Effect of Polypropylene Fibers on Self-Healing and Dynamic Modulus of Elasticity Recovery of Fiber Reinforced Concrete
Abstract
:1. Introduction
2. Experimental Program
2.1. Materials
Water-Reducing Admixture (WRA)
Air-Entraining Admixtures (AEA)
2.2. Mixture Proportioning
2.3. Specimen Preparation
2.4. Testing
2.4.1. Fresh Concrete Properties
2.4.2. Hardened Concrete Properties
Compressive Strength
Resonant Frequency Testing
2.4.3. Standard Crack Inducing Jig (SCIJ)
3. Results and Discussion
3.1. Standard PFRC Properties
3.2. Resonant Frequency and Dynamic Elastic Properties
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cailleux, E.; Pollet, V. Investigations on the development of self-healing properties in protective coatings for concrete and repair mortars. In Proceedings of the 2nd International Conference on Self-Healing Materials, Chicago, IL, USA, 28 June–1 July 2009. [Google Scholar]
- Yunovich, M.; Thompson, N.G. Corrosion of Highway Bridges: Economic Impact and Control Methodologies. Concr. Int. 2003, 25, 52–57. [Google Scholar]
- Woudhuysen, J.; Abley, I. Why is Construction so Backward? Wiley-Academy: Chichester, UK; Hoboken, NJ, USA, 2004. [Google Scholar]
- Van Tittelboom, K.; de Belie, N. Self-Healing in Cementitious Materials—A Review. Materials 2013, 6, 2182–2217. [Google Scholar] [CrossRef] [PubMed]
- Li, V.C.; Yang, E.-H. Self-healing in concrete materials. In Self-Healing Materials; Springer: Berlin, Germany, 2007; pp. 161–193. [Google Scholar]
- Ferreira, J.P.J.G.; Branco, F.A.B. The use of glass fiber–reinforced concrete as a structural material. Exp. Tech. 2007, 31, 64–73. [Google Scholar] [CrossRef]
- Mu, R.; Miao, C.; Luo, X.; Sun, W. Interaction between loading, freeze–thaw cycles, and chloride salt attack of concrete with and without steel fiber reinforcement. Cem. Concr. Res. 2002, 32, 1061–1066. [Google Scholar] [CrossRef]
- Naaman, A.; Namur, G.; Najm, H.; Alwan, J. Bond Mechanisms in Fiber Reinforced Cement-Based Composites; Michigan University Ann Arbor Department of Civil Engineering: Ann Arbor, MI, USA, 1989. [Google Scholar]
- ASTM C215-14. Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Resonant Frequencies of Concrete Specimens; ASTM International: West Conshohocken, PA, USA, 2014. [Google Scholar]
- Mindess, S.; Young, J.F.; Darwin, D. Concrete, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2003. [Google Scholar]
- He, J. Damage Detection and Evaluation I. In Modal Analysis and Testing; Silva, J.M.M., Maia, N.M.M., Eds.; Springer: Dordrecht, The Netherlands, 1999; pp. 325–344. [Google Scholar]
- Malhotra, V.M.; Carino, N.J. Handbook on Nondestructive Testing of Concrete Second Edition; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Yang, Y.; Lepech, M.D.; Yang, E.-H.; Li, V.C. Autogenous healing of engineered cementitious composites under wet–dry cycles. Cem. Concr. Res. 2009, 39, 382–390. [Google Scholar] [CrossRef]
- Jacobsen, S.; Sellevold, E.J. Self-healing of high strength concrete after deterioration by freeze/thaw. Cem. Concr. Res. 1996, 26, 55–62. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, E.-H.; Li, V.C. Autogenous healing of engineered cementitious composites at early age. Cem. Concr. Res. 2011, 41, 176–183. [Google Scholar] [CrossRef]
- Abd_Elmoaty, A.E.M. Self-healing of polymer modified concrete. Alex. Eng. J. 2011, 50, 171–178. [Google Scholar] [CrossRef]
- Sahmaran, M.L.M.; Li, V.C. Transport Properties of Engineered Cementitious Composites under Chloride Exposure. ACI Mater. J. 2007, 104, 604–611. [Google Scholar]
