N-Annulated Perylene Diimide Non-Fullerene Acceptors for Organic Photovoltaics
Abstract
:1. Introduction
2. Non-Fullerene Acceptors
3. N-Annulated PDI-Based NFAs
3.1. N-Annulated PDI Electron Acceptors (PDI-Core-PDI)
3.1.1. PDI-DPP-PDI
3.1.2. Boron Difluoride Formazanate Non-Fullerene Acceptor
3.1.3. PDI-Thiophene-PDI
3.2. Tetramers
3.3. Side Chain Engineering of Perylene Diimide Dimers
3.3.1. Benzyl Side Chains
3.3.2. Alkyl Side Chains
3.3.3. Versatile Applications of t-PDI2N-Hex and t-PDI2N-EH in OPVs
Ternary Approach, Slot-Die (SD)-Coated Active Layers and Indoor Light Harvesting
Slot-Die-Coated Active Layers OPVs with High Voc > 1 V
3.4. Asymmetric Perylene Diimides NFAs
4. Conclusions and Future Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kaltenbrunner, M.; White, M.S.; Głowacki, E.D.; Sekitani, T.; Someya, T.; Sariciftci, N.S.; Bauer, S. Ultrathin and Lightweight Organic Solar Cells with High Flexibility. Nat. Commun. 2012, 3, 770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukuda, K.; Yu, K.; Someya, T. The Future of Flexible Organic Solar Cells. Adv. Energy Mater. 2020, 10, 2000765. [Google Scholar] [CrossRef]
- Søndergaard, R.; Hösel, M.; Angmo, D.; Larsen-Olsen, T.T.; Krebs, F.C. Roll-to-Roll Fabrication of Polymer Solar Cells. Mater. Today 2012, 15, 36–49. [Google Scholar] [CrossRef] [Green Version]
- Krebs, F.C. Fabrication and Processing of Polymer Solar Cells: A Review of Printing and Coating Techniques. Sol. Energy Mater. Sol. Cells 2009, 93, 394–412. [Google Scholar] [CrossRef]
- Kim, Y.; Son, J.; Shafian, S.; Kim, K.; Hyun, J.K. Semitransparent Blue, Green, and Red Organic Solar Cells Using Color Filtering Electrodes. Adv. Opt. Mater. 2018, 6, 1800051. [Google Scholar] [CrossRef]
- Li, Y.; Guo, X.; Peng, Z.; Qu, B.; Yan, H.; Ade, H.; Zhang, M.; Forrest, S.R. Color-Neutral, Semitransparent Organic Photovoltaics for Power Window Applications. Proc. Natl. Acad. Sci. USA 2020, 117, 21147–21154. [Google Scholar] [CrossRef]
- Li, Z.; Ma, T.; Yang, H.; Lu, L.; Wang, R. Transparent and Colored Solar Photovoltaics for Building Integration. Sol. RRL 2020, 5, 2000614. [Google Scholar] [CrossRef]
- Yang, C.; Sheng, W.; Moemeni, M.; Bates, M.; Herrera, C.K.; Borhan, B.; Lunt, R.R. Ultraviolet and Near-Infrared Dual-Band Selective-Harvesting Transparent Luminescent Solar Concentrators. Adv. Energy Mater. 2021, 11, 2003581. [Google Scholar] [CrossRef]
- Jinno, H.; Fukuda, K.; Xu, X.; Park, S.; Suzuki, Y.; Koizumi, M.; Yokota, T.; Osaka, I.; Takimiya, K.; Someya, T. Stretchable and Waterproof Elastomer-Coated Organic Photovoltaics for Washable Electronic Textile Applications. Nat. Energy 2017, 2, 780–785. [Google Scholar] [CrossRef]
- Tang, C.W. Two-layer Organic Photovoltaic Cell. Appl. Phys. Lett. 1986, 48, 183–185. [Google Scholar] [CrossRef]
- Spanggaard, H.; Krebs, F.C. A Brief History of the Development of Organic and Polymeric Photovoltaics. Sol. Energy Mater. Sol. Cells 2004, 83, 125–146. [Google Scholar] [CrossRef]
- Yu, G.; Gao, J.; Hummelen, J.C.; Wudl, F.; Heeger, A.J. Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science 1995, 270, 1789–1791. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Cao, Y. Development of Novel Conjugated Donor Polymers for High-Efficiency Bulk-Heterojunction Photovoltaic Devices. Acc. Chem. Res. 2009, 42, 1709–1718. [Google Scholar] [CrossRef] [PubMed]
- Roncali, J. Molecular Bulk Heterojunctions: An Emerging Approach to Organic Solar Cells. Acc. Chem. Res. 2009, 42, 1719–1730. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S. Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chem. Rev. 2009, 109, 5868–5923. [Google Scholar] [CrossRef]
- Lai, Y.-Y.; Cheng, Y.-J.; Hsu, C.-S. Applications of Functional Fullerene Materials in Polymer Solar Cells. Energy Environ. Sci. 2014, 7, 1866–1883. [Google Scholar] [CrossRef]
- Li, Y. Fullerene-Bisadduct Acceptors for Polymer Solar Cells. Chem.-Asian J. 2013, 8, 2316–2328. [Google Scholar] [CrossRef]
- He, Y.; Li, Y. Fullerene Derivative Acceptors for High Performance Polymer Solar Cells. Phys. Chem. Chem. Phys. 2011, 13, 1970–1983. [Google Scholar] [CrossRef]
