Cellulose Nanofibers Preparation from Cassava Peels via Mechanical Disruption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Isolation of Cellulose
2.3. Preparation of CNF
2.4. Cellulose and CNFCharacterization
3. Results and Discussion
3.1. Chemical Composition of CP and Its Nanocellulose
3.2. FTIR Analysis
3.3. XRD
3.4. Thermal Gravimetric Analysis (TGA)
3.5. SEM
3.6. TEM
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Farias, F.O.; Jasko, A.C.; Colman, T.A.D.; Pinheiro, L.A.; Schnitzler, E.; Barana, A.C.; Demiate, I.M. Characterisation of cassava bagasse and composites prepared by blending with low-density polyethylene. Braz. Arch. Biol. Technol. 2014, 57, 821–830. [Google Scholar] [CrossRef]
- FAO. Food Outlook; Biannual Report on Global Food Markets; Food and Agriculture Organization of the United Nation: Rome, Italy, 2018; p. 35. ISBN 978-92-5-130768-7. [Google Scholar]
- Teixeira, E.D.M.; Pasquini, D.; Curvelo, A.A.; Corradini, E.; Belgacem, M.N.; Dufresne, A. Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydr. Polym. 2009, 78, 422–431. [Google Scholar] [CrossRef]
- Ratnadewi, A.A.I.; Santoso, A.B.; Sulistyaningsih, E.; Handayani, W. Application of cassava peel and waste as raw materials for xylooligosaccharide production using endoxylanase from Bacillus subtilis of soil termite abdomen. Procedia Chem. 2016, 18, 31–38. [Google Scholar] [CrossRef]
- Leite, A.L.M.P.; Zanon, C.D.; Menegalli, F.C. Isolation and characterization of cellulose nanofibers from cassava root bagasse and peelings. Carbohydr. Polym. 2017, 157, 962–970. [Google Scholar] [CrossRef]
- Tumwesigye, K.S.; Morales-Oyervides, L.; Oliveira, J.C.; Sousa-Gallagher, M.J. Effective utilisation of cassava bio-wastes through integrated process design: A sustainable approach to indirect waste management. Process Saf. Environ. Prot. 2016, 102, 159–167. [Google Scholar] [CrossRef]
- Daud, Z.; Kassim, M.; Sari, A.; MohdAripin, A.; Awang, H.; Hatta, M.; Zainuri, M. Chemical composition and morphological of cocoa pod husks and cassava peels for pulp and paper production. Aust. J. Basic Appl. Sci. 2013, 7, 406–411. [Google Scholar]
- Aripin, A.M.; Kassim, A.S.M.; Daud, Z.; Hatta, M.Z.M. Cassava peels for alternative fibre in pulp and paper industry: Chemical properties and morphology characterization. Int. J. Integr. Eng. 2013, 5, 30–33. [Google Scholar]
- Wulandari, W.; Rochliadi, A.; Arcana, I. Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. IOP Conf. Ser. Mater. Sci. Eng. 2016, 107, 012045. [Google Scholar] [CrossRef]
- Kargarzadeh, H.; Ioelovich, M.; Ahmad, I.; Thomas, S.; Dufresne, A. Methods for extraction of nanocellulose from various sources. In Handbook of Nanocellulose and Cellulose Nanocomposites; John Wiley & Sons/Wiley: Hoboken, NJ, USA, 2017; pp. 1–49. ISBN 3-527-68998-2. [Google Scholar]
- Asrofi, M.; Abral, H.; Kasim, A.; Pratoto, A.; Mahardika, M.; Hafizulhaq, F. Mechanical properties of a water hyacinth nanofiber cellulose reinforced thermoplastic starch bionanocomposite: Effect of ultrasonic vibration during processing. Fibers 2018, 6, 40. [Google Scholar] [CrossRef]
- Pasquini, D.; de Morais Teixeira, E.; da Silva Curvelo, A.A.; Belgacem, M.N.; Dufresne, A. Extraction of cellulose whiskers from cassava bagasse and their applications as reinforcing agent in natural rubber. Ind. Crops Prod. 2010, 32, 486–490. [Google Scholar] [CrossRef]
- de Morais Teixeira, E.; Curvelo, A.A.; Corrêa, A.C.; Marconcini, J.M.; Glenn, G.M.; Mattoso, L.H. Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly (lactic acid). Ind. Crops Prod. 2012, 37, 61–68. [Google Scholar] [CrossRef]
- Wicaksono, R.; Syamsu, K.; Yuliasih, I.; Nasir, M.; Street, K. Cellulose nanofibers from cassava bagasse: Characterization and application on tapioca-film. Chem. Mater. Res. 2013, 3, 79–87. [Google Scholar]
- Travalini, A.P.; Prestes, E.; Pinheiro, L.A.; Demiate, I.M. Extraction and characterization of nanocrystalline cellulose from cassava bagasse. J. Polym. Environ. 2018, 26, 789–797. [Google Scholar] [CrossRef]
- Widiarto, S.; Yuwono, S.; Rochliadi, A.; Arcana, I. Preparation and characterization of cellulose and nanocellulose from agro-industrial waste-cassava peel. IOP Conf. Ser. Mater. Sci. Eng. 2017, 176, 012052. [Google Scholar] [CrossRef]
- TAPPI. Alpha-beta- and Gamma-Cellulose in Pulp; T 203 cm-99. The Technical Association of Pulp and Paper Industry. 1999. Available online: https://imisrise.tappi.org/TAPPI/Products/01/T/0104T203.aspx (accessed on 8 October 2018).
