Hollow-Core Fiber Technology: The Rising of “Gas Photonics”
Abstract
:1. Introduction
2. Historical Overview of HCPCF
3. HCPCF Fabrication Process: Using Gas to Nano- and Microstructure Glass
4. HCPCF Guidance Mechanisms: Micro-Structuring the Glass to Structure the Light
4.1. Introduction
4.1.1. Historical Account
4.1.2. Total Internal Reflection, Photonic Band Gap, and Inhibited Coupling
4.2. Photonic Bandgap HCPCF: How to Engineer Photonic-Bandgaps below the Cladding Material Lowest Index
4.2.1. Photonic Tight Binding Model
4.2.2. Engineering PBG in HCPCF
4.3. Inhibited Coupling HCPCF: How to Prevent Interaction between Longitudinally Phase-Matched Modes
4.3.1. Historical Account
4.3.2. Design Tools for Low-Loss IC-HCPCF
4.3.3. Hypocycloidal Core-Contour Kagome Lattice HCPCF
4.3.4. Hypocycloid Core-Contour and Nodeless Tubular Lattice IC HCPCF
4.4. Difference between ARROW, PBG and IC
4.5. Core Modal Properties of HCPCF
4.6. HCPCF Prospects and Future Trends
5. HCPCF Applications
5.1. Non Linear Optics
5.1.1. High-Power Laser Beam Delivery
5.1.2. Pulse Compression
5.1.3. Raman Comb Generation
5.1.4. Supercontinuum Generation
5.2. Plasma Photonics
5.2.1. Wave-Induced Plasma
5.2.2. Photo-Induced Plasma
5.3. Atom and Molecular Optics
5.3.1. Atom Optics
5.3.2. Novel Stimulated Raman Scattering Configuration
5.4. Quantum Information
6. Conclusions and Future Trends
Author Contributions
Funding
Conflicts of Interest
References
- Cregan, R.F.; Mangan, B.J.; Knight, J.C.; Birks, T.A.; Russell, P.S.J.; Roberts, P.J.; Allan, D.C. Single-Mode Photonic Band Gap Guidance of Light in Air. Science 1999, 285, 1537–1539. [Google Scholar] [CrossRef] [PubMed]
- Couny, F.; Benabid, F.; Roberts, P.J.; Burnett, M.T.; Maier, S.A. Identification of Bloch-modes in hollow-core photonic crystal fiber cladding. Opt. Express 2007, 15, 325–338. [Google Scholar] [CrossRef] [PubMed]
- Von Neumann, J.; Wigner, E. Über merkwürdige diskrete Eigenwerte. Phys. Z. 1929, 30, 465–467. [Google Scholar]
- Couny, F.; Benabid, F.; Roberts, P.J.; Light, P.S.; Raymer, M.G. Generation and photonic guidance of multi-octave optical-frequency combs. Science 2007, 318, 1118–1121. [Google Scholar] [CrossRef]
- Benabid, F. Hollow-core photonic bandgap fibre: New light guidance for new science and technology. Philos. Trans. A Math. Phys. Eng. Sci. 2006, 364, 3439–3462. [Google Scholar] [CrossRef]
- Benabid, F.; Couny, F.; Knight, J.C.; Birks, T.A.; Russell, P.S.J. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres. Nature 2005, 434, 488. [Google Scholar] [CrossRef]
- Benabid, F.; Roberts, P.J. Linear and nonlinear optical properties of hollow core photonic crystal fiber. J. Mod. Opt. 2011, 58, 87–124. [Google Scholar] [CrossRef]
- Couny, F.; Benabid, F.; Roberts, P.J.; Light, P.S. Fresnel zone imaging of Bloch-modes from a Hollow-Core Photonic Crystal Fiber Cladding. In Proceedings of the 2007 Conference on Lasers and Electro-Optics (CLEO), Baltimore, MD, USA, 6–11 May 2007; pp. 1–2. [Google Scholar]
- Couny, F.; Benabid, F.; Light, P.S. Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber. Phys. Rev. Lett. 2007, 99, 143903. [Google Scholar] [CrossRef]
- Benoît, A.; Beaudou, B.; Alharbi, M.; Debord, B.; Gérôme, F.; Salin, F.; Benabid, F. Over-five octaves wide Raman combs in high-power picosecond-laser pumped H2-filled inhibited coupling Kagome fiber. Opt. Express 2015, 23, 14002–14009. [Google Scholar] [CrossRef]
- Heckl, O.H.; Baer, C.R.E.; Kränkel, C.; Marchese, S.V.; Schapper, F.; Holler, M.; Südmeyer, T.; Robinson, J.S.; Tisch, J.W.G.; Couny, F.; et al. High harmonic generation in a gas-filled hollow-core photonic crystal fiber. Appl. Phys. B 2009, 97, 369. [Google Scholar] [CrossRef]
- Belli, F.; Abdolvand, A.; Chang, W.; Travers, J.C.; Russell, P.S.J. Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber. Optica 2015, 2, 292–300. [Google Scholar] [CrossRef]
- Debord, B.; Gérôme, F.; Honninger, C.; Mottay, E.; Husakou, A.; Benabid, F. Milli-Joule energy-level comb and supercontinuum generation in atmospheric air-filled inhibited coupling Kagome fiber. In Proceedings of the 2015 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 10–15 May 2015; pp. 1–2. [Google Scholar]
- Light, P.S.; Couny, F.; Benabid, F. Low optical insertion-loss and vacuum-pressure all-fiber acetylene cell based on hollow-core photonic crystal fiber. Opt. Lett. 2006, 31, 2538–2540. [Google Scholar] [CrossRef] [PubMed]
