Damage Characterization of Nano-Interleaved CFRP under Static and Fatigue Loading
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Mechanical Results
3.2. AE Results
- (1)
- Linear elastic region: this is before the initiation and propagation of delamination with no major damage in the specimens, and therefore no change in mechanical data, such as stiffness, and no AE signals with high energy content.
- (2)
- Crack initiation and propagation region: crack initiation is where the delamination initiates as the strain energy level reaches the critical strain energy in the laminates. The delamination onset is recognizable where the slope of the load curve versus time decreases (non-linearity point in ASTM5528 [23]) and the first significant AE signal is observable. In the propagation stage, the pre-crack is extended and considerable AE signals appear from delamination extension and arrest, indicating development of the failure mechanisms. Induced failure mechanisms generate different types of AE signals that can provide valuable information about the type of these failures. The crack arresting stage occurs when there is an increase in the load and therefore stored strain energy. When the strain energy attains the critical value, the crack propagates again and causes different types of damage modes such as fiber breakage and matrix cracking.
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tsai, G.C.; Chen, J.W. Effect of stitching on mode I strain energy release rate. Compos. Struct. 2005, 69, 1–9. [Google Scholar] [CrossRef]
- Wong, D.W.Y.; Lin, L.; McGrail, P.T.; Peijs, T.; Hogg, P.J. Improved fracture toughness of carbon Ebre/epoxy composite laminates using dissolvable thermoplastic Ebres. Compos. Part A Appl. Sci. Manuf. 2010, 41, 759–767. [Google Scholar] [CrossRef]
- Wang, C.H.; Sidhu, K.; Yang, T.; Zhang, J.; Shanks, R. Interlayer self-healing and toughening of carbon fiber/epoxy composites using copolymer films. Compos. Part A Appl. Sci. Manuf. 2012, 43, 512–518. [Google Scholar] [CrossRef]
- Tang, G.; Yan, Y.; Chen, X.; Zhang, J.; Xu, B.; Feng, Z. Dynamic damage and fracture mechanism of three-dimensional braided carbon fiber/epoxy resin composites. Mater. Des. 2001, 22, 21–25. [Google Scholar] [CrossRef]
- Van, V.P.; Ballout, W.; Daoust, D.; Sclavons, M.; Cordenier, F.; Henry, E.; Dumont, D.; Destoop, V.; Pardoen, T.; Bailly, C. Influence of thermoplastic diffusion on morphology gradient and on delamination toughness of RTM-manufactured. Compos. Part A Appl. Sci. Manuf. 2015, 72, 175–183. [Google Scholar]
- Sohn, M.S.; Hu, X.Z.; Kim, J.K.; Walker, L. Impact damage characterization of carbon fiber/epoxy composites with multi-layer reinforcement. Compos. Part B Eng. 2000, 31, 681–691. [Google Scholar] [CrossRef]
- Wu, X.; Yarin, AL. Recent progress in interfacial toughening and damage selfhealing of polymer composites based on electrospun and solution-blown nanofibers: An overview. J. Appl. Polym. Sci. 2013, 130, 2225–2237. [Google Scholar] [CrossRef]
- Fragassa, C. Effect of Natural Fibers and Bio-Resins on Mechanical Properties in Hybrid and Non-Hybrid Composites. In Proceedings of the 8th Conference on Times of Polymers & Composites: From Aerospace to Nanotechnology, American Institute of Physics (AIP), Ischia, Italy, 19–23 June 2016; Volume 1736, p. 4949693. [Google Scholar] [CrossRef]
- Koissin, V.; Warnet, L.L.; Akkerman, R. Delamination in carbon-fibre composites improved with in situ grown nanofibers. Eng. Fract. Mech. 2013, 101, 140–148. [Google Scholar] [CrossRef]
- Daelemans, L.; van der Heijden, S.; De Baere, I.; Rahier, H.; Van Paepegem, W.; De Clerck, K. Using aligned nanofibres for identifying the toughening micromechanisms in nanofibre interleaved laminates. Compos. Sci. Technol. 2016, 124, 17–26. [Google Scholar] [CrossRef]
