Comparison of the In Vitro Photodynamic Activity of the C1α and C1β Anomers of a Glucosylated Boron Dipyrromethene
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Methods
2.2. Chemical Synthesis
2.2.1. Preparation of 3
2.2.2. Preparation of 4
2.2.3. Preparation of 6
2.2.4. Preparation of 9
2.2.5. Preparation of 10
2.2.6. Preparation of 11
2.2.7. Preparation of 14β
2.2.8. Preparation of 14α
2.2.9. Preparation of 15β
2.2.10. Preparation of 15α
2.2.11. Preparation of 16β
2.2.12. Preparation of 16α
2.3. Photophysical Measurements
2.4. Biological Studies
2.4.1. Cell Lines and Culture Conditions
2.4.2. Flow Cytometric Analysis
2.4.3. Confocal Fluorescence Microscopic Study
2.4.4. Cellular Uptake Inhibition Assay
2.4.5. Study of Subcellular Localization
2.4.6. Photocytotoxicity Assay
3. Results and Discussion
3.1. Synthesis and Characterization
3.2. Cellular Uptake
3.3. Photocytotoxicity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deng, D.; Yan, N. GLUT, SGLT, and SWEET: Structural and mechanistic investigations of the glucose transporters. Protein Sci. 2016, 25, 546–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cairns, R.A.; Harris, I.S.; Mak, T.W. Regulation of cancer cell metabolism. Nat. Rev. Cancer 2011, 11, 85–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pliszka, M.; Szablewski, L. Glucose transporters as a target for anticancer therapy. Cancers 2021, 13, 4184. [Google Scholar] [CrossRef] [PubMed]
- Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirement of cell proliferation. Science 2009, 324, 1029–1033. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Yang, J.; Seeberger, P.H.; Yin, J. Glycoconjugates for glucose transporter-mediated cancer-specific targeting and treatment. Carbohydr. Res. 2020, 498, 108195. [Google Scholar] [CrossRef]
- Bononi, G.; Iacopini, D.; Cicio, G.; Di Pietro, S.; Granchi, C.; Di Bussolo, V.; Minutolo, F. Glycoconjugated metal complexes as cancer diagnostic and therapeutic agents. ChemMedChem 2021, 16, 30–64. [Google Scholar] [CrossRef]
- Ben-Haim, S.; Ell, P. 18F-FDG PET and PET/CT in the evaluation of cancer treatment response. J. Nucl. Med. 2009, 50, 88–99. [Google Scholar] [CrossRef] [Green Version]
- Calvaresia, E.C.; Hergenrother, P.J. Glucose conjugation for the specific targeting and treatment of cancer. Chem. Sci. 2013, 4, 2319–2333. [Google Scholar] [CrossRef] [Green Version]
- He, Q.-L.; Minn, I.; Wang, Q.; Xu, P.; Head, S.A.; Datan, E.; Yu, B.; Pomper, M.G.; Liu, J.O. Targeted delivery and sustained antitumor activity of triptolide through glucose conjugation. Angew. Chem. Int. Ed. 2016, 55, 12035–12039. [Google Scholar] [CrossRef]
- Datan, E.; Minn, I.; Xu, P.; He, Q.-L.; Ahn, H.-H.; Yu, B.; Pomper, M.G.; Liu, J.O. A glucose-triptolide conjugate selectively targets cancer cells under hypoxia. iScience 2020, 23, 101536. [Google Scholar] [CrossRef]
- Patra, M.; Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. A potent glucose-platinum conjugate exploits glucose transporters and preferentially accumulates in cancer cells. Angew. Chem. Int. Ed. 2016, 55, 2550–2554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patra, M.; Awuah, S.G.; Lippard, S. Chemical approach to positional isomers of glucose-platinum conjugates reveals specific cancer targeting through glucose-transporter-mediated uptake in vitro and in vivo. J. Am. Chem. Soc. 2016, 138, 12541–12551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Algorri, J.F.; Ochoa, M.; Roldán-Varona, P.; Rodríguez-Cobo, L.; López-Higuera, J.M. Photodynamic therapy: A compendium of latest reviews. Cancers 2021, 13, 4447. [Google Scholar] [CrossRef] [PubMed]
- Gierlich, P.; Mata, A.I.; Donohoe, C.; Brito, R.M.M.; Senge, M.O.; Gomes-da-Silva, L.C. Ligand-targeted delivery of photosensitizers for cancer treatment. Molecules 2020, 25, 5317. [Google Scholar] [CrossRef]