- Heckl, O.H.; Saraceno, C.J.; Baer, C.R.E.; Südmeyer, T.; Wang, Y.Y.; Cheng, Y.; Benabid, F.; Keller, U. Temporal pulse compression in a xenon-filled Kagome-type hollow-core photonic crystal fiber at high average power. Opt. Express 2011, 19, 19142–19149. [Google Scholar] [CrossRef] [PubMed]
- Balciunas, T.; Fourcade-Dutin, C.; Fan, G.; Witting, T.; Voronin, A.A.; Zheltikov, A.M.; Gerome, F.; Paulus, G.G.; Baltuska, A.; Benabid, F. A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre. Nat. Commun. 2015, 6, 6117. [Google Scholar] [CrossRef] [Green Version]
- Debord, B.; Dontabactouny, M.; Alharbi, M.; Fourcade-Dutin, C.; Honninger, C.; Mottay, E.; Vincetti, L.; Gerome, F.; Benabid, F. Multi-meter fiber-delivery and compression of milli-Joule femtosecond laser and fiber-aided micromachining. In Proceedings of the Advanced Solid-State Lasers Congress, Paris, France, 27 October–1 November 2013. [Google Scholar]
- Jones, A.M.; Nampoothiri, A.V.V.; Ratanavis, A.; Fiedler, T.; Wheeler, N.V.; Couny, F.; Kadel, R.; Benabid, F.; Washburn, B.R.; Corwin, K.L.; et al. Mid-infrared gas filled photonic crystal fiber laser based on population inversion. Opt. Express 2011, 19, 2309–2316. [Google Scholar] [CrossRef] [PubMed]
- Nampoothiri, A.V.V.; Jones, A.M.; Fourcade-Dutin, C.; Mao, C.; Dadashzadeh, N.; Baumgart, B.; Wang, Y.Y.; Alharbi, M.; Bradley, T.; Campbell, N.; et al. Hollow-core Optical Fiber Gas Lasers (HOFGLAS): A review [Invited]. Opt. Mater. Express 2012, 2, 948–961. [Google Scholar] [CrossRef]
- Ghosh, S.; Bhagwat, A.R.; Renshaw, C.K.; Goh, S.; Gaeta, A.L.; Kirby, B.J. Low-Light-Level Optical Interactions with Rubidium Vapor in a Photonic Band-Gap Fiber. Phys. Rev. Lett. 2006, 97, 23603. [Google Scholar] [CrossRef]
- Epple, G.G.; Kleinbach, K.S.; Euser, T.G.; Joly, N.Y.; Pfau, T.; Russell, P.S.J.; Löw, R. Rydberg atoms in hollow-core photonic crystal fibres. Nat. Commun. 2014, 5, 4132. [Google Scholar] [CrossRef]
- Perrella, C.; Light, P.S.; Anstie, J.D.; Benabid, F.; Stace, T.M.; White, A.G.; Luiten, A.N. High-efficiency cross-phase modulation in a gas-filled waveguide. Phys. Rev. A 2013, 88, 13819. [Google Scholar] [CrossRef]
- Light, P.S.; Benabid, F.; Maric, M.; Luiten, A.N.; Couny, F. Electromagnetically induced transparency in rubidium-filled kagome HC-PCF. In Proceedings of the 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science, San Jose, CA, USA, 4–9 May 2008; pp. 1–2. [Google Scholar]
- Knebl, A.; Yan, D.; Popp, J.; Frosch, T. Fiber enhanced Raman gas spectroscopy. TrAC Trends Anal. Chem. 2018, 103, 230–238. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Couny, F.; Roberts, P.J.; Benabid, F. Low loss broadband transmission in optimized core-shape Kagome hollow-core PCF. In Proceedings of the CLEO/QELS: 2010 Laser Science to Photonic Applications, San Jose, CA, USA, 16–21 May 2010; pp. 1–2. [Google Scholar]
- Wang, Y.Y.; Wheeler, N.V.; Couny, F.; Roberts, P.J.; Benabid, F. Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber. Opt. Lett. 2011, 36, 669–671. [Google Scholar] [CrossRef] [PubMed]
- Debord, B.; Jamier, R.; Gérôme, F.; Leroy, O.; Boisse-Laporte, C.; Leprince, P.; Alves, L.L.; Benabid, F. Generation and confinement of microwave gas-plasma in photonic dielectric microstructure. Opt. Express 2013, 21, 25509–25516. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, M.; Husakou, A.; Chafer, M.; Debord, B.; Gérôme, F.; Benabid, F. Raman gas self-organizing into deep nano-trap lattice. Nat. Commun. 2016, 7, 12779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okaba, S.; Takano, T.; Benabid, F.; Bradley, T.; Vincetti, L.; Maizelis, Z.; Yampol’skii, V.; Nori, F.; Katori, H. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre. Nat. Commun. 2014, 5, 4096. [Google Scholar] [CrossRef] [PubMed]
- Debord, B.; Amsanpally, A.; Chafer, M.; Baz, A.; Maurel, M.; Blondy, J.M.; Hugonnot, E.; Scol, F.; Vincetti, L.; Gérôme, F.; Benabid, F. Ultralow transmission loss in inhibited-coupling guiding hollow fibers. Optica 2017, 4, 209–217. [Google Scholar] [CrossRef]
- Debord, B.; Alharbi, M.; Vincetti, L.; Husakou, A.; Fourcade-Dutin, C.; Hoenninger, C.; Mottay, E.; Gérôme, F.; Benabid, F. Multi-meter fiber-delivery and pulse selfcompression of milli-Joule femtosecond laser and fiber-aided laser-micromachining. Opt. Express 2014, 22, 10735–10746. [Google Scholar] [CrossRef]
- Birks, T.A.; Roberts, P.J.; Russell, P.S.J.; Atkin, D.M.; Shepherd, T.J. Full 2-D photonic bandgaps in silica/air structures. Electron. Lett. 1995, 31, 1941–1943. [Google Scholar] [CrossRef]
- Birks, T.A.; Knight, J.C.; Russell, P.S.J. Endlessly single-mode photonic crystal fiber. Opt. Lett. 1997, 22, 961–963. [Google Scholar] [CrossRef]