- El-Newihy, A. Application of Impact Resonance Method for Evaluation of the Dynamic Elastic Properties of Polypropylene Fiber Reinforced Concrete. Master’s Thesis, University of Victoria, Victoria, BC, Canada, 2017. [Google Scholar]
- Azarsa, P.; Gupta, R. Electrical Resistivity of Concrete for Durability Evaluation: A Review. Adv. Mater. Sci. Eng. 2017, 2017, 8453095. [Google Scholar] [CrossRef]
- AASHTO-AGC-ARTBA Joint Cooperation Committee. The Use and State-of-the-Practice of Fiber Reinforced Concrete; TF36-1-UL; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2001. [Google Scholar]
- Banthia, N.; Gupta, R. Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete. Cem. Concr. Res. 2006, 36, 1263–1267. [Google Scholar] [CrossRef]
- ASTM C192/C192M-15. Standard Practice for making and Curing Concrete Test Specimens in the Laboratory; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- ASTM C143/C143M-15a. Standard Test Method for Slump of Hydraulic-Cement Concrete; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- ASTM C231/C231M-14. Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method; ASTM International: West Conshohocken, PA, USA, 2014. [Google Scholar]
- ASTM C138/C138M-17a. Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- ASTM C1064/C1064M-12. Standard Test Method for Temperature of Freshly Mixed Hydraulic-Cement Concrete; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- ASTM C39/C39M-15a. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- ASTM C666/C666M-15. Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Gupta, R.; Biparva, A. Innovative Test Technique to Evaluate ‘Self-Sealing’ of Concrete. J. Test. Eval. 2015, 43, 1091–1098. [Google Scholar] [CrossRef]
- Kakooei, S.; Akil, H.M.; Jamshidi, M.; Rouhi, J. The effects of polypropylene fibers on the properties of reinforced concrete structures. Constr. Build. Mater. 2012, 27, 73–77. [Google Scholar] [CrossRef]
Aggregate | Coarse | Fine |
---|---|---|
Maximum Size (mm) | 12.5 | 4.75 |
Specific Gravity | 2.8 | 2.7 |
Water Absorption (%) | 0.45 | 1.2 |
Fineness | - | 2.61 |
Mechanical Property | Unit | Type A Macro Polypropylene Fiber | Type B Micro Polypropylene Fiber |
---|---|---|---|
Fiber Length | mm | 50 | 12 |
Equivalent Diameter | mm | 0.5 | 0.018 |
Specific Gravity | - | 0.91 | 0.9 |
Aspect Ratio | % | 0.5 | 0.5 |
Elastic Modulus | GPa | 7.5 | 7 |
Tensile Strength | MPa | 550 | 300–450 |
Water Absorption | % | 0 | 0 |
Melting Point | °C | 164 | 162 |
Thermal Conductivity | W/mK | Low | N/A |
Density | kg/m3 | 910 | 900 |
Item | Water-Reducing-Admixture (WRA) | Air-Entraining-Admixtures (AEA) |
---|---|---|
Supplier | BASF Canada, Inc. | Grace Canada, Inc. |
Trade Name | POZZOLITH 210 | DAREX AEA ED |
Form | Liquid | Liquid, Oil-based |
Color | Dark brown | Light brown |
pH | 6–11 | 11 |
Density (kg/m3) | 1125–1155 | 1000 |
Solubility in water | Completely soluble | |
Solubility in other solvents |
Concrete Type | Type A | Type B |
---|---|---|
Fiber type | 0.6% | 0.3% |
Macro PP | Micro PP | |
Mixture ID | MAC_PFRC | MIC_PFRC |
w/c ratio | 0.43 | |
Materials (kg/m3) | ||
Cement | 345 | |
Sand | 815 | |
Aggregate | 1045 | |
Water | 145 | |
Fibers (% by volume) | 0.6 | 0.3 |
Fibers | 0.17 | 0.09 |
WRA | 1.225 | |
AEA | 0.123 |
Mode | Equation | Cylinder Dimensional Factor |
---|---|---|
Transverse | ||
Longitudinal |
