Performance Prediction Equation for 2000 m Youth Indoor Rowing Using a 100 m Maximal Test
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Analysis of Body Morphology
2.4. Development of the Mathematical Model
2.5. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bourdin, M.; Lacour, J.-R.; Imbert, C.; Messonnier, L.A. Factors of Rowing Ergometer Performance in High-Level Female Rowers. Int. J. Sports Med. 2017, 38, 1023–1028. [Google Scholar] [CrossRef]
- Mikulic, P.; Bralic, N. Elite status maintained: A 12-year physiological and performance follow-up of two Olympic champion rowers. J. Sports Sci. 2017, 36, 660–665. [Google Scholar] [CrossRef]
- Akça, F. Prediction of Rowing Ergometer Performance from Functional Anaerobic Power, Strength and Anthropometric Components. J. Hum. Kinet. 2014, 41, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Gee, T.I.; Caplan, N.; Gibbon, K.C.; Howatson, G.; Thompson, K.G. Investigating the Effects of Typical Rowing Strength Training Practices on Strength and Power Development and 2000 m Rowing Performance. J. Hum. Kinet. 2016, 50, 167–177. [Google Scholar]
- Cataldo, A.; Cerasola, D.; Russo, G.; Zangla, D.; Traina, M. Mean power during 20 sec all-out test to predict 2000 m rowing ergometer performance in national level young rowers. J. Sports Med. Phys. Fit. 2015, 55, 872–877. [Google Scholar]
- Riechman, S.E.; Zoeller, R.F.; Balasekaran, G.; Goss, F.L.; Robertson, R.J. Prediction of 2000 m indoor rowing performance using a 30 s sprint and maximal oxygen uptake. J. Sports Sci. 2002, 20, 681–687. [Google Scholar] [CrossRef]
- Cerasola, D.; Bellafiore, M.; Cataldo, A.; Zangla, D.; Bianco, A.; Proia, P.; Traina, M.; Palma, A.; Capranica, L. Predicting the 2000-m Rowing Ergometer Performance from Anthropometric, Maximal Oxygen Uptake and 60-s Mean Power Variables in National Level Young Rowers. J. Hum. Kinet. 2020, 75, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Jensen, K.; Frydkjær, M.; Jensen, N.M.; Bannerholt, L.M.; Gam, S. A Maximal Rowing Ergometer Protocol to Predict Maximal Oxygen Uptake. Int. J. Sports Physiol. Perform. 2021, 16, 382–386. [Google Scholar] [CrossRef]
- Maciejewski, H.; Rahmani, A.; Chorin, F.; Lardy, J.; Giroux, C.; Ratel, S. The 1,500-m Rowing Performance is Highly Dependent on Modified Wingate Anaerobic Test Performance in National-Level Adolescent Rowers. Pediatr. Exerc. Sci. 2016, 28, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, A.; Giroux, C.; Ben Abdessamie, A.; Chorin, F.; Lardy, J.; Maciejewski, H. Anaerobic physical evaluation of young national rowers. Comput. Methods Biomech. Biomed. Eng. 2015, 18, 2034–2035. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, U.; Mader, A.; Wasser, K.; Klauer, I. Peak Force, Velocity, and Power During Five and Ten Maximal Rowing Ergometer Strokes by World Class Female and Male Rowers. Int. J. Sports Med. 1993, 14, S42–S45. [Google Scholar] [CrossRef]
- Lawton, T.W.; Cronin, J.B.; McGuigan, M.R. Strength, power, and muscular endurance exercise and elite rowing ergometer per-formance. J. Strength Cond. Res. 2013, 27, 1928–1935. [Google Scholar] [CrossRef]
- Steinacker, J.M. Physiological aspect of training in rowing. Int. J. Sports Med. 1993, 1, s3–s10. [Google Scholar]
- Matsudo, V.K.; Rivet, R.E.; Pereira, M.H. Standard score assessment on physique and performance of Brazilian athletes in a six tiered competitive sports model. J. Sports Sci. 1987, 5, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Harriss, D.; MacSween, A.; Atkinson, G. Ethical Standards in Sport and Exercise Science Research: 2020 Update. Int. J. Sports Med. 2019, 40, 813–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strobe Foundation. Checklist Strengthening the Reporting of Observational Studies in Epidemiology. (1 September 2014). Retrieved 20 June 2020, from STROBE Statement. Available online: https://www.strobe-statement.org/index.php?id=strobe-home (accessed on 20 January 2021).