- Knight, J.C.; Birks, T.A.; Cregan, R.F.; Russell, P.S.J.; de Sandro, P.D. Large mode area photonic crystal fibre. Electron. Lett. 1998, 34, 1347–1348. [Google Scholar] [CrossRef]
- Limpert, J.; Liem, A.; Reich, M.; Schreiber, T.; Nolte, S.; Zellmer, H.; Tünnermann, A.; Broeng, J.; Petersson, A.; Jakobsen, C. Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier. Opt. Express 2004, 12, 1313–1319. [Google Scholar] [CrossRef]
- Ortigosa-Blanch, A.; Knight, J.C.; Wadsworth, W.J.; Arriaga, J.; Mangan, B.J.; Birks, T.A.; Russell, P.S.J. Highly birefringent photonic crystal fibers. Opt. Lett. 2000, 25, 1325–1327. [Google Scholar] [CrossRef] [PubMed]
- Mangan, B.J.; Couny, F.; Farr, L.; Langford, A.; Roberts, P.J.; Williams, D.P.; Banham, M.; Mason, M.W.; Murphy, D.F.; Brown, E.A.M.; et al. Slope-matched dispersion-compensating photonic crystal fibre. In Proceedings of the Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, San Francisco, CA, USA, 16–21 May 2014. [Google Scholar]
- Argyros, A.; Birks, T.A.; Leon-Saval, S.G.; Cordeiro, C.M.B.; Russell, P.S.J. Guidance properties of low-contrast photonic bandgap fibres. Opt. Express 2005, 13, 2503–2511. [Google Scholar] [CrossRef] [PubMed]
- Grujic, T.; Kuhlmey, B.T.; Argyros, A.; Coen, S.; de Sterke, C.M. Solid-core fiber with ultra-wide bandwidth transmission window due to inhibited coupling. Opt. Express 2010, 18, 25556–25566. [Google Scholar] [CrossRef]
- Cerqueira, S.A.; Luan, F.; Cordeiro, C.M.B.; George, A.K.; Knight, J.C. Hybrid photonic crystal fiber. Opt. Express 2006, 14, 926–931. [Google Scholar] [CrossRef]
- Monro, T.M.; West, Y.D.; Hewak, D.W.; Broderick, N.G.R.; Richardson, D.J. Chalcogenide holey fibres. Electron. Lett. 2000, 36, 1998–2000. [Google Scholar] [CrossRef]
- Sanghera, J.S.; Shaw, L.B.; Pureza, P.; Nguyen, V.Q.; Gibson, D.; Busse, L.; Aggarwal, I.D.; Florea, C.M.; Kung, F.H. Nonlinear Properties of Chalcogenide Glass Fibers. Int. J. Appl. Glas. Sci. 2010, 1, 296–308. [Google Scholar] [CrossRef] [Green Version]
- John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987, 58, 2486–2489. [Google Scholar] [CrossRef]
- Yablonovitch, E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys. Rev. Lett. 1987, 58, 2059–2062. [Google Scholar] [CrossRef]
- Yablonovitch, E. Photonic band-gap structures. J. Opt. Soc. Am. B 1993, 10, 283. [Google Scholar] [CrossRef]
- Benabid, F.; Knight, J.C.; Antonopoulos, G.; Russell, P.S.J. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science 2002, 298, 399–402. [Google Scholar] [CrossRef]
- Venkataraman, N.; Gallagher, M.T.; Smith, C.M.; Muller, D.; West, J.A.; Koch, K.W.; Fajardo, J.C. Low Loss (13 dB/km) Air Core Photonic Band-Gap Fibre. In Proceedings of the 2002 28th European Conference on Optical Communication, Copenhagen, Denmark, 8–12 September 2002; Volume 5, pp. 1–2. [Google Scholar]
- Russell, P. Photonic Crystal Fibers. Science 2003, 299, 358–362. [Google Scholar] [CrossRef]
- Roberts, P.; Couny, F.; Sabert, H.; Mangan, B.J.; Williams, D.P.; Farr, L.; Mason, M.W.; Tomlinson, A.; Birks, T.A.; Knight, J.C.; et al. Ultimate low loss of hollow-core photonic crystal fibres. Opt. Express 2005, 13, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Marcatili, E.A.J.; Schmeltzer, R.A. Hollow metallic and dielectric waveguides for long distance optical transmission and lasers. Bell Syst. Tech. J. 1964, 43, 1783–1809. [Google Scholar] [CrossRef]
- Duguay, M.A.; Kokubun, Y.; Koch, T.L.; Pfeiffer, L. Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures. Appl. Phys. Lett. 1986, 49, 13–15. [Google Scholar] [CrossRef]
- Hsu, C.W.; Zhen, B.; Stone, A.D.; Joannopoulos, J.D.; Soljačić, M. Bound states in the continuum. Nat. Rev. Mater. 2016, 1, 16048. [Google Scholar] [CrossRef] [Green Version]
- Pryamikov, A.D.; Biriukov, A.S.; Kosolapov, A.F.; Plotnichenko, V.G.; Semjonov, S.L.; Dianov, E.M. Demonstration of a waveguide regime for a silica hollow—Core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm. Opt. Express 2011, 19, 1441. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Wadsworth, W.J.; Knight, J.C. Low loss silica hollow core fibers for 3–4 μm spectral region. Opt. Express 2012, 20, 11153–11158. [Google Scholar] [CrossRef]
- Vincetti, L.; Setti, V. Waveguiding mechanism in tube lattice fibers. Opt. Express 2010, 18, 23133. [Google Scholar] [CrossRef]
- Poletti, F. Nested antiresonant nodeless hollow core fiber. Opt. Express 2014, 22, 23807. [Google Scholar] [CrossRef]
- Habib, M.S.; Bang, O.; Bache, M. Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes. Opt. Express 2015, 23, 17394–17406. [Google Scholar] [CrossRef]
