Investigation of a New Strengthening Technique for RC Deep Beams Using Carbon FRP Ropes as Transverse Reinforcements
Abstract
:1. Introduction
2. Experimental Program
2.1. Materials
2.2. FRP Strengthening Techniques
2.3. Test Setup and Instrumentation
3. Test Results and Commentary
4. Analytical Predictions
4.1. Strengthened Beam with Rectangular Cross-Section
Contribution of the FRP Ropes Using the ETS System
4.2. Strengthened Flanged Beam with T-Shaped Cross-Section
Contribution of the FRP Ropes Using the NSM System
4.3. Prediction of the Expected Failure Mode
5. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Glossary/Nomenclature/Abbreviations
Af | cross-sectional area of the impregnated fibre-reinforced polymer (FRP) rope (mm2) |
Asw | cross-sectional area of the steel transverse reinforcement (mm2) |
bef | effective flange width (mm) |
bf | flange width of the T-shaped cross-section (mm) |
bw | web width of the T-shaped cross-section (mm) |
C | concrete compression force (kN) |
c | neutral axis depth (mm) |
cnom | clear concrete cover thickness (mm) |
cs | depth of the compression zone above the tip of the shear critical crack (mm) |
d | effective depth of the cross-section (mm) |
df | nominal diameter of the impregnated FRP rope (mm) |
dfv | effective shear depth (the greater of 0.72h and 0.9d) (mm) |
Ef | modulus of elasticity of the impregnated FRP rope (GPa) |
fc | cylinder compressive strength of concrete (MPa) |
fyw | yield tensile strength of the transverse steel reinforcement (MPa) |
h | height of the cross-section (mm) |
hf | height of the flange of the T-shaped cross-section (mm) |
My,calc | flexural strength at yielding of the longitudinal reinforcement (kNm) |
Mu,calc | ultimate flexural strength (kNm) |
s | uniform spacing of the steel transverse shear reinforcement (mm) |
sf | uniform spacing of the impregnated FRP ropes (mm) |
T | normal tension force of the longitudinal reinforcement (kN) |
PMy,calc | calculated total strength corresponding to the flexural strength at yielding of the longitudinal reinforcement (kN) |
PMu,calc | calculated total strength corresponding to the ultimate flexural strength (kN) |
VVu,calc | ultimate shear strength (kN) |
Vu,exp | experimental shear strength (kN) |
PVu,calc | calculated total strength corresponding to the ultimate shear strength (kN) |
Pu,exp | ultimate experimental applied load (kN) |
z | lever arm (mm) |
α | shear span (mm) |
αb | bond parameter derived from pull-out tests and defined by Cosenza et al. [25] |
εf | effective strain in the principal direction of the fibres of the FRP rope (%) |
θf | inclination angle of the impregnated FRP rope with respect to the beam longitudinal axis (deg) |
ρsw | steel transverse reinforcement ratio equal to Asw/bws (%) |
φ | inclination angle of the shear critical crack (deg) |
References
- Karayannis, C.G.; Chalioris, C.E. Experimental investigation of the contribution of bonded C-FRP jackets to shear capacity of RC beams. In Proceedings of the International Symposium Celebrating Concrete: People and Practice, Dundee, UK, 3–4 September 2003; pp. 689–696. [Google Scholar]
- Bencardino, F.; Spadea, G.; Swamy, R.N. The problem of shear in RC beams strengthened with CFRP laminates. Constr. Build. Mater. 2007, 21, 1997–2006. [Google Scholar] [CrossRef]
- Karayannis, C.G.; Sirkelis, G.M. Strengthening and rehabilitation of RC beam-column joints using carbon-FRP jacketing and epoxy resin injection. Earthq. Eng. Struct. Dyn. 2008, 37, 769–790. [Google Scholar] [CrossRef]
