Determination and Characterization of the Wool Fiber Yield of Kenyan Sheep Breeds: An Economically Sustainable Practical Approach for Kenya
Abstract
:1. Introduction
2. Sample Collection and Preparation
2.1. Sample Collection
2.2. Sample Condition
3. Experiments
3.1. Materials and Apparatus
3.2. Wool Fiber Scouring
3.3. Testing of Moisture Regain of the Scoured Samples
3.4. Vegetable Matter (VM) Test
3.5. Testing of Carbonized Vegetable Matter
3.6. The Wool Yield (Y) Test
4. Results and Discussion
4.1. Sheep Average Fleece Weight
4.2. Scoured Wool Yields
4.3. Vegetable Matter (VM) and Vegetable Matter Base (VMB%)
4.4. Moisture Regain of the Scoured Wool
4.5. Carbonized Wool and Carbonized Vegetable Matter
4.6. Wool Yield (Y)
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khoso, A.N.; Memon, H.; Hussain, M.; Sanbhal, A.N.; Abro, A.Z. Production and characterization of wool and hair fibers in highlands of baluchistan, an economic and sustainable approach for Pakistan. Key Eng. Mater. 2016, 671, 473–482. [Google Scholar] [CrossRef]
- Dinar, A.; Kemper, K.; Blomquist, W. Kenya-Micro, Small and Medium Enterprise Competitiveness Project. Available online: http://documents.worldbank.org/curated/en/183891468277771928/pdf/326330Procurement0Plan0for0200516.pdf (accessed on 8 July 2018).
- Memon, H.; Memon, S.; Khoso, N.A.; Khan, M.Q. Global marketing strategy to sell Pakistani cultural textiles products in UK and in China—A key idea for entrepreneurship. Presented at the 2nd International Conference on Emerging Issues in Management and Economics, Balochistan University of Information Technology Engineering and Management Sciences (BUITEMS), Quetta, Pakistan, 9–10 October 2015. [Google Scholar]
- Woods, C.W.; Karpati, A.M.; Grein, T.; Mccarthy, N.; Gaturuku, P.; Muchiri, E.; Dunster, L.; Henderson, A.; Khan, A.S.; Swanepoel, R. An outbreak of rift valley fever in northeastern Kenya, 1997–1998. Emerg. Infect. Dis. 2002, 8, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Connolly, G.P. An Econometric Model of the Australian Wool Market by Grade with Applications to Policy Analysis; CAB Direct: Wallingford, UK, 1990. [Google Scholar]
- Mganga, K.Z.; Musimba, N.K.R.; Nyariki, D.M.; Nyangito, M.M.; Mwang’Ombe, A.W. The choice of grass species to combat desertification in semi-arid Kenyan rangelands is greatly influenced by their forage value for livestock. Grass Forage Sci. 2015, 70, 161–167. [Google Scholar] [CrossRef]
- Wymann von Dach, S.; Romeo, R.; Vita, A.; Wurzinger, M.; Kohler, T. Mountain Farming Is Family Farming: A Contribution from Mountain Areas to the International Year of Family Farming 2014; Food and Agriculture Organization: Roma, Italy, 2014. [Google Scholar]
- Gowane, G.; Gadekar, Y.; Prakash, V.; Kadam, V.; Chopra, A.; Prince, L. Climate change impact on sheep production: Growth, milk, wool, and meat. In Sheep Production Adapting to Climate Change; Springer: Berlin, Germany, 2017; pp. 31–69. [Google Scholar]
- Juma, G.P.; Ngigi, M.; Baltenweck, I.; Drucker, A.G. Consumer demand for sheep and goat meat in Kenya. Small Rumin. Res. 2010, 89, 135–138. [Google Scholar] [CrossRef]
- Zonabend König, E.; Strandberg, E.; Ojango, J.M.K.; Mirkena, T.; Okeyo, A.M.; Philipsson, J. Purebreeding of red Maasai and crossbreeding with Dorper sheep in different environments in Kenya. J. Anim. Breed. Genet. 2017, 134, 531–544. [Google Scholar] [CrossRef] [PubMed]
- Meyer, H.H.; Bigham, M.L.; Baker, R.L.; Harvey, T.; Hickey, S. Effects of Booroola Merino breeding and the FecB gene on performance of crosses with longwool breeds. 1. Effects on growth, onset of puberty, wool production and wool traits. Livest. Prod. Sci. 1994, 39, 183–190. [Google Scholar] [CrossRef]