- Gao, S.; Wang, Y.; Ding, W.; Jiang, D.; Gu, S.; Zhang, X.; Wang, P. Hollow-core conjoined-tube negative-curvature fibre with ultralow loss. Nat. Commun. 2018, 9, 2828. [Google Scholar] [CrossRef] [PubMed]
- Belardi, W.; Knight, J.C. Hollow antiresonant fibers with reduced attenuation. Opt. Lett. 2014, 39, 1853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belardi, W. Design and Properties of Hollow Antiresonant Fibers for the Visible and Near Infrared Spectral Range. J. Light. Technol. 2015, 33, 4497–4503. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.Y.; Peng, X.; Alharbi, M.; Dutin, C.F.; Bradley, T.D.; Gérôme, F.; Mielke, M.; Booth, T.; Benabid, F. Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression. Opt. Lett. 2012, 37, 3111–3113. [Google Scholar] [CrossRef] [PubMed]
- Bradley, T.D.; Wang, Y.; Alharbi, M.; Debord, B.; Fourcade-Dutin, C.; Beaudou, B.; Gerome, F.; Benabid, F. Optical properties of low loss (70 dB/km) hypocycloid-core kagome hollow core photonic crystal fiber for Rb and Cs based optical applications. J. Light. Technol. 2013, 31, 2752–2755. [Google Scholar] [CrossRef]
- Debord, B.; Alharbi, M.; Bradley, T.; Fourcade-Dutin, C.; Wang, Y.Y.; Vincetti, L.; Gérôme, F.; Benabid, F. Hypocycloid-shaped hollow-core photonic crystal fiber Part I: Arc curvature effect on confinement loss. Opt. Express 2013, 21, 28597–28608. [Google Scholar] [CrossRef] [PubMed]
- Debord, B.; Alharbi, M.; Benoît, A.; Ghosh, D.; Dontabactouny, M.; Vincetti, L.; Blondy, J.-M.; Gérôme, F.; Benabid, F. Ultra low-loss hypocycloid-core Kagome hollow-core photonic crystal fiber for green spectral-range applications. Opt. Lett. 2014, 39, 6245–6248. [Google Scholar] [CrossRef] [PubMed]
- Maurel, M.; Chafer, M.; Amsanpally, A.; Adnan, M.; Amrani, F.; Debord, B.; Vincetti, L.; Gérôme, F.; Benabid, F. Optimized inhibited-coupling Kagome fibers at Yb-Nd:Yag (8.5 dB/km) and Ti:Sa (30 dB/km) ranges. Opt. Lett. 2018, 43, 1598–1601. [Google Scholar] [CrossRef] [PubMed]
- Bagley, R.D. Extrusion Method for Forming thin-Walled Honeycomb Structures. U.S. Patent US3790654A, 5 February 1974. [Google Scholar]
- Knight, J.C.; Birks, T.A.; Russell, P.S.J.; Atkin, D.M. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 1996, 21, 1547. [Google Scholar] [CrossRef] [PubMed]
- Edagawa, K. Photonic crystals, amorphous materials, and quasicrystals. Sci. Technol. Adv. Mater. 2014, 15, 34805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snyder, A.W.; Love, J.D. Optical Waveguide Theory; Chapman & Hall: London, UK; New York, NY, USA, 1983. [Google Scholar]
- Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J.W. Metallic Phase with Long-Range Orientational Order and No Translational Symmetry. Phys. Rev. Lett. 1984, 53, 1951–1953. [Google Scholar] [CrossRef]
- Couny, F.; Benabid, F.; Light, P.S. Large-pitch kagome-structured hollow-core photonic crystal fiber. Opt. Lett. 2006, 31, 3574–3576. [Google Scholar] [CrossRef] [PubMed]
- Marzari, N.; Mostofi, A.A.; Yates, J.R.; Souza, I.; Vanderbilt, D. Maximally localized Wannier functions: Theory and applications. Rev. Mod. Phys. 2012, 84, 1419–1475. [Google Scholar] [CrossRef] [Green Version]
- Argyros, A.; Birks, T.A.; Leon-Saval, S.G.; Cordeiro, C.M.B.; Luan, F.; Russell, P.S.J. Photonic bandgap with an index step of one percent. Opt. Express 2005, 13, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Light, P.S.; Couny, F.; Wang, Y.Y.; Wheeler, N.V.; Roberts, P.J.; Benabid, F. Double photonic bandgap hollow-core photonic crystal fiber. Opt. Express 2009, 17, 16238–16243. [Google Scholar] [CrossRef] [PubMed]
- Hedley, T.D.; Bird, D.M.; Benabid, F.; Knight, J.C.; Russell, P.S.J. Modelling of a novel hollow-core photonic crystal fibre. In Proceedings of the Conference on Quantum Electronics and Laser Science (QELS), Baltimore, MD, USA, 6 June 2003. [Google Scholar]
- Archambault, J.L.; Black, R.J.; Lacroix, S.; Bures, J. Loss calculations for antiresonant waveguides. J. Light. Technol. 1993, 11, 416–423. [Google Scholar] [CrossRef]
- Tamir, T. Integrated Optics. In Topics in Applied Physics; Springer: Berlin, Germany, 1975; Volume 7. [Google Scholar]
- Benabid, F.; Roberts, P.J. Photonic Crystal Hollow Waveguides. In Handbook Of Optofluidics; Hawkins, A.R., Schmidt, H., Eds.; Taylor & Francis Group: Abingdon, UK, 2010. [Google Scholar]
- Birks, T.A.; Bird, D.M.; Benabid, F.; Roberts, P.J. Strictly-bound modes of an idealised hollow-core fibre without a photonic bandgap. In Proceedings of the European Conference on Optical Communication, ECOC, Torino, Italy, 19–23 September 2010; pp. 1–2. [Google Scholar]