- Yasaee, M.; Bond, I.P.; Trask, R.S.; Greenhalgh, E.S. Mode I interfacial toughening through discontinuous interleaves for damage suppression and control. Compos. Part A Appl. Sci. Manuf. 2012, 43, 198–207. [Google Scholar] [CrossRef]
- Saghafi, H.; Zucchelli, A.; Palazzetti, R.; Minak, G. The effect of interleaved composite nanofibrous mats on delamination behavior of polymeric composite materials. Compos. Struct. 2014, 109, 41–47. [Google Scholar] [CrossRef]
- Brugo, T.M.; Minak, G.; Zucchelli, A.; Saghafi, H.; Fotouhi, M. An Investigation on the Fatigue based Delamination of Woven Carbon-epoxy Composite Laminates Reinforced with Polyamide Nanofibers. Procedia Eng. 2015, 109, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Fotouhi, M.; Saghafi, H.; Brugo, T.; Minak, G.; Minak, G.; Fragassa, C.; Zucchelli, A.; Ahmadi, M. Effect of PVDF nanofibers on the fracture behavior of composite laminates for high-speed woodworking machines. Proc. Inst. Mech. Eng. C J. Mec. 2017, 231, 31–43. [Google Scholar] [CrossRef]
- Marec, A.; Thomas, J.H.; Guerjouma, E.R. Damage characterization of polymer-based composite materials: Multivariable analysis and wavelet transform for clustering acoustic emission data. Mech. Syst. Signal Process. 2008, 22, 1441–1464. [Google Scholar] [CrossRef]
- Uenoya, T. Acoustic emission analysis on interfacial fracture of laminated fabric polymer matrix composites. J. Acoust. Emiss. 1995, 13, 95–102. [Google Scholar]
- de Oliveira, R.; Marques, A.T. Health monitoring of FRP using acoustic emission and artificial neural networks. Comput. Struct. 2008, 86, 367–373. [Google Scholar] [CrossRef]
- Fotouhi, M.; Pashmforoush, F.; Ahmadi, M.; Oskouei, A.R. Monitoring of initiation and growth of delaminationin composite materials using acoustic emission under quasi-static 3-point bending test. J. Reinf. Plast. Compos. 2011, 30, 1481–1493. [Google Scholar] [CrossRef]
- Pashmforoush, F.; Fotouhi, M.; Ahmadi, M. Acoustic emission-based damage classification of glass/polyester composites using harmony search k-means algorithm. J. Reinf. Plast. Compos. 2012, 31, 671–680. [Google Scholar] [CrossRef]
- Saeedifar, M.; Fotouhi, M.; Ahmadi, M.; Hosseini-Toudeshky, H. Prediction of delamination growth in laminated composites using acoustic emission and cohesive zone modeling techniques. J. Compos. Struct. 2015, 124, 120–127. [Google Scholar] [CrossRef]
- Fotouhi, M.; Ahmadi, M. Acoustic emission based study to characterize the initiation of mode I delamination in composite materials. J. Thermoplast Compos. Mater. 2014, 29, 519–537. [Google Scholar] [CrossRef]
- Bohse, J. Acoustic emission characteristics of micro-failure processes in polymer blends and composites. Compos. Sci. Technol. 2000, 60, 1213–1226. [Google Scholar]
- ASTM D5528. Standard test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites; Annual Book of ASTM Standards; ASTM International: West Conshohocken, PA, USA, 2007. [Google Scholar]
- ASTM D6115. Standard Test Method for Mode I Fatigue Delamination Growth Onset of Unidirectional; Annual Book of ASTM Standards; ASTM International: West Conshohocken, PA, USA, 1997. [Google Scholar]
- Ishbir, C.; Banks-Sills, L.; Fourman, V.; Eliasi, R. Delamination propagation in a multidirectional woven composite DCB specimen subjected to fatigue loading. Compos. Part B Eng. 2014, 66, 180–189. [Google Scholar] [CrossRef]
- Huang, M.; Jiang, L.; Liaw, P.K.; Brooks, C.R.; Seeley, R.; Klarstrom, D.L. Using acoustic emission in fatigue and fracture materials research. JOM 1998, 50. Available online: https://www.tms.org/pubs/journals/jom/9811/huang/huang-9811.html (accessed on 18 January 2019).