- Gong, H.; Zhou, H.; Forrest, R.; Li, S.; Wang, J.; Dyer, J.; Luo, Y.; Hickford, J. Wool keratin-associated protein genes in sheep—A review. Genes 2016, 7, 24. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, C.A. Advances in Yarn Spinning Technology; Woodhead Publishing: Cambridge, UK, 2010. [Google Scholar]
- Schutte, B.J.; Davis, A.S.; Renner, K.A.; Cardina, J. Maternal and burial environment effects on seed mortality of velvetleaf (Abutilon theophrasti) and giant foxtail (Setaria faberi). Weed Sci. 2008, 56, 834–840. [Google Scholar] [CrossRef]
- Ballard, R. Bidens pilosa complex (Asteraceae) in North and Central America. Am. J. Bot. 1986, 73, 1452. [Google Scholar] [CrossRef]
- Stanner, W.E.H. Kenya and the mau mau. Aust. Outlook 1953, 7, 92–106. [Google Scholar] [CrossRef]
- Cameron, B.A.; Brown, D.M.; Dallas, M.J.; Brandt, B. Effect of natural and synthetic fibers and film and moisture content on stratum corneum hydration in an occlusive system. Text. Res. J. 1997, 67, 585–592. [Google Scholar] [CrossRef]
- Mert, M.; Kiral, E. Influence of internal lipid on dyeing of wool fibers. Text. Res. J. 2010, 80, 365–373. [Google Scholar]
- Kohara, N.; Kanei, M.; Nakajima, T. Effect of reduction and succinylation on water absorbance of wool fibers. Text. Res. J. 2001, 71, 1095–1098. [Google Scholar] [CrossRef]
- Algie, J.E.; Watt, I.C. The effect of changes in the relative humidity on the electrical conductivity of wool fibers. Text. Res. J. 1965, 35, 922–929. [Google Scholar] [CrossRef]
- Harizi, T.; Abidi, F.; Hamdaoui, R.; Ameur, Y.B. Variation in fleece characteristics of Tunisian sheep. Int. J. Text. Sci. 2015, 4, 97–101. [Google Scholar]
- Ansari-Renani, H.R. Fiber quality of Iranian carpet-wool sheep breeds. Mediu. Peternak. 2012, 35, 179–184. [Google Scholar] [CrossRef]
Sheep | Number | Mean Fleece Weight (kg) | CV (%) |
---|---|---|---|
Male | 23 | 2.06 ± 0.06 | 28 |
Female | 72 | 2.02 ± 0.08 | 33 |
All | 95 | 2.04 ± 0.06 | 37 |
Samples | BCK | RBS | BLS | SHR |
---|---|---|---|---|
HH% | 2.3 ± 0.30 | 3.1 ± 0.25 | 1.1 ± 0.50 | 3.4 ± 0.65 |
VMB% | 1.0 ± 0.15 | 2.5 ± 0.35 | 0.2 ± 0.05 | 2.5 ± 0.45 |
Ash Residue% | 0.8 ± 0.20 | 1.1 ± 0.25 | 0.4 ± 0.10 | 1.2 ± 0.25 |
Fatty Residue% | 0.2 ± 0.05 | 0.4 ± 0.05 | 0.2 ± 0.05 | 0.5 ± 0.05 |
Samples | BCK | RBS | BLS | SHR |
---|---|---|---|---|
Wool Base (WB%) | 53 ± 2.8 | 54 ± 3.9 | 52 ± 2.7 | 50 ± 3.2 |
IWTO Schlumberger Dry Top and Noil Yield (1% TFM) | 63 ± 3.1 | 63 ± 2.5 | 61 ± 2.2 | 59 ± 2.4 |
IWTO Clean Wool Content (IWTO CWC) | 65 ± 2.4 | 63 ± 3.6 | 62 ± 3.9 | 60 ± 2.9 |
IWTO Scoured Yield at R% Regain (SCD, 16) | 67 ± 1.5 | 64 ± 2.4 | 62 ± 1.5 | 63 ± 1.2 |
IWTO Scoured Yield at R% Regain (SCD, 17) | 68 ± 3.7 | 65 ± 1.5 | 63 ± 2.8 | 63 ± 3.6 |
Japanese Clean Scoured Yield (JCSY) | 64 ± 2.8 | 62 ± 3.6 | 61 ± 2.5 | 59 ± 2.5 |
ASTM Clean Wool Fiber Present | 63 ± 1.2 | 62 ± 2.4 | 61 ± 3.5 | 59 ± 1.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Memon, H.; Wang, H.; Langat, E.K. Determination and Characterization of the Wool Fiber Yield of Kenyan Sheep Breeds: An Economically Sustainable Practical Approach for Kenya. Fibers 2018, 6, 55. https://doi.org/10.3390/fib6030055
Memon H, Wang H, Langat EK. Determination and Characterization of the Wool Fiber Yield of Kenyan Sheep Breeds: An Economically Sustainable Practical Approach for Kenya. Fibers. 2018; 6(3):55. https://doi.org/10.3390/fib6030055
Chicago/Turabian StyleMemon, Hafeezullah, Hua Wang, and Enock Kiptoo Langat. 2018. "Determination and Characterization of the Wool Fiber Yield of Kenyan Sheep Breeds: An Economically Sustainable Practical Approach for Kenya" Fibers 6, no. 3: 55. https://doi.org/10.3390/fib6030055
APA StyleMemon, H., Wang, H., & Langat, E. K. (2018). Determination and Characterization of the Wool Fiber Yield of Kenyan Sheep Breeds: An Economically Sustainable Practical Approach for Kenya. Fibers, 6(3), 55. https://doi.org/10.3390/fib6030055