- Peet, J.; Heeger, A.J.; Bazan, G.C. “Plastic” Solar Cells: Self-Assembly of Bulk Heterojunction Nanomaterials by Spontaneous Phase Separation. Acc. Chem. Res. 2009, 42, 1700–1708. [Google Scholar] [CrossRef]
- Würthner, F.; Meerholz, K. Systems Chemistry Approach in Organic Photovoltaics. Chem.-Eur. J. 2010, 16, 9366–9373. [Google Scholar] [CrossRef]
- Heeger, A.J. 25th Anniversary Article: Bulk Heterojunction Solar Cells: Understanding the Mechanism of Operation. Adv. Mater. 2014, 26, 10–28. [Google Scholar] [CrossRef] [PubMed]
- Dou, L.; You, J.; Hong, Z.; Xu, Z.; Li, G.; Street, R.A.; Yang, Y. 25th Anniversary Article: A Decade of Organic/Polymeric Photovoltaic Research. Adv. Mater. 2013, 25, 6642–6671. [Google Scholar] [CrossRef]
- Blom, P.W.M.; Mihailetchi, V.D.; Koster, L.J.A.; Markov, D.E. Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells. Adv. Mater. 2007, 19, 1551–1566. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.-K.; Pao, C.-W.; Chu, C.-W. Multiscale Molecular Simulations of the Nanoscale Morphologies of P3HT:PCBM Blends for Bulk Heterojunction Organic Photovoltaic Cells. Energy Environ. Sci. 2011, 4, 4124–4132. [Google Scholar] [CrossRef]
- Hummelen, J.C.; Knight, B.W.; LePeq, F.; Wudl, F.; Yao, J.; Wilkins, C.L. Preparation and Characterization of Fulleroid and Methanofullerene Derivatives. J. Org. Chem. 1995, 60, 532–538. [Google Scholar] [CrossRef]
- Wienk, M.M.; Kroon, J.M.; Verhees, W.J.H.; Knol, J.; Hummelen, J.C.; van Hal, P.A.; Janssen, R.A.J. Efficient Methano[70]Fullerene/MDMO-PPV Bulk Heterojunction Photovoltaic Cells. Angew. Chem. Int. Ed. 2003, 42, 3371–3375. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Troisi, A. What Makes Fullerene Acceptors Special as Electron Acceptors in Organic Solar Cells and How to Replace Them. Adv. Mater. 2013, 25, 1038–1041. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, J.; Li, Z.; Mu, C.; Ma, W.; Hu, H.; Jiang, K.; Lin, H.; Ade, H.; Yan, H. Aggregation and Morphology Control Enables Multiple Cases of High-Efficiency Polymer Solar Cells. Nat. Commun. 2014, 5, 5293. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Xiao, B.; Liu, F.; Wu, H.; Yang, Y.; Xiao, S.; Wang, C.; Russell, T.P.; Cao, Y. Single-Junction Polymer Solar Cells with High Efficiency and Photovoltage. Nat. Photonics 2015, 9, 174–179. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Y.; Yang, G.; Jiang, K.; Lin, H.; Ade, H.; Ma, W.; Yan, H. Efficient Organic Solar Cells Processed from Hydrocarbon Solvents. Nat. Energy 2016, 1, 1–7. [Google Scholar] [CrossRef]
- Meredith, P.; Li, W.; Armin, A. Nonfullerene Acceptors: A Renaissance in Organic Photovoltaics? Adv. Energy Mater. 2020, 10, 2001788. [Google Scholar] [CrossRef]
- Hou, J.; Inganäs, O.; Friend, R.H.; Gao, F. Organic Solar Cells Based on Non-Fullerene Acceptors. Nat. Mater. 2018, 17, 119–128. [Google Scholar] [CrossRef]
- Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; et al. 18% Efficiency Organic Solar Cells. Sci. Bull. 2020, 65, 272–275. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Zhu, L.; Zhou, G.; Hao, T.; Qiu, C.; Zhao, Z.; Hu, Q.; Larson, B.W.; Zhu, H.; Ma, Z.; et al. Single-Layered Organic Photovoltaics with Double Cascading Charge Transport Pathways: 18% Efficiencies. Nat. Commun. 2021, 12, 309. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Nugraha, M.I.; Firdaus, Y.; Scaccabarozzi, A.D.; Aniés, F.; Emwas, A.-H.; Yengel, E.; Zheng, X.; Liu, J.; Wahyudi, W.; et al. A Simple N-Dopant Derived from Diquat Boosts the Efficiency of Organic Solar Cells to 18.3%. ACS Energy Lett. 2020, 5, 3663–3671. [Google Scholar] [CrossRef]
- Firdaus, Y.; Corre, V.M.L.; Khan, J.I.; Kan, Z.; Laquai, F.; Beaujuge, P.M.; Anthopoulos, T.D. Key Parameters Requirements for Non-Fullerene-Based Organic Solar Cells with Power Conversion Efficiency >20%. Adv. Sci. 2019, 6, 1802028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, N.; McCulloch, I.; Brabec, C.J. Analyzing the Efficiency, Stability and Cost Potential for Fullerene-Free Organic Photovoltaics in One Figure of Merit. Energy Environ. Sci. 2018, 11, 1355–1361. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Brabec, C.J. Washing Away Barriers. Nat. Energy 2017, 2, 772–773. [Google Scholar] [CrossRef]