- Couny, F.; Benabid, F.; Light, P.S. Large Pitch Kagome-Structured Hollow-Core PCF. In Proceedings of the 2007 Conference on Lasers and Electro-Optics (CLEO), Baltimore, MD, USA, 6–11 May 2007; pp. 1–2. [Google Scholar]
- Couny, F.; Roberts, P.J.; Birks, T.A.; Benabid, F. Square-lattice large-pitch hollow-core photonic crystal fiber. Opt. Express 2008, 16, 20626–20636. [Google Scholar] [CrossRef] [PubMed]
- Beaudou, B.; Couny, F.; Benabid, F.; Roberts, P.J. Large Pitch Hollow Core Honeycomb Fiber. In Proceedings of the Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, San Jose, CA, USA, 4–9 May 2008. [Google Scholar]
- Alharbi, M.; Bradley, T.; Debord, B.; Fourcade-Dutin, C.; Ghosh, D.; Vincetti, L.; Gérôme, F.; Benabid, F. Hypocycloid-shaped hollow-core photonic crystal fiber Part II: Cladding effect on confinement and bend loss. Opt. Express 2013, 21, 28609–28616. [Google Scholar] [CrossRef]
- Fokoua, E.N.; Poletti, F.; Richardson, D.J. Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers. Opt. Express 2012, 20, 20980. [Google Scholar] [CrossRef]
- Kharadly, M.M.Z.; Lewis, J.E. Properties of dielectric-tube waveguides. Proc. Inst. Electr. Eng. 1969, 116, 214–224. [Google Scholar] [CrossRef]
- Burns, W.K. Normal mode analysis of waveguide devices. I. Theory. J. Light. Technol. 1988, 6, 1051–1057. [Google Scholar] [CrossRef]
- Uebel, P.; Günendi, M.C.; Frosz, M.H.; Ahmed, G.; Edavalath, N.N.; Ménard, J.; Russell, P.S.J. Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes. Opt. Lett. 2016, 41, 1961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michieletto, M.; Lyngsø, J.K.; Jakobsen, C.; Lægsgaard, J.; Bang, O.; Alkeskjold, T.T. Hollow-core fibers for high power pulse delivery. Opt. Express 2016, 24, 7103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, J.R.; Sandoghchi, S.R.; Bradley, T.D.; Liu, Z.; Slavík, R.; Gouveia, M.A.; Wheeler, N.V.; Jasion, G.; Chen, Y.; Fokoua, E.N.; et al. Antiresonant Hollow Core Fiber With an Octave Spanning Bandwidth for Short Haul Data Communications. J. Light. Technol. 2017, 35, 437–442. [Google Scholar] [CrossRef] [Green Version]
- Chafer, M.; Delahaye, F.; Amrani, F.; Debord, B.; Gérôme, F.; Benabid, F. 1 km long HC-PCF with losses at the fundamental Rayleigh scattering limit in the green wavelength range. In Proceedings of the Conference on Lasers and Electro-Optics, San Jose, CA, USA, 13–18 May 2018. [Google Scholar]
- Gao, S.-F.; Wang, Y.-Y.; Ding, W.; Wang, P. Hollow-core negative-curvature fiber for UV guidance. Opt. Lett. 2018, 43, 1347. [Google Scholar] [CrossRef] [PubMed]
- Litchinitser, N.M.; Abeeluck, A.K.; Headley, C.; Eggleton, B.J. Antiresonant reflecting photonic crystal optical waveguides. Opt. Lett. 2002, 27, 1592–1594. [Google Scholar] [CrossRef] [PubMed]
- Miyagi, M.; Nishida, S. A Proposal of Low-Loss Leaky Waveguide for Submillimeter Waves Transmission. IEEE Trans. Microw. Theory Tech. 1980, 28, 398–401. [Google Scholar] [CrossRef]
- Bornstein, A.; Croitoru, N. Experimental evaluation of a hollow glass fiber. Appl. Opt. 1986, 25, 355–358. [Google Scholar] [CrossRef]
- Zeisberger, M.; Schmidt, M.A. Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers. Sci. Rep. 2017, 7, 11761. [Google Scholar] [CrossRef]
- Bird, D. Attenuation of model hollow-core, anti-resonant fibres. Opt. Express 2017, 25, 23215–23237. [Google Scholar] [CrossRef] [PubMed]
- Fini, J.M.; Nicholson, J.W.; Mangan, B.; Meng, L.; Windeler, R.S.; Monberg, E.M.; DeSantolo, A.; DiMarcello, F.V.; Mukasa, K. Polarization maintaining single-mode low-loss hollow-core fibres. Nat. Commun. 2014, 5, 5085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicholson, J.W.; Yablon, A.D.; Ramachandran, S.; Ghalmi, S. Spatially and spectrally resolved imaging of modal content in large-mode-area fibers. Opt. Express 2008, 16, 7233–7243. [Google Scholar] [CrossRef] [PubMed]
- Debord, B.; Gérôme, F.; Paul, P.-M.; Husakou, A.; Benabid, F. 2.6 mJ energy and 81 GW peak power femtosecond laser-pulse delivery and spectral broadening in inhibited coupling Kagome fiber. In Proceedings of the CLEO: 2015, San Jose, CA, USA, 10–15 May 2015. [Google Scholar]
- Beaudou, B.; Gerôme, F.; Wang, Y.Y.; Alharbi, M.; Bradley, T.D.; Humbert, G.; Auguste, J.-L.; Blondy, J.-M.; Benabid, F. Millijoule laser pulse delivery for spark ignition through kagome hollow-core fiber. Opt. Lett. 2012, 37, 1430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, X.; Mielke, M.; Booth, T. High average power, high energy 155 μm ultra-short pulse laser beam delivery using large mode area hollow core photonic band-gap fiber. Opt. Express 2011, 19, 923. [Google Scholar] [CrossRef] [PubMed]