- Ingham, S.A.; Whyte, G.P.; Jones, K.; Nevill, A.M. Determinants of 2000 m rowing ergometer performance in elite rowers. Eur. J. Appl. Physiol. 2002, 88, 243–246. [Google Scholar] [PubMed]
- Wasserman, H.; O’Donnell, J.M.; Gordon, C.M. Use of dual energy X-ray absorptiometry in pediatric patients. Bone 2017, 104, 84–90. [Google Scholar] [CrossRef]
- Segel, L.A. Mathematical Models in Molecular Cellular Biology; Cambridge University Press Archive: Cambridge, UK, 1980. [Google Scholar]
- Neimark, J.I. Mathematical Models in Natural Science and Engineering; Gabler; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Paragios, N.; Chen, Y.; Faugeras, O.D. Handbook of Mathematical Models in Computer Vision; Springer Science & Business Media: Berlin, Germany, 2006. [Google Scholar]
- de Almeida-Neto, P.F.; da Silva, L.F.; de Matos, D.G.; Jeffreys, I.; de Cesário, T.M.; Neto, R.B.; de Almeida Barbosa, W.; Aidar, F.J.; Silva Dantas, P.M. Equation for analyzing the peak power in aquatic environment: An alternative for olympic rowing athletes. PLoS ONE 2020, 15, e0243157. [Google Scholar]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Miot, H.A. Agreement analysis in clinical and experimental studies. J. Vasc. Bras. 2016, 15, 89–92. [Google Scholar] [CrossRef]
- Espírito Santo, H.; Daniel, F. Calculating and Reporting Effect Sizes on Scientific Papers (1): P < 0.05 Limitations in the Analysis of Mean Differences of Two Groups. Port. J. Behav. Soc. Res. 2017, 1, 3–16. [Google Scholar]
- Perini, T.A.; Oliveira, G.L.; Ornellas, J.S.; Oliveira, F.P. Calculation of the technical error of examination in anthropometry. Braz. J. Sports Med. 2005, 11, 81–85. [Google Scholar]
- Šmída, M.; Clementis, M.; Hamar, D.; Macejková, Y. Relation between Maximal Anaerobic Power Output and Tests on Rowing Ergometer. Acta Fac. Educ. Phys. Univ. Comen. 2017, 57, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Maestu, J.; Jiirimae, J.; Jiirimae, T. Monitoring of performance and training in rowing. Sports Med. 2005, 35, 597–617. [Google Scholar] [CrossRef]
- Secher, N.H. Rowing. In Endurance in Sport; Shephard, R.J., Astrand, P.O., Eds.; Blackwell Science: Oxford, UK, 2000; pp. 836–843. [Google Scholar]
- Steinacker, J.M.; Lormes, W.; Lehmann, M.; Altenburg, D. Training of rowers before world championships. Med. Sci. Sports Exerc. 1998, 30, 1158–1163. [Google Scholar] [CrossRef]
- Penichet-Tomás, A.; Pueo, B.; Jiménez-Olmedo, J.M. Physical performance indicators in traditional rowing championships. J. Sports Med. Phys. Fit. 2019, 59, 767–773. [Google Scholar] [CrossRef] [PubMed]
- Billat, V.; Hamard, L.; Koralsztein, J.P.; Morton, R.H. Differential modeling of anaerobic and aerobic metabolism in the 800-m and 1500 m run. J. Appl. Physiol. 2009, 107, 478–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atkinson, G.; Nevill, A. Statistical Methods for Assessing Measurement Error (Reliability) in Variables Relevant to Sports Medicine. Sports Med. 1998, 26, 217–238. [Google Scholar] [CrossRef]
- Russell, A.P.; Le Rossignol, P.F.; Sparrow, W.A. Prediction of elite schoolboy 2000-m rowing ergometer performance from metabolic, anthropometric and strength variables. J. Sports Sci. 1998, 16, 749–754. [Google Scholar] [CrossRef] [PubMed]
Variables | Mean ± SD |
---|---|
Fat mass (kg) | 16.5 ± 6.7 |
Lean mass (kg) | 47.4 ± 8.1 |
Mean Power in 100 m (watts) | 376.9 ± 62.7 |
Mean Power in 2000 m (watts) | 235.9 ± 29.0 |
Variable | Rowing 2000 m | |||||
---|---|---|---|---|---|---|
Rowing 100 m | Correlation | Regression | ||||
r | r2 | pValue | (r2) | β | pValue | |
0.734 * | 0.538 | 0.006 | 0.539 * | 15.42 | 0.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, L.F.d.; de Almeida-Neto, P.F.; de Matos, D.G.; Riechman, S.E.; de Queiros, V.; de Jesus, J.B.; Reis, V.M.; Clemente, F.M.; Miarka, B.; Aidar, F.J.; et al. Performance Prediction Equation for 2000 m Youth Indoor Rowing Using a 100 m Maximal Test. Biology 2021, 10, 1082. https://doi.org/10.3390/biology10111082
Silva LFd, de Almeida-Neto PF, de Matos DG, Riechman SE, de Queiros V, de Jesus JB, Reis VM, Clemente FM, Miarka B, Aidar FJ, et al. Performance Prediction Equation for 2000 m Youth Indoor Rowing Using a 100 m Maximal Test. Biology. 2021; 10(11):1082. https://doi.org/10.3390/biology10111082
Chicago/Turabian StyleSilva, Luiz Felipe da, Paulo Francisco de Almeida-Neto, Dihogo Gama de Matos, Steven E. Riechman, Victor de Queiros, Joseane Barbosa de Jesus, Victor Machado Reis, Filipe Manuel Clemente, Bianca Miarka, Felipe J. Aidar, and et al. 2021. "Performance Prediction Equation for 2000 m Youth Indoor Rowing Using a 100 m Maximal Test" Biology 10, no. 11: 1082. https://doi.org/10.3390/biology10111082
APA StyleSilva, L. F. d., de Almeida-Neto, P. F., de Matos, D. G., Riechman, S. E., de Queiros, V., de Jesus, J. B., Reis, V. M., Clemente, F. M., Miarka, B., Aidar, F. J., Dantas, P. M. S., & Cabral, B. G. d. A. T. (2021). Performance Prediction Equation for 2000 m Youth Indoor Rowing Using a 100 m Maximal Test. Biology, 10(11), 1082. https://doi.org/10.3390/biology10111082