- Lee, B.; Lahann, L.; Li, Y.; Forrest, S.R. Cost Estimates of Production Scale Semitransparent Organic Photovoltaic Modules for Building Integrated Photovoltaics. Sustain. Energy Fuels 2020, 4, 5765–5772. [Google Scholar] [CrossRef]
- Han, C.; Wang, J.; Zhang, S.; Chen, L.; Bi, F.; Wang, J.; Yang, C.; Wang, P.; Li, Y.; Bao, X. Over 19% Efficiency Organic Solar Cells by Regulating Multidimensional Intermolecular Interactions. Adv. Mater. 2023, 35, 2208986. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.-Y.; Hsiao, Y.-T.; Tsai, K.-W.; Teng, N.-W.; Li, W.-L.; Wu, J.-L.; Kao, J.-C.; Lee, C.-C.; Yang, C.-M.; Tan, H.-S.; et al. Photoactive Material for Highly Efficient and All Solution-Processed Organic Photovoltaic Modules: Study on the Efficiency, Stability, and Synthetic Complexity. Sol. RRL 2021, 5, 2000749. [Google Scholar] [CrossRef]
- Ylikunnari, M.; Välimäki, M.; Väisänen, K.-L.; Kraft, T.M.; Sliz, R.; Corso, G.; Po, R.; Barbieri, R.; Carbonera, C.; Gorni, G.; et al. Flexible OPV Modules for Highly Efficient Indoor Applications. Flex. Print. Electron. 2020, 5, 014008. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, Y.; Bergqvist, J.; Yao, H.; Xu, Y.; Gao, B.; Yang, C.; Zhang, S.; Inganäs, O.; Gao, F.; et al. Wide-Gap Non-Fullerene Acceptor Enabling High-Performance Organic Photovoltaic Cells for Indoor Applications. Nat. Energy 2019, 4, 768–775. [Google Scholar] [CrossRef]
- Steim, R.; Ameri, T.; Schilinsky, P.; Waldauf, C.; Dennler, G.; Scharber, M.; Brabec, C.J. Organic Photovoltaics for Low Light Applications. Sol. Energy Mater. Sol. Cells 2011, 95, 3256–3261. [Google Scholar] [CrossRef]
- Cutting, C.L.; Bag, M.; Venkataraman, D. Indoor Light Recycling: A New Home for Organic Photovoltaics. J. Mater. Chem. C 2016, 4, 10367–10370. [Google Scholar] [CrossRef]
- Mainville, M.; Leclerc, M. Recent Progress on Indoor Organic Photovoltaics: From Molecular Design to Production Scale. ACS Energy Lett. 2020, 5, 1186–1197. [Google Scholar] [CrossRef]
- Ryu, H.S.; Park, S.Y.; Lee, T.H.; Kim, J.Y.; Woo, H.Y. Recent Progress in Indoor Organic Photovoltaics. Nanoscale 2020, 12, 5792–5804. [Google Scholar] [CrossRef] [PubMed]
- Yan, N.; Zhao, C.; You, S.; Zhang, Y.; Li, W. Recent Progress of Thin-Film Photovoltaics for Indoor Application. Chin. Chem. Lett. 2020, 31, 643–653. [Google Scholar] [CrossRef]
- Kippelen, B.; Brédas, J.-L. Organic Photovoltaics. Energy Environ. Sci. 2009, 2, 251–261. [Google Scholar] [CrossRef]
- Su, Y.-W.; Lan, S.-C.; Wei, K.-H. Organic Photovoltaics. Mater. Today 2012, 15, 554–562. [Google Scholar] [CrossRef]
- Mazzio, K.A.; Luscombe, C.K. The Future of Organic Photovoltaics. Chem. Soc. Rev. 2014, 44, 78–90. [Google Scholar] [CrossRef]
- Lipomi, D.J. Organic Photovoltaics: Focus on Its Strengths. Joule 2018, 2, 195–198. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, C.; Zhan, X. Morphology Control in Organic Solar Cells. Adv. Energy Mater. 2018, 8, 1703147. [Google Scholar] [CrossRef]
- Zhang, G.; Zhao, J.; Chow, P.C.Y.; Jiang, K.; Zhang, J.; Zhu, Z.; Zhang, J.; Huang, F.; Yan, H. Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells. Chem. Rev. 2018, 118, 3447–3507. [Google Scholar] [CrossRef] [PubMed]
- Sonar, P.; Lim, J.P.F.; Chan, K.L. Organic Non-Fullerene Acceptors for Organic Photovoltaics. Energy Environ. Sci. 2011, 4, 1558–1574. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, J.; Zhang, Z.-G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells. Adv. Mater. 2015, 27, 1170–1174. [Google Scholar] [CrossRef]
- Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells. J. Am. Chem. Soc. 2017, 139, 7148–7151. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, M.; Xu, J.; Li, C.; Yan, J.; Zhou, G.; Zhong, W.; Hao, T.; Song, J.; Xue, X.; et al. Single-Junction Organic Solar Cells with over 19% Efficiency Enabled by a Refined Double-Fibril Network Morphology. Nat. Mater. 2022, 21, 656–663. [Google Scholar] [CrossRef]
- Yang, Y. The Original Design Principles of the Y-Series Nonfullerene Acceptors, from Y1 to Y6. ACS Nano 2021, 15, 18679–18682. [Google Scholar] [CrossRef]
