Effect of Customized Insoles on Gait in Post-Stroke Hemiparetic Individuals: A Randomized Controlled Trial
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patients
2.3. Intervention
Customization Processes of Insoles
2.4. Outcome Measures
Secondary Outcomes
- Plantar pressure test (%) [31]: Items included weight-bearing of the involved foot (normal: 50%) and the involved forefoot (normal: 27.5%) during static standing, weight-bearing of the involved foot (normal: 50%), and the involved forefoot (normal: 35%) during walking, and gait cycle percentage (early stance phase, normal: 20%; mid-stance phase, normal: 40%; and late stance phase, normal: 20%).
- 6MWT [32]: This was carried out indoors along a long, flat, straight enclosed corridor. The length of the walking track was 30 m and subjects walked as fast as they could for 6 min, and the walking distance was measured.
- FMA-LE [33]: This is a reliable tool for assessing stroke recovery (ICC = 0.83–0.95) [34]. There are 17 items in this assessment, of which two items relate to reflex activity, 11 items to synergistic movements, and three items to coordination. The scoring of each item was based on a sequential score of three points (0, unable to complete; 1, partially completed; 2, completed), except for the two reflection items.
- BI assessment [37]: This exhibits good interrater reliability (ICC = 0.94–0.98) [38] and covers 10 domains of functioning (activities): bowel and bladder control as well as assistance with grooming, toilet use, feeding, transfer, walking, dressing, climbing stairs, and bathing. Each activity has five dependency levels ranging from 0 (unable to perform) to 5, 10, or 15 (completely independent).
2.5. Statistical Analysis
3. Results
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mun, B.-M.; Kim, T.-H.; Lee, J.-H.; Lim, J.-Y.; Seo, D.-K.; Lee, D.-J. Comparison of Gait Aspects According to FES Stimulation Position Applied to Stroke Patients. J. Phys. Ther. Sci. 2014, 26, 563–566. [Google Scholar] [CrossRef] [Green Version]
- Roth, E.J.; Merbitz, C.; Mroczek, K.; Dugan, S.A.; Suh, W.W. Hemiplegic gait. Relationships between walking speed and other temporal parameters. Am. J. Phys. Med. Rehabilitation 1997, 76, 128–133. [Google Scholar] [CrossRef]
- Kim, K.-T.; Chung, M.E. Musculoskeletal Problems in Lower Extremity after Stroke. Brain Neurorehabilit. 2016, 9, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Evers, S.M.A.A.; Struijs, J.N.; Ament, A.J.H.A.; Van Genugten, M.L.L.; Jager, J. International comparison of stroke cost studies. Stroke 2004, 35, 1209–1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eng, J.J.; Tang, P.-F. Gait training strategies to optimize walking ability in people with stroke: A synthesis of the evidence. Expert Rev. Neurother. 2007, 7, 1417–1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kottink, A.I.; Oostendorp, L.J.; Buurke, J.H.; Nene, A.V.; Hermens, H.J.; Ijzerman, M. The orthotic effect of functional electrical stimulation on the improvement of walking in stroke patients with a dropped foot: A systematic review. Artif. Organs 2004, 28, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Moseley, A.; Stark, A.; Cameron, I.; Pollock, A. Selection Treadmill training and body weight support for walking after stroke. Physiotherapy 2003, 89, 515. [Google Scholar] [CrossRef]
- Kuys, S.S.; Brauer, S.; Ada, L.; Russell, T. Immediate effect of treadmill walking practice versus overground walking practice on overground walking pattern in ambulatory stroke patients: An experimental study. Clin. Rehabilitation 2008, 22, 931–939. [Google Scholar] [CrossRef] [Green Version]
- Rogers, A.; Morrison, S.C.; Gorst, T.; Paton, J.; Freeman, J.; Marsden, J.; Cramp, M.C. Repeatability of plantar pressure assessment during barefoot walking in people with stroke. J. Foot Ankle Res. 2020, 13, 1–7. [Google Scholar] [CrossRef]