- Tsonos, A.G. Effectiveness of CFRP-jackets and RC-jackets in post-earthquake and pre-earthquake retrofitting of beam-column subassemblages. Eng. Struct. 2008, 30, 777–793. [Google Scholar] [CrossRef]
- Ombres, L. Structural performances of reinforced concrete beams strengthened in shear with a cement based fiber composite material. Compos. Struct. 2015, 122, 316–329. [Google Scholar] [CrossRef]
- Barros, J.A.O.; Dias, S.J.E. Assessment of the effectiveness of the NSM shear strengthening technique for deep T cross section RC beams. In Proceedings of the 11th International Symposium on Fiber Reinforced Polymers for Reinforced Concrete Structures FRPRCS11, Guimarães, Portugal, 26–28 June 2013. [Google Scholar]
- Seo, S.-Y.; Feo, L.; Hui, D. Bond strength of near surface-mounted FRP plate for retrofit of concrete structures. Compos. Struct. 2013, 95, 719–727. [Google Scholar] [CrossRef]
- De Lorenzis, L.; Nanni, A. Shear strengthening of reinforced concrete beams with near-surface mounted fiber-reinforced polymer rods. ACI Struct. J. 2001, 98, 60–68. [Google Scholar]
- Bilotta, A.; Ceroni, F.; Di Ludovico, M.; Nigro, E.; Pecce, M.; Manfredi, G. Bond efficiency of EBR and NSM FRP systems for strengthening concrete members. ASCE J. Compos. Constr. 2011, 15, 757–772. [Google Scholar] [CrossRef]
- Parvin, A.; Syed Shah, T. Fiber Reinforced Polymer Strengthening of Structures by Near-Surface Mounting Method. Polymers 2016, 8, 298. [Google Scholar] [CrossRef]
- Oehlers, D.J.; Haskett, M.; Wu, C.; Seracino, R. Embedding NSM FRP plates for improved IC debonding resistance. ASCE J. Compos. Constr. 2008, 12, 635–642. [Google Scholar] [CrossRef]
- Breveglieri, M.; Aprile, A.; Barros, J.A.O. Embedded through-section shear strengthening technique using steel and CFRP bars in RC beams of different percentage of existing stirrups. Compos. Struct. 2015, 126, 101–113. [Google Scholar] [CrossRef] [Green Version]
- Mofidi, A.; Chaallal, O.; Benmokrane, B.; Neale, K. Experimental tests and design model for RC beams strengthened in shear using the embedded through-section FRP method. ASCE J. Compos. Constr. 2012, 16, 540–550. [Google Scholar] [CrossRef]
- Breveglieri, M.; Aprile, A.; Barros, J.A.O. Embedded through-section shear strengthening technique using steel bars. Eng. Struct. 2014, 81, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Chaallal, O.; Mofidi, A.; Benmokrane, B.; Neale, K. Embedded through-section FRP rod method for shear strengthening of RC beams: Performance and comparison with existing techniques. J. Compos. Constr. 2011, 15, 374–383. [Google Scholar] [CrossRef]
- Yang, K.H.; Byun, H.Y.; Ashour, A.F. Shear strengthening of continuous reinforced concrete T-beams using wire rope units. Eng. Struct. 2009, 31, 1154–1165. [Google Scholar] [CrossRef] [Green Version]
- Chalioris, C.E.; Papadopoulos, N.A.; Panagiotopoulos, T.A.; Kosmidou, P.-Μ.K. Shear strengthening of reinforced concrete deep beams without stirrups using carbon fibre rope as transverse link reinforcement. In Proceedings of the 12th Annual International Conference on Composites/Nano Engineering ICCE-25, Rome, Italy, 16–22 July 2017. [Google Scholar]
- Rousakis, T.C. Hybrid confinement of concrete by Fiber-Reinforced Polymer sheets and fiber ropes under cyclic axial compressive loading. ASCE J. Compos. Constr. 2013, 17, 732–743. [Google Scholar] [CrossRef]