- Liu, S.; Yuan, J.; Deng, W.; Luo, M.; Xie, Y.; Liang, Q.; Zou, Y.; He, Z.; Wu, H.; Cao, Y. High-Efficiency Organic Solar Cells with Low Non-Radiative Recombination Loss and Low Energetic Disorder. Nat. Photonics 2020, 14, 300–305. [Google Scholar] [CrossRef]
- Liu, J.; Chen, S.; Qian, D.; Gautam, B.; Yang, G.; Zhao, J.; Bergqvist, J.; Zhang, F.; Ma, W.; Ade, H.; et al. Fast Charge Separation in a Non-Fullerene Organic Solar Cell with a Small Driving Force. Nat. Energy 2016, 1, 16089. [Google Scholar] [CrossRef]
- Ding, K.; Shan, T.; Xu, J.; Li, M.; Wang, Y.; Zhang, Y.; Xie, Z.; Ma, Z.; Liu, F.; Zhong, H. A Perylene Diimide-Containing Acceptor Enables High Fill Factor in Organic Solar Cells. Chem. Commun. 2020, 56, 11433–11436. [Google Scholar] [CrossRef]
- Kozma, E.; Catellani, M. Perylene Diimides Based Materials for Organic Solar Cells. Dyes Pigments 2013, 98, 160–179. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, Y.; Zhang, Q.; Gao, X. Non-Fullerene Small Molecule Acceptors Based on Perylene Diimides. J. Mater. Chem. A 2016, 4, 17604–17622. [Google Scholar] [CrossRef]
- Macedo, A.G.; Christopholi, L.P.; Gavim, A.E.X.; de Deus, J.F.; Teridi, M.A.M.; Yusoff, A.R.b.M.; da Silva, W.J. Perylene Derivatives for Solar Cells and Energy Harvesting: A Review of Materials, Challenges and Advances. J. Mater. Sci. Mater. Electron. 2019, 30, 15803–15824. [Google Scholar] [CrossRef]
- Nowak-Król, A.; Shoyama, K.; Stolte, M.; Würthner, F. Naphthalene and Perylene Diimides-Better Alternatives to Fullerenes for Organic Electronics? Chem. Commun. 2018, 54, 13763–13772. [Google Scholar] [CrossRef] [PubMed]
- Zink-Lorre, N.; Font-Sanchis, E.; Sastre-Santos, Á.; Fernández-Lázaro, F. Perylenediimides as More than Just Non-Fullerene Acceptors: Versatile Components in Organic, Hybrid and Perovskite Solar Cells. Chem. Commun. 2020, 56, 3824–3838. [Google Scholar] [CrossRef]
- Fujimoto, K.; Takahashi, M.; Izawa, S.; Hiramoto, M. Development of Perylene-Based Non-Fullerene Acceptors through Bay-Functionalization Strategy. Materials 2020, 13, 2148. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Xu, X.; Li, Y.; Peng, Q. Recent Development of Perylene Diimide-Based Small Molecular Non-Fullerene Acceptors in Organic Solar Cells. Chin. Chem. Lett. 2017, 28, 2105–2115. [Google Scholar] [CrossRef]
- He, Q.; Kafourou, P.; Hu, X.; Heeney, M. Development of Non-Fullerene Electron Acceptors for Efficient Organic Photovoltaics. SN Appl. Sci. 2022, 4, 247. [Google Scholar] [CrossRef]
- Liu, T.; Guo, Y.; Yi, Y.; Huo, L.; Xue, X.; Sun, X.; Fu, H.; Xiong, W.; Meng, D.; Wang, Z.; et al. Ternary Organic Solar Cells Based on Two Compatible Nonfullerene Acceptors with Power Conversion Efficiency >10%. Adv. Mater. 2016, 28, 10008–10015. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, Y.; Huang, J.; Hu, H.; Zhang, G.; Ma, T.; Chow, P.C.Y.; Ade, H.; Pan, D.; Yan, H. Ring-Fusion of Perylene Diimide Acceptor Enabling Efficient Nonfullerene Organic Solar Cells with a Small Voltage Loss. J. Am. Chem. Soc. 2017, 139, 16092–16095. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.-K.; Chen, Y.; Chow, P.C.Y.; Zhang, G.; Huang, J.; Ma, C.; Zhang, J.; Yin, H.; Hong Cheung, A.M.; Wong, K.S.; et al. High-Efficiency Indoor Organic Photovoltaics with a Band-Aligned Interlayer. Joule 2020, 4, 1486–1500. [Google Scholar] [CrossRef]
- Sharenko, A.; Proctor, C.M.; Poll, T.S.v.d.; Henson, Z.B.; Nguyen, T.-Q.; Bazan, G.C. A High-Performing Solution-Processed Small Molecule:Perylene Diimide Bulk Heterojunction Solar Cell. Adv. Mater. 2013, 25, 4403–4406. [Google Scholar] [CrossRef]
- Schmidt-Mende, L. Self-Organized Discotic Liquid Crystals for High-Efficiency Organic Photovoltaics. Science 2001, 293, 1119–1122. [Google Scholar] [CrossRef] [Green Version]