- Lucky, S.S.; Soo, K.C.; Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev. 2015, 115, 1990–2042. [Google Scholar] [CrossRef] [PubMed]
- Luby, B.M.; Walsh, C.D.; Zheng, G. Advanced photosensitizer activation strategies for smarter photodynamic therapy beacons. Angew. Chem. Int. Ed. 2019, 58, 2558–2569. [Google Scholar] [CrossRef]
- Singh, S.; Aggarwal, A.; Bhupathiraju, N.V.S.D.K.; Arianna, G.; Tiwari, K.; Drain, C.M. Glycosylated porphyrins, phthalocyanines, and other porphyrinoids for diagnostics and therapeutics. Chem. Rev. 2015, 115, 10261–10306. [Google Scholar] [CrossRef]
- Kataoka, H.; Nishie, H.; Tanaka, M.; Sasaki, M.; Nomoto, A.; Osaki, T.; Okamoto, Y.; Yano, S. Potential of photodynamic therapy based on sugar-conjugated photosensitizers. J. Clin. Med. 2021, 10, 841. [Google Scholar] [CrossRef]
- Kue, C.S.; Ng, S.Y.; Voon, S.H.; Kamkaew, A.; Chung, L.Y.; Kiew, L.V.; Lee, H.B. Recent strategies to improve boron dipyrromethene (BODIPY) for photodynamic cancer therapy: An updated review. Photochem. Photobiol. Sci. 2018, 17, 1691–1708. [Google Scholar] [CrossRef]
- Sun, W.; Zhao, X.; Fan, J.; Du, J.; Peng, X. Boron dipyrromethene nano-photosensitizers for anticancer phototherapies. Small 2019, 15, 1804927. [Google Scholar] [CrossRef]
- Shivran, N.; Tyagi, M.; Mula, S.; Gupta, P.; Saha, B.; Patro, B.S.; Chattopadhyay, S. Syntheses and photodynamic activity of some glucose-conjugated BODIPY dyes. Eur. J. Med. Chem. 2016, 122, 352–365. [Google Scholar] [CrossRef] [PubMed]
- Ramu, V.; Gautam, S.; Garai, A.; Kondaiah, P.; Chakravarty, A.R. Glucose-appended platinum(II)-BODIPY conjugates for targeted photodynamic therapy in red light. Inorg. Chem. 2018, 57, 1717–1726. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Chen, X.; Zhao, Y.; Yu, Y.; Wei, X.; Zhang, X.; Li, C. A water-soluble galactose-decorated cationic photodynamic therapy agent based on BODIPY to selectively eliminate biofilm. Biomacromolecules 2018, 19, 141–149. [Google Scholar] [CrossRef]
- Treekoon, J.; Pewklang, T.; Chansaenpak, K.; Gorantla, J.N.; Pengthaisong, S.; Lai, R.-Y.; Ketudat-Cairns, J.R.; Kamkaew, A. Glucose conjugated aza-BODIPY for enhanced photodynamic cancer therapy. Org. Biomol. Chem. 2021, 19, 5867–5875. [Google Scholar] [CrossRef] [PubMed]
- Gündüz, E.Ö.; Gedik, E.M.; Günaydin, G.; Okutan, E. Amphiphilic fullerene-BODIPY photosensitizers for targeted photodynamic therapy. ChemMedChem 2021, e202100693. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Lv, Y.; Chen, Z.; Wang, F.; Wang, Y.; Pei, Y.; Jin, W.; Shi, C.; Wang, Y.; Qu, Y.; et al. A carrier-free multifunctional nano photosensitizer based on self-assembly of lactose-conjugated BODIPY for enhanced anti-tumor efficacy of dual phototherapy. Chem. Eng. J. 2021, 417, 129178. [Google Scholar] [CrossRef]
- Yu, C.; Gao, Y.; Zhang, Y.; Wang, J.; Zhang, Y.; Li, J.; Zhang, X.; Wu, Z.; Zhang, X. A targeted photosensitizer mediated by visible light for efficient therapy of bacterial keratitis. Biomacromolecules 2021, 22, 3704–3717. [Google Scholar] [CrossRef] [PubMed]
- Gomez, A.M.; Lopez, J.C. Bringing color to sugars: The chemical assembly of carbohydrates to BODIPY dyes. Chem. Rec. 2021, 21, 3112–3130. [Google Scholar] [CrossRef]
- Liu, J.-Y.; Yeung, H.-S.; Xu, W.; Li, X.; Ng, D.K.P. Highly efficient energy transfer in subphthalocyanine-BODIPY conjugates. Org. Lett. 2008, 10, 5421–5424. [Google Scholar] [CrossRef]
- Eaton, D.F. Reference materials for fluorescence measurement. Pure Appl. Chem. 1988, 60, 1107–1114. [Google Scholar] [CrossRef]
- Scalise, I.; Durantini, E.N. Synthesis, properties, and photodynamic inactivation of Escherichia coli using a cationic and a noncharged Zn(II) pyridyloxyphthalocyanine derivatives. Bioorg. Med. Chem. 2005, 13, 3037–3045. [Google Scholar] [CrossRef] [PubMed]