- Shephard, J.D.; Couny, F.; Russell, P.S.J.; Jones, J.D.C.; Knight, J.C.; Hand, D.P. Improved hollow-core photonic crystal fiber design for delivery of nanosecond pulses in laser micromachining applications. Appl. Opt. 2005, 44, 4582. [Google Scholar] [CrossRef]
- Tauer, J.; Orban, F.; Kofler, H.; Fedotov, A.B.; Fedotov, I.V.; Mitrokhin, V.P.; Zheltikov, A.M.; Wintner, E. High-throughput of single high-power laser pulses by hollow photonic band gap fibers. Laser Phys. Lett. 2007, 4, 444–448. [Google Scholar] [CrossRef]
- Hädrich, S.; Rothhardt, J.; Demmler, S.; Tschernajew, M.; Hoffmann, A.; Krebs, M.; Liem, A.; de Vries, O.; Plötner, M.; Fabian, S.; et al. Scalability of components for kW-level average power few-cycle lasers. Appl. Opt. 2016, 55, 1636. [Google Scholar] [CrossRef]
- Lee, E.; Luo, J.; Sun, B.; Ramalingam, V.L.; Yu, X.; Wang, Q.; Yu, F.; Knight, J.C. 45W 2 µm Nanosecond Pulse Delivery Using Antiresonant Hollow-Core Fiber. In Proceedings of the Conference on Lasers and Electro-Optics, San Jose, CA, USA, 13–18 May 2018. [Google Scholar]
- Hädrich, S.; Krebs, M.; Hoffmann, A.; Klenke, A.; Rothhardt, J.; Limpert, J.; Tünnermann, A. Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources. Light Sci. Appl. 2015, 4, e320. [Google Scholar] [CrossRef]
- Jaworski, P.; Yu, F.; Carter, R.M.; Knight, J.C.; Shephard, J.D.; Hand, D.P. High energy green nanosecond and picosecond pulse delivery through a negative curvature fiber for precision micro-machining. Opt. Express 2015, 23, 8498. [Google Scholar] [CrossRef] [Green Version]
- Gebert, F.; Frosz, M.H.; Weiss, T.; Wan, Y.; Ermolov, A.; Joly, N.Y.; Schmidt, P.O.; Russell, P.S.J. Damage-free single-mode transmission of deep-UV light in hollow-core PCF. Opt. Express 2014, 22, 15388–15396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pricking, S.; Gebs, R.; Fleischhaker, R.; Kleinbauer, J.; Budnicki, A.; Sutter, D.H.; Killi, A.; Weiler, S.; Mielke, M.; Beaudou, B.; et al. Hollow core fiber delivery of sub-ps pulses from a TruMicro 5000 Femto edition thin disk amplifier. Proc. SPIE 2015, 9356, 935602. [Google Scholar]
- Yalin, A.P. High power fiber delivery for laser ignition applications. Opt. Express 2013, 21, A1102. [Google Scholar] [CrossRef]
- Subramanian, K.; Gabay, I.; Ferhanoğlu, O.; Shadfan, A.; Pawlowski, M.; Wang, Y.; Tkaczyk, T.; Ben-Yakar, A. Kagome fiber based ultrafast laser microsurgery probe delivering micro-Joule pulse energies. Biomed. Opt. Express 2016, 7, 4639. [Google Scholar] [CrossRef] [PubMed]
- Ferhanoglu, O.; Yildirim, M.; Subramanian, K.; Ben-Yakar, A. A 5-mm piezo-scanning fiber device for high speed ultrafast laser microsurgery. Biomed. Opt. Express 2014, 5, 2023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keller, U. Recent developments in compact ultrafast lasers. Nature 2003, 424, 831. [Google Scholar] [CrossRef] [PubMed]
- Mak, K.F.; Travers, J.C.; Joly, N.Y.; Abdolvand, A.; Russell, P.S.J. Two techniques for temporal pulse compression in gas-filled hollow-core kagomé photonic crystal fiber. Opt. Lett. 2013, 38, 3592–3595. [Google Scholar] [CrossRef]
- Guichard, F.; Giree, A.; Zaouter, Y.; Hanna, M.; Machinet, G.; Debord, B.; Gérôme, F.; Dupriez, P.; Druon, F.; Hönninger, C.; et al. Nonlinear compression of high energy fiber amplifier pulses in air-filled hypocycloid-core Kagome fiber. Opt. Express 2015, 23, 7416–7423. [Google Scholar] [CrossRef]
- Emaury, F.; Dutin, C.F.; Saraceno, C.J.; Trant, M.; Heckl, O.H.; Wang, Y.Y.; Schriber, C.; Gerome, F.; Südmeyer, T.; Benabid, F.; Keller, U. Beam delivery and pulse compression to sub-50 fs of a modelocked thin-disk laser in a gas-filled Kagome-type HC-PCF fiber. Opt. Express 2013, 21, 4986. [Google Scholar] [CrossRef] [Green Version]
- Gebhardt, M.; Gaida, C.; Heuermann, T.; Stutzki, F.; Jauregui, C.; Antonio-Lopez, J.; Schulzgen, A.; Amezcua-Correa, R.; Limpert, J.; Tünnermann, A. Nonlinear pulse compression to 43 W GW-class few-cycle pulses at 2 μm wavelength. Opt. Lett. 2017, 42, 4179–4182. [Google Scholar] [CrossRef]
- Murari, K.; Stein, G.J.; Cankaya, H.; Debord, B.; Gérôme, F.; Cirmi, G.; Mücke, O.D.; Li, P.; Ruehl, A.; Hartl, I.; et al. Kagome-fiber-based pulse compression of mid-infrared picosecond pulses from a Ho:YLF amplifier. Optica 2016, 3, 816–822. [Google Scholar] [CrossRef]
