, 16, 975. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhang, E.; Zhou, Z.; Tan, Y.; Liu, Y. Measurement of temperature field for the spindle of machine tool based on optical fiber bragg grating sensors. Adv. Mech. Eng. 2013, 5, 940626. [Google Scholar] [CrossRef]
- Selvaggio, M.; Fontanelli, G.A.; Marrazzo, V.R.; Bracale, U.; Irace, A.; Breglio, G.; Villani, L.; Siciliano, B.; Ficuciello, F. The MUSHA underactuated hand for robot-aided minimally invasive surgery. Int. J. Med. Robot. Comput. Assist. Surg. 2019, 15, e1981. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yi, H.; Fan, Z.; Pang, L.; Bai, M.; Wang, C.; Zhao, J. An FBG-Based 3-DOF Force Sensor With Simplified Structure for Retinal Microsurgery. IEEE Sens. J. 2022, 22, 14911–14920. [Google Scholar] [CrossRef]
- D’Abbraccio, J.; Aliperta, A.; Oddo, C.M.; Zaltieri, M.; Palermo, E.; Massari, L.; Terruso, G.; Sinibaldi, E.; Kowalczyk, M.; Schena, E. Design and Development of Large-Area FBG-Based Sensing Skin for Collaborative Robotics. In Proceedings of the 2019 II Workshop on Metrology for Industry 4.0 and IoT, Naples, Italy, 4–6 June 2019. [Google Scholar]
- Mustieles, F.J.; Ballesteros, E.; Baquero, P. Theoretical S-Bend Profile for Optimization of Optical Wwaveguide Radiation Losses. IEEE Photonics Technol. Lett. 1993, 5, 551–553. [Google Scholar] [CrossRef]
- Marcuse, D. Bending losses of the asymmetric slab waveguide. Bell Syst. Tech. J. 1971, 50, 2551–2563. [Google Scholar] [CrossRef]
- Martacilli, E.A.J. Bends in optical dielectric guides. Bell Syst. Tech. J. 1969, 48, 2103–2132. [Google Scholar]
- Argyros, A.; Lwin, R.; Large, M.C.J. Bend loss in highly multimode fibres. Opt. Express 2008, 16, 18590–18598. [Google Scholar] [CrossRef] [PubMed]
Symbol | Quantity | Value |
---|---|---|
l | Length of 8-shaped ring | 45 mm |
R | Initial radius of the 8-shaped ring | 2.5 mm |
E | Elastic modulus of PDMS | 5 Mpa |
I | Moment inertia | 0.060 cm4 |
k1 | Parameter of fiber | 0.8356 dB mm−1/2 |
k2 | Parameter of fiber | 0.9889 mm−1 |
n | Turns of the 8-shaped ring | 5 |
Description | Sensing DOF | Resolution | Used Sensors |
---|---|---|---|
Ge et al. [3] | 2 | 0.65 mm for object proximity 17.73 N for contact force | Capacitive and piezoresistive hybrid sensor |
Hua et al. [4] | 3 | 0.2 N | Modular 3-axis force sensor |
Zareinia et al. [5] | 2 | 0.31 N | Two sets of strain gauges |
Yang et al. [9] | 3 | 0.05 N | Pneumatic soft sensor |
He Zhang et al. [14] | 3 | 0.122 mN for X/Y 1.808 mN for z | 3 fibers 4 FBGs |
This work | 2 | 0.55 mN | 8-shaped fiber |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zuo, Y.; Jiang, X.; Li, X.; Yuan, W.; Cao, W. A High-Flexibility Contact Force Sensor Based on the 8-Shaped Wound Polymer Optical Fiber for Human Safety in Human–Robot Collaboration. Fibers 2025, 13, 15. https://doi.org/10.3390/fib13020015
Liu Y, Zuo Y, Jiang X, Li X, Yuan W, Cao W. A High-Flexibility Contact Force Sensor Based on the 8-Shaped Wound Polymer Optical Fiber for Human Safety in Human–Robot Collaboration. Fibers. 2025; 13(2):15. https://doi.org/10.3390/fib13020015
Chicago/Turabian StyleLiu, Yi, Yaru Zuo, Xueyao Jiang, Xuezhu Li, Weihao Yuan, and Wenhong Cao. 2025. "A High-Flexibility Contact Force Sensor Based on the 8-Shaped Wound Polymer Optical Fiber for Human Safety in Human–Robot Collaboration" Fibers 13, no. 2: 15. https://doi.org/10.3390/fib13020015
APA StyleLiu, Y., Zuo, Y., Jiang, X., Li, X., Yuan, W., & Cao, W. (2025). A High-Flexibility Contact Force Sensor Based on the 8-Shaped Wound Polymer Optical Fiber for Human Safety in Human–Robot Collaboration. Fibers, 13(2), 15. https://doi.org/10.3390/fib13020015