- Meng, D.; Sun, D.; Zhong, C.; Liu, T.; Fan, B.; Huo, L.; Li, Y.; Jiang, W.; Choi, H.; Kim, T.; et al. High-Performance Solution-Processed Non-Fullerene Organic Solar Cells Based on Selenophene-Containing Perylene Bisimide Acceptor. J. Am. Chem. Soc. 2016, 138, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Meng, D.; Cai, Y.; Fan, B.; Li, Y.; Jiang, W.; Huo, L.; Sun, Y.; Wang, Z. Non-Fullerene-Acceptor-Based Bulk-Heterojunction Organic Solar Cells with Efficiency over 7%. J. Am. Chem. Soc. 2015, 137, 11156–11162. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Xu, X.; Yan, H.; Wu, W.; Li, Z.; Peng, Q. Pronounced Effects of a Triazine Core on Photovoltaic Performance–Efficient Organic Solar Cells Enabled by a PDI Trimer-Based Small Molecular Acceptor. Adv. Mater. 2017, 29, 1605115. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Ye, L.; Li, X.; Xiao, C.; Tan, F.; Zhao, W.; Hou, J.; Wang, Z. Bay-Linked Perylene Bisimides as Promising Non-Fullerene Acceptors for Organic Solar Cells. Chem. Commun. 2013, 50, 1024–1026. [Google Scholar] [CrossRef]
- Langhals, H.; Kirner, S. Novel Fluorescent Dyes by the Extension of the Core of Perylenetetracarboxylic Bisimides. Eur. J. Org. Chem. 2000, 2000, 365–380. [Google Scholar] [CrossRef]
- Hendsbee, A.D.; Sun, J.-P.; Law, W.K.; Yan, H.; Hill, I.G.; Spasyuk, D.M.; Welch, G.C. Synthesis, Self-Assembly, and Solar Cell Performance of N-Annulated Perylene Diimide Non-Fullerene Acceptors. Chem. Mater. 2016, 28, 7098–7109. [Google Scholar] [CrossRef]
- Payne, A.-J.; Li, S.; Dayneko, S.V.; Risko, C.; Welch, G.C. An Unsymmetrical Non-Fullerene Acceptor: Synthesis via Direct Heteroarylation, Self-Assembly, and Utility as a Low Energy Absorber in Organic Photovoltaic Cells. Chem. Commun. 2017, 53, 10168–10171. [Google Scholar] [CrossRef]
- Dayneko, S.V.; Hendsbee, A.D.; Welch, G.C. Fullerene-Free Polymer Solar Cells Processed from Non-Halogenated Solvents in Air with PCE of 4.8%. Chem. Commun. 2017, 53, 1164–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAfee, S.M.; Dayneko, S.V.; Josse, P.; Blanchard, P.; Cabanetos, C.; Welch, G.C. Simply Complex: The Efficient Synthesis of an Intricate Molecular Acceptor for High-Performance Air-Processed and Air-Tested Fullerene-Free Organic Solar Cells. Chem. Mater. 2017, 29, 1309–1314. [Google Scholar] [CrossRef] [Green Version]
- Tintori, F.; Laventure, A.; Koenig, J.D.B.; Welch, G.C. High Open-Circuit Voltage Roll-to-Roll Compatible Processed Organic Photovoltaics. J. Mater. Chem. C 2020, 8, 13430–13438. [Google Scholar] [CrossRef]
- McAfee, S.M.; Dayneko, S.V.; Hendsbee, A.D.; Josse, P.; Blanchard, P.; Cabanetos, C.; Welch, G.C. Applying Direct Heteroarylation Synthesis to Evaluate Organic Dyes as the Core Component in PDI-Based Molecular Materials for Fullerene-Free Organic Solar Cells. J. Mater. Chem. A 2017, 5, 11623–11633. [Google Scholar] [CrossRef] [Green Version]
- McAfee, S.M.; Payne, A.-J.; Hendsbee, A.D.; Xu, S.; Zou, Y.; Welch, G.C. Toward a Universally Compatible Non-Fullerene Acceptor: Multi-Gram Synthesis, Solvent Vapor Annealing Optimization, and BDT-Based Polymer Screening. Sol. RRL 2018, 2, 1800143. [Google Scholar] [CrossRef]
- Koenig, J.D.; Farahat, M.; Dhindsa, J.; Gilroy, J.; Welch, G. Near-IR Absorption and Photocurrent Generation Using a First-of-Its-Kind Boron Difluoride Formazanate Non-Fullerene Acceptor. Mater. Chem. Front. 2020, 4, 1643–1647. [Google Scholar] [CrossRef] [Green Version]
- Hendsbee, A.D.; Dayneko, S.V.; Pells, J.A.; Cann, J.R.; Welch, G.C. N-Annulated Perylene Diimide Dimers: The Effect of Thiophene Bridges on Physical, Electronic, Optical, and Photovoltaic Properties. Sustain. Energy Fuels 2017, 1, 1137–1147. [Google Scholar] [CrossRef]
- Laventure, A.; Stanzel, S.; Payne, A.-J.; Lessard, B.H.; Welch, G.C. A Ring Fused N-Annulated PDI Non-Fullerene Acceptor for High Open Circuit Voltage Solar Cells Processed from Non-Halogenated Solvents. Synth. Met. 2019, 250, 55–62. [Google Scholar] [CrossRef]
- Welsh, T.A.; Laventure, A.; Baumgartner, T.; Welch, G.C. Dithienophosphole-Based Molecular Electron Acceptors Constructed Using Direct (Hetero)Arylation Cross-Coupling Methods. J. Mater. Chem. C 2018, 6, 2148–2154. [Google Scholar] [CrossRef]
- Welsh, T.A.; Laventure, A.; Alahmadi, A.F.; Zhang, G.; Baumgartner, T.; Zou, Y.; Jäkle, F.; Welch, G.C. Borane Incorporation in a Non-Fullerene Acceptor To Tune Steric and Electronic Properties and Improve Organic Solar Cell Performance. ACS Appl. Energy Mater. 2019, 2, 1229–1240. [Google Scholar] [CrossRef]