- Benabid, F.; Bouwmans, G.; Knight, J.C.; Russell, P.S.J.; Couny, F. Ultrahigh Efficiency Laser Wavelength Conversion in a Gas-Filled Hollow Core Photonic Crystal Fiber by Pure Stimulated Rotational Raman Scattering in Molecular Hydrogen. Phys. Rev. Lett. 2004, 93, 123903. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y.; Wu, C.; Couny, F.; Raymer, M.G.; Benabid, F. Quantum-Fluctuation-Initiated Coherence in Multioctave Raman Optical Frequency Combs. Phys. Rev. Lett. 2010, 105, 123603. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, P.; Abdolvand, A.; Russell, P.S.J. Generation of spectral clusters in a mixture of noble and Raman-active gases. Opt. Lett. 2016, 41, 5543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alharbi, M.; Debord, B.; Dontabactouny, M.; Gérôme, F.; Benabid, F. 17.6 THz waveform synthesis by phase-locked Raman sidebands generation in HC-PCF. In Proceedings of the CLEO: 2014, San Jose, CA, USA, 8–13 June 2014. [Google Scholar]
- Cassataro, M.; Novoa, D.; Günendi, M.C.; Edavalath, N.N.; Frosz, M.H.; Travers, J.C.; Russell, P.S.J. Generation of broadband mid-IR and UV light in gas-filled single-ring hollow-core PCF. Opt. Express 2017, 25, 7637–7644. [Google Scholar] [CrossRef] [PubMed]
- Raizer, Y.P. Gas Discharge Physics; Springer: Berlin, Ggrmany, 1991. [Google Scholar]
- Moisan, M.; Beaudry, C.; Leprince, P. A Small Microwave Plasma Source for Long Column Production without Magnetic Field. IEEE Trans. Plasma Sci. 1975, 3, 55–59. [Google Scholar] [CrossRef]
- Debord, B.; Alves, L.L.; Gérôme, F.; Jamier, R.; Leroy, O.; Boisse-Laporte, C.; Leprince, P.; Benabid, F. Microwave-driven plasmas in hollow-core photonic crystal fibres. Plasma Sources Sci. Technol. 2014, 23, 015022. [Google Scholar] [CrossRef]
- Vial, F.; Gadonna, K.; Debord, B.; Delahaye, F.; Amrani, F.; Leroy, O.; Gérôme, F.; Benabid, F. Generation of surface-wave microwave microplasmas in hollow-core photonic crystal fiber based on a split-ring resonator. Opt. Lett. 2016, 41, 2286–2289. [Google Scholar] [CrossRef]
- Amrani, F.; Delahaye, F.; Debord, B.; Alves, L.L.; Gerome, F.; Benabid, F. Gas mixture for deep-UV plasma emission in a hollow-core photonic crystal fiber. Opt. Lett. 2017, 42, 3363–3366. [Google Scholar] [CrossRef]
- Chang, W.; Nazarkin, A.; Travers, J.C.; Nold, J.; Hölzer, P.; Joly, N.Y.; Russell, P.S.J. Influence of ionization on ultrafast gas-based nonlinear fiber optics. Opt. Express 2011, 19, 4856–4863. [Google Scholar] [CrossRef]
- Saleh, M.F.; Biancalana, F. Understanding the dynamics of photoionization-induced nonlinear effects and solitons in gas-filled hollow-core photonic crystal fibers. Phys. Rev. A 2011, 84, 063838. [Google Scholar] [CrossRef]
- Köttig, F.; Novoa, D.; Tani, F.; Günendi, M.C.; Cassataro, M.; Travers, J.C.; Russell, P.S.J. Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion. Nat. Commun. 2017, 8, 813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novoa, D.; Cassataro, M.; Travers, J.C.; Russell, P.S.J. Photoionization-Induced Emission of Tunable Few-Cycle Midinfrared Dispersive Waves in Gas-Filled Hollow-Core Photonic Crystal Fibers. Phys. Rev. Lett. 2015, 115, 033901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hölzer, P.; Chang, W.; Travers, J.C.; Nazarkin, A.; Nold, J.; Joly, N.Y.; Saleh, M.F.; Biancalana, F.; Russell, P.S.J. Femtosecond Nonlinear Fiber Optics in the Ionization Regime. Phys. Rev. Lett. 2011, 107, 203901. [Google Scholar] [CrossRef] [PubMed]
- Saleh, M.F.; Chang, W.; Hölzer, P.; Nazarkin, A.; Travers, J.C.; Joly, N.Y.; Russell, P.S.J.; Biancalana, F. Theory of Photoionization-Induced Blueshift of Ultrashort Solitons in Gas-Filled Hollow-Core Photonic Crystal Fibers. Phys. Rev. Lett. 2011, 107, 203902. [Google Scholar] [CrossRef]
- Meng, F.; Liu, B.; Wang, S.; Liu, J.; Li, Y.; Wang, C.; Zheltikov, A.M.; Hu, M. Controllable two-color dispersive wave generation in argon-filled hypocycloid-core kagome fiber. Opt. Express 2017, 25, 32972. [Google Scholar] [CrossRef]
- Joly, N.Y.; Nold, J.; Chang, W.; Hölzer, P.; Nazarkin, A.; Wong, G.K.L.; Biancalana, F.; Russell, P.S. Bright Spatially Coherent Wavelength-Tunable Deep-UV Laser Source Using an Ar-Filled Photonic Crystal Fiber. Phys. Rev. Lett. 2011, 106, 203901. [Google Scholar] [CrossRef] [PubMed]
- Mak, K.F.; Travers, J.C.; Hölzer, P.; Joly, N.Y.; Russell, P.S.J. Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF. Opt. Express 2013, 21, 10942. [Google Scholar] [CrossRef]
- Light, P.S.; Benabid, F.; Couny, F.; Maric, M.; Luiten, A.N. Electromagnetically induced transparency in Rb-filled coated hollow-core photonic crystal fiber. Opt. Lett. 2007, 32, 1323–1325. [Google Scholar] [CrossRef]