- Giacomozzi, C. Potentialities and Criticalities of Plantar Pressure Measurements in the Study of Foot Biomechanics: Devices, Methodologies and Applications. InTech. Biomech. Appl. 2011, 1, 249–274. [Google Scholar] [CrossRef] [Green Version]
- Lee, N.K.; Kwon, J.W.; Son, S.M.; Nam, S.H.; Choi, Y.W.; Kim, C.S. Changes of plantar pressure distributions following open and closed kinetic chain exercise in patients with stroke. NeuroRehabilitation 2013, 32, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Miniaci-Coxhead, S.L.; Flemister, A.S. Office-Based Management of Adult-Acquired Flatfoot Deformity. Med. Clin. North Am. 2014, 98, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, H.A.V.; Jones, A.; Moreira, E.; Jennings, F.; Natour, J. Effectiveness of Total Contact Insoles in Patients with Plantar Fasciitis. J. Rheumatol. 2015, 42, 870–878. [Google Scholar] [CrossRef]
- Van Netten, J.J.; Lazzarini, P.A.; Armstrong, D.G.; Bus, S.A.; Fitridge, R.; Harding, K.; Kinnear, E.; Malone, M.; Menz, H.B.; Perrin, B.M.; et al. Diabetic Foot Australia guideline on footwear for people with diabetes. J. Foot Ankle Res. 2018, 11, 2. [Google Scholar] [CrossRef] [Green Version]
- Neville, C.G.; Houck, J.R.; Flemister, A.S. Science behind the Use of Orthotic Devices to Manage Posterior Tibial Tendon Dysfunction. Tech. Foot Ankle Surg. 2008, 7, 125–133. [Google Scholar] [CrossRef]
- Papuga, M.O.; Cambron, J. Foot orthotics for low back pain: The state of our understanding and recommendations for future research. Foot 2015, 26, 53–57. [Google Scholar] [CrossRef]
- Franz, J.R.; Dicharry, J.; Riley, P.O.; Jackson, K.; Wilder, R.P.; Kerrigan, D.C. The influence of arch supports on knee torques relevant to knee osteoarthritis. Med. Sci. Sports Exerc. 2008, 40, 913–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kakou, H.; Nagao, Y.; Omine, S.; Ochi, M.; Wada, F.; Hachisuka, K.; Togami, H. The clinical effect of lateral wedge on hemiplegic weight bearing. J. UOEH 2003, 25, 441–446. [Google Scholar] [CrossRef] [Green Version]
- Aruin, A.S.; Hanke, T.; Chaudhuri, G.; Harvey, R.; Rao, N. Compelled weightbearing in persons with hemiparesis following stroke: The effect of a lift insert and goal-directed balance exercise. J. Rehabil. Res. Dev. 2000, 37, 65–72. [Google Scholar]
- Kusumoto, Y.; Tsuchiya, J.; Watanabe, Y.; Umeda, M.; Matsuda, T.; Takaki, K.; Nitta, O. Characteristics of dynamic standing balance with and without an insole in patients with spastic diplegia cerebral palsy. J. Phys. Ther. Sci. 2020, 32, 23–26. [Google Scholar] [CrossRef] [Green Version]
- Akuzawa, H.; Imai, A.; Iizuka, S.; Matsunaga, N.; Kaneoka, K. Calf muscle activity alteration with foot orthoses insertion during walking measured by fine-wire electromyography. J. Phys. Ther. Sci. 2016, 28, 3458–3462. [Google Scholar] [CrossRef] [Green Version]
- Hajizadeh, M.; Desmyttere, G.; Carmona, J.-P.; Bleau, J.; Begon, M. Can foot orthoses impose different gait features based on geometrical design in healthy subjects? A systematic review and meta-analysis. Foot 2019, 42, 101646. [Google Scholar] [CrossRef]
- Forghany, S.; Nester, C.J.; Tyson, S.F.; Preece, S.; Jones, R.K. The effect of stroke on foot kinematics and the functional consequences. Gait Posture 2014, 39, 1051–1056. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Xu, R.; Wang, J. The Effects of Short-Term Wearing of Customized 3D Printed Single-Sided Lateral Wedge Insoles on Lower Limbs in Healthy Males: A Randomized Controlled Trial. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2019, 25, 7720–7727. [Google Scholar] [CrossRef] [PubMed]
- Najjarine, A. Treating Back Pain & LLD using Orthotic Therapy. Podiatry Rev. 2010, 14, 1–2. [Google Scholar]