- Maree, M.D.; Kuznetsova, N.; Nyokong, T. Silicon octaphenoxyphthalocyanines: Photostability and singlet oxygen quantum yields. J. Photochem. Photobiol. A Chem. 2001, 140, 117–125. [Google Scholar] [CrossRef]
- Tada, H.; Shiho, O.; Kuroshima, K.-I.; Koyama, M.; Tsukamoto, K. An improved colorimetric assay for interleukin 2. J. Immunol. Methods 1986, 93, 157–165. [Google Scholar] [CrossRef]
- Zou, J.; Yin, Z.; Ding, K.; Tang, Q.; Li, J.; Si, W.; Shao, J.; Zhang, Q.; Huang, W.; Dong, X. BODIPY derivatives for photodynamic therapy: Influence of configuration versus heavy atom effect. ACS Appl. Mater. Interfaces 2017, 9, 32475–32481. [Google Scholar] [CrossRef] [PubMed]
- Quagliotto, P.; Viscardi, G.; Barolo, C.; D’Angelo, D.; Barni, E.; Compari, C.; Duce, E.; Fisicaro, E. Synthesis and properties of new glucocationic surfactants: Model structures for marking cationic surfactants with carbohydrates. J. Org. Chem. 2005, 70, 9857–9866. [Google Scholar] [CrossRef]
- He, H.; Lo, P.-C.; Yeung, S.-L.; Fong, W.-P.; Ng, D.K.P. Synthesis and in vitro photodynamic activities of pegylated boron dipyrromethene derivatives. J. Med. Chem. 2011, 54, 3097–3102. [Google Scholar] [CrossRef]
- Zhou, Y.; Cheung, Y.-K.; Ma, C.; Zhao, S.; Gao, D.; Lo, P.-C.; Fong, W.-P.; Wong, K.S.; Ng, D.K.P. Endoplasmic reticulum-localized two-photon-absorbing boron dipyrromethenes as advanced photosensitizers for photodynamic therapy. J. Med. Chem. 2018, 61, 3952–3961. [Google Scholar] [CrossRef]
- Szablewski, L. Expression of glucose transporters in cancers. Biochim. Biophys. Acta 2013, 1835, 164–169. [Google Scholar] [CrossRef]
- Scafoglio, C.R.; Villegas, B.; Abdelhady, G.; Bailey, S.T.; Liu, J.; Shirali, A.S.; Wallace, W.D.; Magyar, C.E.; Grogan, T.R.; Elashoff, D.; et al. Sodium-glucose transporter 2 is a diagnostic and therapeutic target for early-stage lung adenocarcinoma. Sci. Transl. Med. 2018, 10, eaat5933. [Google Scholar] [CrossRef]
- Zhou, J.; Zhu, J.; Yu, S.-J.; Ma, H.-L.; Chen, J.; Ding, X.-F.; Chen, G.; Liang, Y.; Zhang, Q. Sodium-glucose co-transporter-2 (SGLT-2) inhibition reduces glucose uptake to induce breast cancer cell growth arrest through AMPK/mTOR pathway. Biomed. Pharmacother. 2020, 132, 110821. [Google Scholar] [CrossRef]
- Gruenberg, J. The endocytic pathway: A mosaic of domains. Nat. Rev. Mol. Cell Biol. 2001, 2, 721–730. [Google Scholar] [CrossRef] [PubMed]
Compound | λmax/nm (log ε) | λem a/nm | ΦF b | ΦΔ c |
---|---|---|---|---|
16α | 319 (4.24), 379 (4.52), 447 (4.14), 662 (4.82) | 689 | 0.18 | 0.42 |
16β | 320 (4.23), 379 (4.52), 448 (4.13), 662 (4.81) | 689 | 0.18 | 0.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, J.; Yeung, K.-W.; Wong, C.T.T.; Fong, W.-P.; Ng, D.K.P. Comparison of the In Vitro Photodynamic Activity of the C1α and C1β Anomers of a Glucosylated Boron Dipyrromethene. Colorants 2022, 1, 193-207. https://doi.org/10.3390/colorants1020012
Xiong J, Yeung K-W, Wong CTT, Fong W-P, Ng DKP. Comparison of the In Vitro Photodynamic Activity of the C1α and C1β Anomers of a Glucosylated Boron Dipyrromethene. Colorants. 2022; 1(2):193-207. https://doi.org/10.3390/colorants1020012
Chicago/Turabian StyleXiong, Junlong, Ka-Wing Yeung, Clarence T. T. Wong, Wing-Ping Fong, and Dennis K. P. Ng. 2022. "Comparison of the In Vitro Photodynamic Activity of the C1α and C1β Anomers of a Glucosylated Boron Dipyrromethene" Colorants 1, no. 2: 193-207. https://doi.org/10.3390/colorants1020012
APA StyleXiong, J., Yeung, K. -W., Wong, C. T. T., Fong, W. -P., & Ng, D. K. P. (2022). Comparison of the In Vitro Photodynamic Activity of the C1α and C1β Anomers of a Glucosylated Boron Dipyrromethene. Colorants, 1(2), 193-207. https://doi.org/10.3390/colorants1020012