- Welsh, T.A.; Laventure, A.; Welch, G.C. Direct (Hetero)Arylation for the Synthesis of Molecular Materials: Coupling Thieno[3,4-c]Pyrrole-4,6-Dione with Perylene Diimide to Yield Novel Non-Fullerene Acceptors for Organic Solar Cells. Molecules 2018, 23, 931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Payne, A.-J.; Song, J.; Sun, Y.; Welch, G.C. A Tetrameric Perylene Diimide Non-Fullerene Acceptor via Unprecedented Direct (Hetero)Arylation Cross-Coupling Reactions. Chem. Commun. 2018, 54, 11443–11446. [Google Scholar] [CrossRef] [PubMed]
- Koenig, J.D.B.; Laventure, A.; Welch, G.C. Harnessing Direct (Hetero)Arylation in Pursuit of a Saddle-Shaped Perylene Diimide Tetramer. ACS Appl. Energy Mater. 2019, 2, 8939–8945. [Google Scholar] [CrossRef] [Green Version]
- Vespa, M.; Cann, J.R.; Dayneko, S.V.; Melville, O.A.; Hendsbee, A.D.; Zou, Y.; Lessard, B.H.; Welch, G.C. Synthesis of a Perylene Diimide Dimer with Pyrrolic N–H Bonds and N-Functionalized Derivatives for Organic Field-Effect Transistors and Organic Solar Cells. Eur. J. Org. Chem. 2018, 2018, 4592–4599. [Google Scholar] [CrossRef]
- Cann, J.; Dayneko, S.; Sun, J.-P.; Hendsbee, A.D.; Hill, I.G.; Welch, G.C. N-Annulated Perylene Diimide Dimers: Acetylene Linkers as a Strategy for Controlling Structural Conformation and the Impact on Physical, Electronic, Optical and Photovoltaic Properties. J. Mater. Chem. C 2017, 5, 2074–2083. [Google Scholar] [CrossRef]
- Nazari, M.; Martell, M.; Welsh, T.A.; Melville, O.; Li, Z.; Cann, J.; Cieplechowicz, E.; Zou, Y.; Lessard, B.H.; Welch, G.C. Benzyl and Fluorinated Benzyl Side Chains for Perylene Diimide Non-Fullerene Acceptors. Mater. Chem. Front. 2018, 2, 2272–2276. [Google Scholar] [CrossRef]
- Dayneko, S.V.; Hendsbee, A.D.; Welch, G.C. Combining Facile Synthetic Methods with Greener Processing for Efficient Polymer-Perylene Diimide Based Organic Solar Cells. Small Methods 2018, 2, 1800081. [Google Scholar] [CrossRef]
- Laventure, A.; Harding, C.R.; Cieplechowicz, E.; Li, Z.; Wang, J.; Zou, Y.; Welch, G.C. Screening Quinoxaline-Type Donor Polymers for Roll-to-Roll Processing Compatible Organic Photovoltaics. ACS Appl. Polym. Mater. 2019, 1, 2168–2176. [Google Scholar] [CrossRef]
- Tintori, F.; Laventure, A.; Welch, G.C. Perylene Diimide Based Organic Photovoltaics with Slot-Die Coated Active Layers from Halogen-Free Solvents in Air at Room Temperature. ACS Appl. Mater. Interfaces 2019, 11, 39010–39017. [Google Scholar] [CrossRef] [PubMed]
- Abd-Ellah, M.; Cann, J.; Dayneko, S.V.; Laventure, A.; Cieplechowicz, E.; Welch, G.C. Interfacial ZnO Modification Using a Carboxylic Acid Functionalized N-Annulated Perylene Diimide for Inverted Type Organic Photovoltaics. ACS Appl. Electron. Mater. 2019, 1, 1590–1596. [Google Scholar] [CrossRef]
- Dayneko, S.V.; Hendsbee, A.D.; Cann, J.R.; Cabanetos, C.; Welch, G.C. Ternary Organic Solar Cells: Using Molecular Donor or Acceptor Third Components to Increase Open Circuit Voltage. New J. Chem. 2019, 43, 10442–10448. [Google Scholar] [CrossRef]
- Farahat, M.E.; Laventure, A.; Anderson, M.A.; Mainville, M.; Tintori, F.; Leclerc, M.; Ratcliff, E.L.; Welch, G.C. Slot-Die-Coated Ternary Organic Photovoltaics for Indoor Light Recycling. ACS Appl. Mater. Interfaces 2020, 12, 43684–43693. [Google Scholar] [CrossRef]
- Dayneko, S.V.; Pahlevani, M.; Welch, G.C. Indoor Photovoltaics: Photoactive Material Selection, Greener Ink Formulations, and Slot-Die Coated Active Layers. ACS Appl. Mater. Interfaces 2019, 11, 46017–46025. [Google Scholar] [CrossRef] [PubMed]
- Payne, A.-J.; Rice, N.A.; McAfee, S.M.; Li, S.; Josse, P.; Cabanetos, C.; Risko, C.; Lessard, B.H.; Welch, G.C. Donor or Acceptor? How Selection of the Rylene Imide End Cap Impacts the Polarity of π-Conjugated Molecules for Organic Electronics. ACS Appl. Energy Mater. 2018, 1, 4906–4916. [Google Scholar] [CrossRef]
- Welsh, T.A.; Nazari, M.; Welch, G.C. Diketopyrrolopyrrole Derivatives Functionalized with N-Annulated PDI and Se-Annulated PDI by Direct (Hetero)Arylation Methods. Asian J. Org. Chem. 2020, 9, 1291–1300. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.; Xiao, Z.; Hanssen, E.; Klein, M.F.G.; Dam, H.H.; Pfaff, M.; Gerthsen, D.; Wong, W.W.H.; Jones, D.J. The Role of Solvent Vapor Annealing in Highly Efficient Air-Processed Small Molecule Solar Cells. J. Mater. Chem. A 2014, 2, 9048–9054. [Google Scholar] [CrossRef]