- Viera, R.G.; Rodrigues Filho, G.; de Assunção, R.M.; Meireles, C.D.S.; Vieira, J.G.; de Oliveira, G.S. Synthesis and characterization of methylcellulose from sugar cane bagasse cellulose. Carbohydr. Polym. 2007, 67, 182–189. [Google Scholar] [CrossRef]
- Chieng, B.W.; Lee, S.H.; Ibrahim, N.A.; Then, Y.Y.; Loo, Y.Y. Isolation and characterization of cellulose nanocrystals from oil palm mesocarp fiber. Polymers 2017, 9, 355. [Google Scholar] [CrossRef] [PubMed]
- Aprilia, N.A.S.; Asniza, M.; Owolabi, F.A.T.; Rizal, S.; Syakir, M.I.; Paridah, M.T.; Kumar, U.S.U.; Nasrullah, R.C.L.; Haafiz, M.K.; Khalil, H.P.S.A. Role of dispersion time on the properties of enzymatic-treated bamboo cellulose nanofibers. Mater. Res. Express 2018, 5, 105014. [Google Scholar] [CrossRef]
- Mandal, A.; Chakrabarty, D. Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr. Polym. 2011, 86, 1291–1299. [Google Scholar] [CrossRef]
- Alemdar, A.; Sain, M. Isolation and characterization of nanofibers from agricultural residues—Wheat straw and soy hulls. Bioresour. Technol. 2008, 99, 1664–1671. [Google Scholar] [CrossRef]
- Liu, H.; Liu, D.; Yao, F.; Wu, Q. Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites. Bioresour. Technol. 2010, 101, 5685–5692. [Google Scholar] [CrossRef]
- Segal, L.; Creely, J.J.; Martin, A.E., Jr.; Conrad, C.M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
- Morán, J.I.; Alvarez, V.A.; Cyras, V.P.; Vázquez, A. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 2008, 15, 149–159. [Google Scholar] [CrossRef]
Component | Dried CP | Cellulose Nanofibers (CNF) Procedure I | CNF Procedure II |
---|---|---|---|
Cellulose (%) | 40.5 | 86.4 | 90.7 |
Lignin (%) | 11.7 | 2.6 | 1.7 |
Hemicellulose (%) | 21.4 | 1.3 | 0.8 |
Raw CP | CNF Procedure I | CNF Procedure II | MCC | Assignment |
---|---|---|---|---|
3420 | 3345 | 3345 | 3350 | OH stretching |
2922 | 2920 | 2910 | 2900 | CH stretching of CH2 and CH3 groups |
1740 s * | 1740 w * | 1730 w * | - | C=O stretching of acetyl or carboxylic acid |
1640 | 1640 | 1640 | 1640 | H-O-H bending of absorbed water |
1515 | - | - | - | C=C stretching of aromatic ring (lignin) |
1429 | 1430 | 1430 | 1432 | CH2 bending |
1376 | 1374 | 1374 | 1372 | C-H deformation |
1335 | 1335 | 1335 | 1335 | OH in plane bending |
1166 | 1165 | 1165 | 1164 | C-O-C anti symmetric bridge stretching |
1062 | 1080 | 1080 | 1080 | C=O symmetric stretching of primary alcohol |
- | 896 | 896 | 896 | β-Glycosidic linkages of glucose ring (cellulose) |
Samples | 2θ Amorphous (°) Intensity | 2θ (200) (°) Intensity | CI (%) |
---|---|---|---|
Raw CP | 306 | 392 | 21.9 |
CNF Procedure I | 303 | 799 | 62.1 |
CNF Procedure II | 325 | 886 | 63.3 |
MCC | 305 | 1408 | 78.3 |
Samples | Initial Degradation Temperature (°C) | Maximum Degradation Rate Temperature (°C) | Residue (%) |
---|---|---|---|
Raw CP | 215.3 | 315.9 | 22.8 |
CNF Procedure I | 192.2 | 317.5 | 19.9 |
CNF Procedure II | 218.7 | 338.2 | 16.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Widiarto, S.; Pramono, E.; Suharso; Rochliadi, A.; Arcana, I.M. Cellulose Nanofibers Preparation from Cassava Peels via Mechanical Disruption. Fibers 2019, 7, 44. https://doi.org/10.3390/fib7050044
Widiarto S, Pramono E, Suharso, Rochliadi A, Arcana IM. Cellulose Nanofibers Preparation from Cassava Peels via Mechanical Disruption. Fibers. 2019; 7(5):44. https://doi.org/10.3390/fib7050044
Chicago/Turabian StyleWidiarto, Sonny, Edi Pramono, Suharso, Achmad Rochliadi, and I Made Arcana. 2019. "Cellulose Nanofibers Preparation from Cassava Peels via Mechanical Disruption" Fibers 7, no. 5: 44. https://doi.org/10.3390/fib7050044
APA StyleWidiarto, S., Pramono, E., Suharso, Rochliadi, A., & Arcana, I. M. (2019). Cellulose Nanofibers Preparation from Cassava Peels via Mechanical Disruption. Fibers, 7(5), 44. https://doi.org/10.3390/fib7050044