- Bradley, T.D.; Jouin, J.; McFerran, J.J.; Thomas, P.; Gerome, F.; Benabid, F. Extended duration of rubidium vapor in aluminosilicate ceramic coated hypocycloidal core Kagome HC-PCF. J. Light. Technol. 2014, 32, 2486–2491. [Google Scholar]
- Bajcsy, M.; Hofferberth, S.; Balic, V.; Peyronel, T.; Hafezi, M.; Zibrov, A.S.; Vuletic, V.; Lukin, M.D. Efficient All-Optical Switching Using Slow Light within a Hollow Fiber. Phys. Rev. Lett. 2009, 102, 203902. [Google Scholar] [CrossRef] [PubMed]
- Bajcsy, M.; Hofferberth, S.; Peyronel, T.; Balic, V.; Liang, Q.; Zibrov, A.S.; Vuletic, V.; Lukin, M.D. Laser-cooled atoms inside a hollow-core photonic-crystal fiber. Phys. Rev. A 2011, 83, 63830. [Google Scholar] [CrossRef] [Green Version]
- Vorrath, S.; Möller, S.A.; Windpassinger, P.; Bongs, K.; Sengstock, K. Efficient guiding of cold atoms through a photonic band gap fiber. New J. Phys. 2010, 12, 123015. [Google Scholar] [CrossRef] [Green Version]
- Langbecker, M.; Noaman, M.; Kjaergaard, N.; Benabid, F.; Windpassinger, P. Rydberg excitation of cold atoms inside a hollow-core fiber. Phys. Rev. A 2017, 96, 41402. [Google Scholar] [CrossRef]
- Kumar, R.; Ong, J.R.; Savanier, M.; Mookherjea, S. Controlling the spectrum of photons generated on a silicon nanophotonic chip. Nat. Commun. 2014, 5, 5489. [Google Scholar] [CrossRef] [Green Version]
- Ortiz-Ricardo, E.; Bertoni-Ocampo, C.; Ibarra-Borja, Z.; Ramirez-Alarcon, R.; Cruz-Delgado, D.; Cruz-Ramirez, H.; Garay-Palmett, K.; U’Ren, A.B. Spectral tunability of two-photon states generated by spontaneous four-wave mixing: Fibre tapering, temperature variation and longitudinal stress. Quantum Sci. Technol. 2017, 2, 034015. [Google Scholar] [CrossRef]
- Cordier, M.; Orieux, A.; Debord, B.; Gérome, F.; Gorse, A.; Chafer, M.; Diamanti, E.; Delaye, P.; Benabid, F.; Zaquine, I. Shaping photon-pairs time-frequency correlations in inhibited-coupling hollow-core fibers. In Proceedings of the Conference on Lasers and Electro-Optics, San Jose, CA, USA, 13–18 May 2018. [Google Scholar]
- Cordier, M.; Orieux, A.; Debord, B.; Gérome, F.; Gorse, A.; Chafer, M.; Diamanti, E.; Delaye, P.; Benabid, F.; Zaquine, I. Active engineering of four-wave mixing spectral entanglement in hollow-core fibers. ArXiv, 2018; arXiv:1807.11402. [Google Scholar]
- Finger, M.A.; Joly, N.Y.; Russell, P.S.J.; Chekhova, M.V. Characterization and shaping of the time-frequency Schmidt mode spectrum of bright twin beams generated in gas-filled hollow-core photonic crystal fibers. Phys. Rev. A 2017, 95, 053814. [Google Scholar] [CrossRef] [Green Version]
Reference | Wavelength | Compression Scheme | Input/Output Energy | Input Pulse Duration | Output Pulse Duration | Compression Factor | Filling Gas |
---|---|---|---|---|---|---|---|
Mak et al. [114] | 790 nm | Postcompression | 10.3 µJ | 103 fs | 12.6 fs | ~8 | Krypton |
Mak et al. [114] | 790 nm | Self-compression | 6.6 µJ | 24 fs | 6.8 fs | ~3.5 | Krypton |
Hädrich et al. [106] | 1030 nm | Postcompression | 9 µJ | 250 fs | 30 fs | ~8.3 | Krypton |
Guichard et al. [115] | 1030 nm | Postcompression | 70 µJ | 330 fs | 34 fs | ~9.7 | Ambiant air |
Debord et al. [31] | 1030 nm | Self-compression | 450 µJ | 600 fs | 49 fs | ~12 | Ambiant air |
Emaury et al. [116] | 1030 nm | Postcompression | 1.95 µJ | 860 fs | 48 fs | ~17.9 | Xenon |
Balciunas et al. [16] | 1080 nm | Self-compression | 35 µJ | 80 fs | 4.5 fs | ~17 | Xenon |
Wang et al. [61] | 1500 nm | Self-compression | 105 µJ | 850 fs | 300 fs | ~2.8 | Ambiant air |
Gebhardt et al. [117] | 1820 nm | Self-compression | 41 µJ/34.4 µJ | 110 fs | 14 fs | ~7.8 | Argon |
Murari et al. [118] | 2050 nm | Postcompression | 227 µJ | 1.8 ps | 285 fs | ~6.3 | Argon |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Debord, B.; Amrani, F.; Vincetti, L.; Gérôme, F.; Benabid, F. Hollow-Core Fiber Technology: The Rising of “Gas Photonics”. Fibers 2019, 7, 16. https://doi.org/10.3390/fib7020016
Debord B, Amrani F, Vincetti L, Gérôme F, Benabid F. Hollow-Core Fiber Technology: The Rising of “Gas Photonics”. Fibers. 2019; 7(2):16. https://doi.org/10.3390/fib7020016
Chicago/Turabian StyleDebord, Benoît, Foued Amrani, Luca Vincetti, Frédéric Gérôme, and Fetah Benabid. 2019. "Hollow-Core Fiber Technology: The Rising of “Gas Photonics”" Fibers 7, no. 2: 16. https://doi.org/10.3390/fib7020016
APA StyleDebord, B., Amrani, F., Vincetti, L., Gérôme, F., & Benabid, F. (2019). Hollow-Core Fiber Technology: The Rising of “Gas Photonics”. Fibers, 7(2), 16. https://doi.org/10.3390/fib7020016