- Cann, J.R.; Cabanetos, C.; Welch, G.C. Spectroscopic Engineering toward Near-Infrared Absorption of Materials Containing Perylene Diimide. ChemPlusChem 2017, 82, 1359–1364. [Google Scholar] [CrossRef]
- Barbon, S.M.; Staroverov, V.N.; Gilroy, J.B. Effect of Extended π Conjugation on the Spectroscopic and Electrochemical Properties of Boron Difluoride Formazanate Complexes. J. Org. Chem. 2015, 80, 5226–5235. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.; Jäkle, F. Merging Thiophene with Boron: New Building Blocks for Conjugated Materials. Dalton Trans. 2016, 45, 13996–14007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero-Nieto, C.; Baumgartner, T. Dithieno[3,2-b:2′,3′-d]Phospholes: A Look Back at the First Decade. Synlett 2013, 24, 920–937. [Google Scholar] [CrossRef]
- Jo, J.; Pron, A.; Berrouard, P.; Leong, W.L.; Yuen, J.D.; Moon, J.S.; Leclerc, M.; Heeger, A.J. A New Terthiophene-Thienopyrrolodione Copolymer-Based Bulk Heterojunction Solar Cell with High Open-Circuit Voltage. Adv. Energy Mater. 2012, 2, 1397–1403. [Google Scholar] [CrossRef]
- Zhao, W.; Qian, D.; Zhang, S.; Li, S.; Inganäs, O.; Gao, F.; Hou, J. Fullerene-Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability. Adv. Mater. 2016, 28, 4734–4739. [Google Scholar] [CrossRef] [PubMed]
- You, F.; Zhou, X.; Huang, H.; Liu, Y.; Liu, S.; Shao, J.; Zhao, B.; Qin, T.; Huang, W. N-Annulated Perylene Diimide Derivatives as Non-Fullerene Acceptors for Solution-Processed Solar Cells with an Open-Circuit Voltage of up to 1.14 V. New J. Chem. 2018, 42, 15079–15087. [Google Scholar] [CrossRef]
- Li, C.; Fu, H.; Xia, T.; Sun, Y. Asymmetric Nonfullerene Small Molecule Acceptors for Organic Solar Cells. Adv. Energy Mater. 2019, 9, 1900999. [Google Scholar] [CrossRef]
- Yin, Y.; Song, J.; Guo, F.; Sun, Y.; Zhao, L.; Zhang, Y. Asymmetrical vs Symmetrical Selenophene-Annulated Fused Perylenediimide Acceptors for Efficient Non-Fullerene Polymer Solar Cells. ACS Appl. Energy Mater. 2018, 1, 6577–6585. [Google Scholar] [CrossRef]
- Koenig, J.D.B.; Hoff, A.; Gasonoo, A.; Welch, G.C. Systematic Investigation of Core and Endcap Selection on the Development of Functional π-Conjugated Materials. Chem. Mater. 2023, 35, 251–260. [Google Scholar] [CrossRef]
- Hoff, A.; Martell, M.; Gasonoo, A.; Koenig, J.D.B.; Simón Marqués, P.; Cieplechowicz, E.; Pahlevani, M.; Welch, G.C. Sidechain-Engineered N-PDIs Processed from Ethyl Acetate as Effective Cathode Interlayers for Organic Solar Cells. Adv. Eng. Mater. 2022, 2201437. [Google Scholar] [CrossRef]
- Hoff, A.; Gasonoo, A.; Pahlevani, M.; Welch, G.C. An Alcohol-Soluble N-Annulated Perylene Diimide Cathode Interlayer for Air-Processed, Slot-Die Coated Organic Photovoltaic Devices and Large-Area Modules. Sol. RRL 2022, 6, 2200691. [Google Scholar] [CrossRef]
- Farahat, M.E.; Anderson, M.A.; Martell, M.; Ratcliff, E.L.; Welch, G.C. New Perylene Diimide Ink for Interlayer Formation in Air-Processed Conventional Organic Photovoltaic Devices. ACS Appl. Mater. Interfaces 2022, 14, 43558–43567. [Google Scholar] [CrossRef] [PubMed]
- Munir, R.; Cieplechowicz, E.; Lamarche, R.M.; Chernikov, R.; Trudel, S.; Welch, G.C. Air-Processed Organic Photovoltaics for Outdoor and Indoor Use Based upon a Tin Oxide-Perylene Diimide Electron Transporting Bilayer. Adv. Mater. Interfaces 2022, 9, 2101918. [Google Scholar] [CrossRef]
- Cieplechowicz, E.; Munir, R.; Anderson, M.A.; Ratcliff, E.L.; Welch, G.C. Zinc Oxide-Perylene Diimide Hybrid Electron Transport Layers for Air-Processed Inverted Organic Photovoltaic Devices. ACS Appl. Mater. Interfaces 2021, 13, 49096–49103. [Google Scholar] [CrossRef] [PubMed]
Compound | Eg (eV) | LUMO (eV) | HOMO (eV) | Voc (V) | Jsc (mA cm−2) | FF (%) | PCE (%) | Donor | Processing Cond. | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
PDI-Core-PDI for binary OPVs | ||||||||||
PDI-TII-B-PDI | 1.4 | −3.6 | −5.0 | 0.93 | 1.1 | 34 | 0.4 | PTB7-Th | As-cast | [86] |