- Palazzetti, R.; Zucchelli, A. Electrospun nanofibers as reinforcement for composite laminates materials—A review. Comp. Struct. 2017, 182, 711–727. [Google Scholar] [CrossRef]
- Rohwer, K. Models for intralaminar damage and failure of fiber composites—A review. Facta Univ. Ser. Mech. Eng. 2016, 14, 1–19. [Google Scholar] [CrossRef]
- Barré, S.; Benzeggagh, M.L. On the use of acoustic emission to investigate damage mechanisms in glass-fibre-reinforced poly-propylene. Compos. Sci. Technol. 1994, 52, 369–376. [Google Scholar] [CrossRef]
- Benmedakhene, S.; Kenane, M.; Benzeggagh, M.L. Initiation and growth of delamination in glass/epoxy composites subjected to static and dynamic loading by acoustic emission monitoring. Compos. Sci. Technol. 1999, 59, 201–208. [Google Scholar] [CrossRef]
- Guerjouma, R.E.; Baboux, J.C.; Ducret, D.; Godin, N.; Guy, P.; Huguet, S.; Jayet, Y.; Monnier, T. Nondestructive evaluation of damage and failure of fiber reinforced polymer composites using ultrasonic waves and acoustic emission. Adv. Eng. Mater. 2001, 3, 601–608. [Google Scholar] [CrossRef]
- Woo, S.C.; Choi, N.S. Analysis of fracture process in single-edge-notched laminated composites based on the high amplitude acoustic emission events. Compos. Sci. Technol. 2007, 67, 1451–1458. [Google Scholar] [CrossRef]
- Palazzetti, R.; Zucchelli, A.; Gualandi, C.; Focarete, M.L.; Donati, L.; Minak, G. Influence of electrospun Nylon 6,6 nanofibrous mats on the interlaminar properties of Gr–epoxy composite laminates. Compos. Struct. 2012, 94, 571–579. [Google Scholar] [CrossRef]
- Fotouhi, M.; Ahmadi, M. Investigation of the mixed-mode delamination in polymer-matrix composites using acoustic emission technique. J. Reinf. Plast. Compos. 2014, 33, 1767–1782. [Google Scholar] [CrossRef]
- Fotouhi, M.; Suwarta, P.; Jalalvand, M.; Czel, G.; Wisnom, M.R. Detection of fibre fracture and ply fragmentation in thin-ply UD carbon/glass hybrid laminates using acoustic emission. Compos. A Appl. Sci. Manuf. 2016. [Google Scholar] [CrossRef]
- Rademacher, T.; Zehn, M. Modal triggered nonlinearities for damage localization in thin walled FRC structures—A numerical study. Facta Univ. Ser. Mech. Eng. 2016, 14, 21–36. [Google Scholar] [CrossRef]
GIC (J/m2) | |||
---|---|---|---|
Methods | Non-Linearity Method | Visual Inspection Method | 5%/max |
Virgin | 340 ± 15 | 385 ± 20 | 415 ± 52 |
Nano-interleaved | 790 ± 30 | 850 ± 50 | 1000 ± 60 |
Δ | +132% | +121% | +141% |
Signal Type | Amplitude (dB) | Energy (aJ) |
---|---|---|
Matrix cracking | 40–65 | 0–30 |
Debonding | 60–85 | 30–800 |
Fiber failure | 75–100 | 800–65,000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fotouhi, M.; Fragassa, C.; Fotouhi, S.; Saghafi, H.; Minak, G. Damage Characterization of Nano-Interleaved CFRP under Static and Fatigue Loading. Fibers 2019, 7, 13. https://doi.org/10.3390/fib7020013
Fotouhi M, Fragassa C, Fotouhi S, Saghafi H, Minak G. Damage Characterization of Nano-Interleaved CFRP under Static and Fatigue Loading. Fibers. 2019; 7(2):13. https://doi.org/10.3390/fib7020013
Chicago/Turabian StyleFotouhi, Mohamad, Cristiano Fragassa, Sakineh Fotouhi, Hamed Saghafi, and Giangiacomo Minak. 2019. "Damage Characterization of Nano-Interleaved CFRP under Static and Fatigue Loading" Fibers 7, no. 2: 13. https://doi.org/10.3390/fib7020013
APA StyleFotouhi, M., Fragassa, C., Fotouhi, S., Saghafi, H., & Minak, G. (2019). Damage Characterization of Nano-Interleaved CFRP under Static and Fatigue Loading. Fibers, 7(2), 13. https://doi.org/10.3390/fib7020013