Fresh Concrete Properties | Polypropylene Fiber Reinforced Concrete Type | Reference | |
A 0.6% Macro Fiber | B 0.3% Micro Fiber | ||
Slump (mm) | 120 | 110 | ASTM C143 |
Air Content (%) | 6.6 | 5.8 | ASTM C231 |
Density (kg/m3) | 2216 | 2267 | ASTM C138 |
Temperature (°C) | 9.2 | 9.8 | ASTM C1064 |
Hardened Concrete Properties | A 0.6% Macro Fiber | B 0.3% Micro Fiber | Reference |
Compressive strength * (MPa) | 31.55 | 34.91 | ASTM C39 |
PFRC Sample ID | Fiber Type | Curing Condition | Measured Cylinder Mass (kg) | Transverse Mode | Longitudinal Mode | ||||
---|---|---|---|---|---|---|---|---|---|
Original Frequency (Hz) | Cracked Frequency (Hz) | Self-Healing Frequency (Hz) | Original Frequency (Hz) | Cracked Frequency (Hz) | Self-Healing Frequency (Hz) | ||||
Mac-W1 | Macro 0.6% (A) | Wet | 3.58 | 5730 | 4150 | 4210 | 9360 | 9170 | 9370 |
Mac-W2 | 3.55 | 5810 | 4050 | 4250 | 9450 | 9440 | 9600 | ||
Mac-W3 | 3.55 | 5740 | 4480 | 4030 | 9410 | 9310 | 9420 | ||
Mac-D1 | Dry | 3.56 | 5580 | 4030 | - | 9190 | 9110 | - | |
Mac-D2 | 3.55 | 5500 | 4270 | - | 9050 | 8840 | - | ||
Mac-D3 | 3.51 | 5310 | 3470 | - | 8840 | 8720 | - | ||
Mic-W1 | Micro 0.3% (B) | Wet | 3.69 | 5950 | 4110 | 4130 | 9760 | 9500 | 2220 1 |
Mic-W2 | 3.69 | 5910 | 4070 | 4230 | 9740 | 9560 | 9830 | ||
Mic-W3 | 3.67 | 5970 | 3390 | 4190 | 9740 | 9400 | 6120 2 | ||
Mic-D1 | Dry | 3.58 | 5520 | 4500 | - | 9270 | 9060 | - | |
Mic-D2 | 3.55 | 5480 | 3820 | - | 9090 | 8880 | - | ||
Mic-D3 | 3.56 | 5550 | 4170 | - | 9170 | 9050 | - |
Dynamic Modulus of Elasticity (GPA) | ||||||
---|---|---|---|---|---|---|
Mode | Transverse | Longitudinal | ||||
FIBER TYPE | Original | Cracked | Self-Healed | Original | Cracked | Self-Healed |
MACRO PP-W1 | 31.6 | 16.6 | 17.0 | 31.6 | 30.4 | 31.7 |
MACRO PP-W2 | 32.2 | 15.6 | 17.2 | 32.0 | 31.9 | 33.0 |
MACRO PP-W3 | 31.4 | 19.1 | 15.5 | 31.7 | 31.0 | 31.8 |
MICRO PP-W1 | 35.1 | 16.7 | 16.9 | 35.4 | 33.6 | 1.8 |
MICRO PP-W2 | 34.6 | 16.4 | 17.7 | 35.3 | 34.0 | 36.0 |
MICRO PP-W3 | 35.1 | 11.3 | 17.3 | 35.1 | 32.7 | 13.9 |
Fiber Type | Crack Width (mm) | Transverse Cracked (%) | Transverse Self-Healed (%) | Longitudinal Cracked (%) | Longitudinal Self-Healed (%) |
---|---|---|---|---|---|
Macro PP-W1 | 0.45 | 52.5 | 54.0 | 96.0 | 100.2 |
Macro PP-W2 | 0.25 | 48.6 | 53.5 | 99.8 | 103.2 |
Macro PP-W3 | 0.45 | 60.9 | 49.3 | 97.9 | 100.2 |
Micro PP-W1 | 0.4 | 47.7 | 48.2 | 94.7 | 5.2 |
Micro PP-W2 | 0.5 | 47.4 | 51.2 | 96.3 | 113.7 |
Micro PP-W3 | 0.4 | 32.2 | 49.3 | 93.1 | 39.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Newihy, A.; Azarsa, P.; Gupta, R.; Biparva, A. Effect of Polypropylene Fibers on Self-Healing and Dynamic Modulus of Elasticity Recovery of Fiber Reinforced Concrete. Fibers 2018, 6, 9. https://doi.org/10.3390/fib6010009
El-Newihy A, Azarsa P, Gupta R, Biparva A. Effect of Polypropylene Fibers on Self-Healing and Dynamic Modulus of Elasticity Recovery of Fiber Reinforced Concrete. Fibers. 2018; 6(1):9. https://doi.org/10.3390/fib6010009
Chicago/Turabian StyleEl-Newihy, Adham, Pejman Azarsa, Rishi Gupta, and Alireza Biparva. 2018. "Effect of Polypropylene Fibers on Self-Healing and Dynamic Modulus of Elasticity Recovery of Fiber Reinforced Concrete" Fibers 6, no. 1: 9. https://doi.org/10.3390/fib6010009
APA StyleEl-Newihy, A., Azarsa, P., Gupta, R., & Biparva, A. (2018). Effect of Polypropylene Fibers on Self-Healing and Dynamic Modulus of Elasticity Recovery of Fiber Reinforced Concrete. Fibers, 6(1), 9. https://doi.org/10.3390/fib6010009