PDI-ISI-B-PDI | 2.0 | −3.6 | −5.6 | 1.03 | 7.0 | 38 | 2.6 | PTB7-Th | As-cast | [86] |
PDI-DPP-B-PDI | 1.7 | −3.6 | −5.3 | 0.97 | 6.0 | 50 | 2.9 | PTB7-Th | 0.5% DIO | [86] |
PDI-DPP-L-PDI | 1.7 | −3.7 | −5.3 | 0.98 | 11.3 | 50 | 5.6 | PTB7-Th | 5 min SVA | [84] |
PDI-DPP-L-PDI | 1.7 | −3.7 | −5.3 | 1.03 | 10.4 | 48 | 5.1 | TTFQx-T1 | 10 min SVA | [87] |
PDI-BF2fz-PDI | 2.0 | −3.9 | −5.9 | 0.65 | 2.0 | 48 | 0.6 | PPDT2FBT | 5 min SVA | [88] |
PDI-Th-PDI | 2.2 | −3.5 | −5.7 | 0.99 | 5.6 | 37 | 2.0 | PTB7-Th | As-cast | [89] |
PDI-Th2-PDI | 2.0 | −3.5 | −5.6 | 1.05 | 7.2 | 36 | 2.6 | PTB7-Th | As-cast | [89] |
PDI-F-Th-PDI | 2.3 | −3.5 | −5.8 | 1.10 | 7.3 | 33 | 2.7 | PTB7-Th | 1% DMN | [90] |
PDI-Th2-PO-PDI | 2.1 | −3.6 | −5.7 | 1.00 | 5.4 | 37 | 2.0 | PTB7-Th | 0.5% DIO | [91] |
PDI-Th2-B-PDI | 2.2 | −3.6 | −5.8 | 1.03 | 10.0 | 37 | 3.9 | TTFQx-T1 | 5% DPE + TA | [92] |
PDI-TPD-PDI | 2.2 | −3.7 | −5.9 | 1.05 | 7.4 | 42 | 3.3 | PBDB-T | 3% DPE | [93] |
(PDI4 tetramers): PDI2-Core-PDI2 for binary OPVs | ||||||||||
IDT-NPDI4 | 1.7 | −3.6 | −5.3 | 1.02 | 9.6 | 35 | 3.4 | PTB7-Th | 3% CN | [94] |
Th4 PDI4 | 2.1 | −3.6 | −5.7 | 0.99 | 10.6 | 43 | 4.5 | PTB7-Th | 3% CN | [95] |
PDI2 dimer for binary OPVs | ||||||||||
tPDI2N-Hex | 2.2 | −3.8 | −6.0 | 0.89 | 11.8 | 49 | 5.1 | PTB7-Th | As-cast | [81] |
tPDI2N-Et | 2.2 | −3.8 | −6.0 | 1.13 | 11.0 | 61 | 7.6 | P3TEA | 2.5% ODT | [81] |
tPDI2N-Hex | 2.2 | −3.8 | −6.0 | 1.03 | 12.5 | 49 | 6.3 | TTFQx-T1 | TA @180 °C | [96] |
PDI2Ac2 | 2.2 | −3.8 | −6.0 | 0.95 | 4.4 | 32 | 1.3 | PTB7-Th | As-cast | [97] |
tPDI2-NH | 2.0 | −3.8 | −5.8 | 0.87 | 9.4 | 41 | 3.3 | TTFQx-T1 | TA @180 °C | [96] |
tPDI2N-benzyl | 2.4 | −3.6 | −6.0 | 0.99 | 14.1 | 42 | 5.8 | QX1 | TA @180 °C | [98] |
tPDI2N-benzylF | 2.4 | −3.6 | −6.0 | 0.96 | 15.1 | 41 | 5.8 | QX1 | TA @180 °C | [98] |
tPDI2N-benzylF5 | 2.4 | −3.6 | −6.0 | 0.96 | 14.4 | 40 | 5.5 | QX1 | TA @180 °C | [98] |
tPDI2N-EH | 2.2 | −3.7 | −5.9 | 0.95 | 15.3 | 43 | 6.6 | PTB7-Th | 0.25% DIO | [99] |
tPDI2N-EH | 2.2 | −3.7 | −5.9 | 1.04 | 9.4 | 59 | 5.7 | BDT-QX | 3% DPE | [100] |
tPDI2N-EH | 2.2 | −3.7 | −5.9 | 1.09 | 11.7 | 51 | 6.6 | QX3 | As-cast | [101] |
tPDI2N-EH | 2.2 | −3.7 | −5.9 | 1.04 | 10.5 | 58 | 6.4 | QX1 | ZnO/PDIN-hex | [102] |
tPDI2N-EH | 2.2 | −3.7 | −5.9 | 1.21 | 8.2 | 55 | 5.5 | PTQ10 | Toluene + 1% DPE | [85] |
PDI2 dimers for ternary OPVs | ||||||||||
tPDI2N-Hex | 2.2 | −3.7 | −5.9 | 0.87 | 14.3 | 71 | 8.5 | PBDB-T | PBDB-T: PC61BM: tPDI2N-Hex | [103] |
tPDI2N-EH | 2.2 | −3.7 | −5.9 | 1.24 | 7.7 | 40 | 3.8 | PTQ10 | PTQ10: tPDI2N-EH: PDI-EDOT-PDI | [85] |
tPDI2N-EH | 2.2 | −3.7 | −5.9 | 0.86 | 13.2 | 69 | 7.9 | PPDT2FBT | FBT: PC61BM: tPDI2N-EH | [104] |
PDI2 dimers for indoor OPVs | ||||||||||
tPDI2N-EH | 2.2 | −3.7 | −5.9 | 0.84 | 66.8 × 10−3 | 51 | 9.6 | PPDT2FBT | @1000 lux (warm LED) | [105] |
tPDI2N-EH | 2.2 | −3.7 | −5.9 | 1.07 | 139 × 10−3 | 48 | 11.7 | PTQ10 | @2000 lux (warm LED) | [85] |
tPDI2N-EH | 2.2 | −3.7 | −5.9 | 0.72 | 167 × 10−3 | 73 | 15.5 | PPDT2FBT | @2000 lux (warm LED) | [104] |
Asymmetric dimers | ||||||||||
PDI-DPP-IQ | 1.5 | −3.7 | −5.2 | 0.75 | 2.5 | 42 | 0.8 | P3HT | 5 min SVA | [82] |
PDI-DPP-BTXI | 1.6 | −3.7 | −5.3 | 0.95 | 3.8 | 31 | 1.1 | PTB7-Th | 10 min SVA | [106] |
NPDI-DPP-SePDI | 1.6 | −3.7 | −5.3 | 0.76 | 2.7 | 38 | 0.8 | PTB7-Th | 5 min SVA | [107] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farahat, M.E.; Welch, G.C. N-Annulated Perylene Diimide Non-Fullerene Acceptors for Organic Photovoltaics. Colorants 2023, 2, 151-178. https://doi.org/10.3390/colorants2010011
Farahat ME, Welch GC. N-Annulated Perylene Diimide Non-Fullerene Acceptors for Organic Photovoltaics. Colorants. 2023; 2(1):151-178. https://doi.org/10.3390/colorants2010011
Chicago/Turabian StyleFarahat, Mahmoud E., and Gregory C. Welch. 2023. "N-Annulated Perylene Diimide Non-Fullerene Acceptors for Organic Photovoltaics" Colorants 2, no. 1: 151-178. https://doi.org/10.3390/colorants2010011
APA StyleFarahat, M. E., & Welch, G. C. (2023). N-Annulated Perylene Diimide Non-Fullerene Acceptors for Organic Photovoltaics. Colorants, 2(1), 151-178. https://doi.org/10.3390/colorants2010011