- Gor-García-Fogeda, M.D.; de la Cuerda, R.C.; Tejada, M.C.; Alguacil-Diego, I.M.; Molina-Rueda, F. Observational Gait Assessments in People With Neurological Disorders: A Systematic Review. Arch. Phys. Med. Rehabil. 2015, 97, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Khalil, N.; Guesdon, H.; Chauvière, C.; Protto, M.; Pourel, E.; Le Chapelain, L.; Mainard, D.; Beis, J.-M.; Paysant, J. Quantitative assessment of plantar pressure distribution after tibial nerve neurotomy in equinovarus foot by the F-scan® system. Ann. Phys. Rehabil. Med. 2013, 56, e384. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, R.; Lee, W. Immediate and medium-term effects of custom-moulded insoles on pain, physical function, physical activity, and balance control in patients with knee osteoarthritis. J. Rehabil. Med. Off. J. Uems Eur. Board Phys. Rehabil. Med. 2004, 46, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, Z.M.D.F.; Coelho, J.M.A.; Campos, R.R.; de Oliveira, D.C.; Machado, W.G.; Maniva, S.J.C.D.F. Use of the Tinetti Index to Assess Fall Risk in Patients with Sequelae of Stroke. J. Biomed. Sci. Eng. 2014, 07, 1088–1094. [Google Scholar] [CrossRef] [Green Version]
- Zimbelman, J.; Daly, J.J.; Roenigk, K.L.; Butler, K.; Burdsall, R.; Holcomb, J.P. Capability of 2 gait measures for detecting response to gait training in stroke survivors: Gait assessment and intervention tool and the tinetti gait scale. Arch. Phys. Med. Rehabil. 2012, 93, 129–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robain, G.; Valentini, F.; Renard-Deniel, S.; Chennevelle, J.-M.; Piera, J.-B. Un paramètre baropodométrique pour l’analyse de la marche du patient hémiplégique: Le trajet du centre de pression. Annales de Réadaptation et de Médecine Physique 2006, 49, 609–613. [Google Scholar] [CrossRef] [PubMed]
- Ats, S. Guideline for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 15–24. [Google Scholar] [CrossRef]
- Balasubramanian, C.K.; Li, C.-Y.; Bowden, M.G.; Duncan, P.W.; Kautz, S.A.; Velozo, C.A. Dimensionality and Item-Difficulty Hierarchy of the Lower Extremity Fugl-Meyer Assessment in Individuals With Subacute and Chronic Stroke. Arch. Phys. Med. Rehabil. 2015, 97, 582–589. [Google Scholar] [CrossRef] [Green Version]
- Duncan, P.W.; Propst, M.; Nelson, S.G. Reliability of the Fugl-Meyer assessment of sensorimotor recovery following cerebrovascular accident. Phys. Ther. 1983, 63, 1606–1610. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, T.J. Detecting change in patients with stroke using the Berg Balance Scale. Aust. J. Physiother. 2001, 47, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Blum, L.; Korner-Bitensky, N. Usefulness of the Berg Balance Scale in stroke rehabilitation: A systematic review. Phys. Ther. 2008, 88, 559–566. [Google Scholar] [CrossRef]
- Loewen, S.C.; Anderson, B.A. Reliability of the Modified Motor Assessment Scale and the Barthel Index. Phys. Ther. 1988, 7, 1077–1081. [Google Scholar] [CrossRef] [Green Version]
- Wolfe, C.; A Taub, N.; Woodrow, E.J.; Burney, P. Assessment of scales of disability and handicap for stroke patients. Stroke 1991, 22, 1242–1244. [Google Scholar] [CrossRef] [Green Version]
- Salzano, A.; Camuso, F.; Sepe, M.; Sellami, M.; Ardigò, L.P.; Padulo, J. Acute Effect of Toe Cap Choice on Toe Deviation Angle and Perceived Pain in Female Professional Ballet Dancers. BioMed. Res. Int. 2019, 2019, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Woolley, S.M. Characteristics of Gait in Hemiplegia. Top. Stroke Rehabil. 2001, 7, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Yavuzer, G.; Gök, H.; Ergin, S. Spatiotemporal and kinematic gait characteristics of stroke patients. J. Rheum. Med. Rehabil. 2001, 12, 148–152. [Google Scholar]
- Balaban, B.; Tok, F. Gait disturbances in patients with stroke. PM&R 2014, 6, 635–642. [Google Scholar] [CrossRef]