- El-Saikaly, G.; Godat, A.; Chaallal, O. New anchorage technique for FRP shear-strengthened RC T-beams using CFRP rope. ASCE J. Compos. Constr. 2015, 19. [Google Scholar] [CrossRef]
- Kaya, E.; Kütan, C.; Sheikh, S.; İlki, A. Flexural retrofit of support regions of reinforced concrete beams with anchored FRP ropes using NSM and ETS methods under reversed cyclic loading. ASCE J. Compos. Constr. 2017, 21, 1574–1582. [Google Scholar] [CrossRef]
- Parretti, R.; Nanni, R. Strengthening of RC members using near-surface mounted FRP composites: Design overview. Adv. Struct. Eng. 2004, 7, 469–483. [Google Scholar] [CrossRef]
- ACI (American Concrete Institute). Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures; ACI-440.2R-08; American Concrete Institute (ACI): Farmington Hills, MI, USA, 2008; p. 76. [Google Scholar]
- Karayannis, C.G.; Chalioris, C.E. Shear tests of reinforced concrete beams with continuous rectangular spiral reinforcement. Constr. Build. Mater. 2013, 46, 86–97. [Google Scholar] [CrossRef]
- Zararis, P.D. Shear compression failure in reinforced concrete deep beams. ASCE J. Struct. Eng. 2003, 129, 544–553. [Google Scholar] [CrossRef]
- Cosenza, E.; Manfredi, G.; Realfonzo, R. Development length of FRP straight rebars. Compos. Part B 2002, 33, 493–504. [Google Scholar] [CrossRef]
- Godat, A.; L’Hady, A.; Chaallal, O.; Neale, K.W. Bond Behavior of the ETS FRP Bar shear-strengthening method. ASCE J. Compos. Constr. 2012, 16, 529–539. [Google Scholar] [CrossRef]
- Zararis, I.P.; Karaveziroglou, M.K.; Zararis, P.D. Shear strength of reinforced concrete T-beams. ACI Struct. J. 2006, 103, 693–700. [Google Scholar]
- Bencardino, F.; Colotti, V.; Spadea, G.; Swamy, R.N. Holistic design of RC beams and slabs strengthened with externally bonded FRP laminates. Cem. Concr. Compos. 2006, 28, 832–844. [Google Scholar] [CrossRef]
Beam Codified Name | Experimental Results | Analytical Predictions | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Pu,exp (kN) | Vu,exp (kN) | Failure Mode 1 | My,calc (kNm) | PMy,calc (kN) | Mu,calc (kNm) | PMu,calc (kN) | VVu,calc (kN) | PVu,calc (kN) | Failure Mode 1 | |
R | 140.4 | 70.2 | Sh | 42.3 | 169.2 | 43.9 | 175.6 | 70.8 | 141.6 | Sh |
R-S | 163.8 | 81.9 | Sh | 42.3 | 169.2 | 43.9 | 175.6 | 82.7 | 165.4 | Sh |
R-FRP | 182.2 | 91.1 | Fl | 42.3 | 169.2 | 43.9 | 175.6 | 124.1 L | 220.8 | Fl |
110.4 R | ||||||||||
T | 194.0 | 97.0 | Sh | 44.8 | 224.0 | 46.8 | 234.0 | 113.2 | 226.4 | SY |
T-FRP | 221.4 | 110.7 | Fl | 44.8 | 224.0 | 46.8 | 234.0 | 153.3 | 306.6 | Fl |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chalioris, C.E.; Kosmidou, P.-M.K.; Papadopoulos, N.A. Investigation of a New Strengthening Technique for RC Deep Beams Using Carbon FRP Ropes as Transverse Reinforcements. Fibers 2018, 6, 52. https://doi.org/10.3390/fib6030052
Chalioris CE, Kosmidou P-MK, Papadopoulos NA. Investigation of a New Strengthening Technique for RC Deep Beams Using Carbon FRP Ropes as Transverse Reinforcements. Fibers. 2018; 6(3):52. https://doi.org/10.3390/fib6030052
Chicago/Turabian StyleChalioris, Constantin E., Parthena-Maria K. Kosmidou, and Nikos A. Papadopoulos. 2018. "Investigation of a New Strengthening Technique for RC Deep Beams Using Carbon FRP Ropes as Transverse Reinforcements" Fibers 6, no. 3: 52. https://doi.org/10.3390/fib6030052
APA StyleChalioris, C. E., Kosmidou, P. -M. K., & Papadopoulos, N. A. (2018). Investigation of a New Strengthening Technique for RC Deep Beams Using Carbon FRP Ropes as Transverse Reinforcements. Fibers, 6(3), 52. https://doi.org/10.3390/fib6030052