- Moore, S.; Schurr, K.; Wales, A.; Moseley, A.; Herbert, R. Observation and analysis of hemiplegic gait: Swing phase. Aust. J. Physiother. 1993, 39, 271–278. [Google Scholar] [CrossRef] [Green Version]
- Forghany, S.; Nester, C.; Tyson, S.; Preece, S.; Jones, R. Plantar pressure distribution in people with stroke and association with functional consequences. Physiotherapy 2015, 101, e399–e400. [Google Scholar] [CrossRef] [Green Version]
- Meyring, S.; Diehl, R.; Milani, T.; Hennig, E.; Berlit, P. Dynamic plantar pressure distribution measurements in hemiparetic patients. Clin. Biomech. 1997, 12, 60–65. [Google Scholar] [CrossRef]
- Yamamoto, S.; Fuchi, M.; Yasui, T. Change of rocker function in the gait of stroke patients using an ankle foot orthosis with an oil damper: Immediate changes and the short-term effects. Prosthet. Orthot. Int. 2011, 35, 350–359. [Google Scholar] [CrossRef] [Green Version]
- Wagner, A.; Luna, S. Effect of Footwear on Joint Pain and Function in Older Adults with Lower Extremity Osteoarthritis. J. Geriatr. Phys. Ther. 2018, 41, 85–101. [Google Scholar] [CrossRef] [PubMed]
- Kakihana, W.; Torii, S.; Akai, M.; Nakazawa, K.; Fukano, M.; Naito, K. Effect of a Lateral Wedge on Joint Moments during Gait in Subjects with Recurrent Ankle Sprain. Am. J. Phys. Med. Rehabil. 2005, 84, 858. [Google Scholar] [CrossRef]
- Zhe, L.; Sun, X.; Guo, G. Effect of orthopedic insole on balance function and walking ability of patients with hemiplegia. Chin. J. Rehabil. Med. 2014, 29, 656–658. [Google Scholar]
- Pollock, A.; Baer, G.; Pomeroy, V.; Langhorne, P. Physiotherapy treatment approaches for the recovery of postural control and lower limb function following stroke: A systematic review. Clin. Rehabil. Physiother. 2003, 89, 336. [Google Scholar] [CrossRef]
- Fernandes, B.; Sérgio, J.S.; Prates, L.; Ferreira, M.J.; Beckert, P.; Evangelista, I. Relationship of balance to function independence in stroke survivors. Med. Sci. Sports Exerc. 2010, 42, 495. [Google Scholar] [CrossRef] [Green Version]
- Quan, M.; Xun, P.; Wang, R.; He, K.; Chen, P. Walking pace and the risk of stroke: A meta-analysis of prospective cohort studies. J. Sport Health Sci. 2020, 9, 521–529. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Group A | Group B | p-Value |
---|---|---|---|
Participants, n | 25 | 25 | |
Age (years), median (IQR) | 56.00 (49.50 to 66.50) | 60.00 (54.00 to 65.00) | 0.303 |
Duration of stroke (days), mean (SD) | 130.36 (64.87) | 123.08 (54.06) | 0.668 |
Male, n (%) | 19 (76%) | 18 (72%) | 0.747 |
Classification, n (%) | |||
Cerebral infarction | 13 (52%) | 16 (64%) | 0.390 |
Cerebral hemorrhage | 12 (48%) | 9 (36%) | |
Affected body side, n (%) | |||
Left | 17 (68%) | 18 (72%) | 0.758 |
Right | 8 (34%) | 7 (28%) | |
Brunnstrom, n (%) | |||
III | 5 (20%) | 4 (16%) | 0.762 |
IV | 16 (64%) | 15 (60%) | |
V | 4 (16%) | 6 (24%) |
TGS Score, n (%) | T0 | T1 | T2 | |||
---|---|---|---|---|---|---|
Group A (n = 25) | Group B (n = 25) | Group A (n = 25) | Group B (n = 25) | Group A (n = 25) | Group B (n = 25) | |
4 | 1 (4%) | 1 (4%) | 1 (4%) | 0 | 1 (4%) | 0 |
5 | 10 (40%) | 4 (16%) | 1 (4%) | 0 | 0 | 1 (4%) |
6 | 4 (16%) | 9 (36%) | 2 (8%) | 6 (24%) | 0 | 4 (16%) |
7 | 5 (20%) | 7 (28%) | 1 (4%) | 6 (24%) | 3 (12%) | 8 (32%) |
8 | 4 (16%) | 3 (12%) | 9 (36%) | 7 (28%) | 13 (52%) | 9 (36%) |
9 | 1 (4%) | 1 (4%) | 8 (32%) | 6 (24%) | 7 (28%) | 3 (12%) |
10 | 3 (12%) | 0 | 1 (4%) | 0 |
Change in TGS, n (%) | T1–T0 | T2–T0 | ||
---|---|---|---|---|
Group A (n = 25) | Group B (n = 25) | Group A (n = 25) | Group B (n = 25) | |
0 | 3 (12%) | 5 (20%) | 1 (4%) | 4 (16%) |
1 | 5 (20%) | 14 (56%) | 3 (12%) | 1 (4%) |
2 | 8 (32%) | 4 (16%) | 2 (8%) | 13 (52%) |
3 | 9 (36%) | 2 (8%) | 10 (40%) | 6 (24%) |
4 | 9 (36%) | 1 (4%) | ||
p-value | 0.014 | 0.001 |
T1–T0 | p-Value | ||
---|---|---|---|
Group A | Group B | ||
Weight-bearing on the affected side, standing, %, mean (95% CI) | 3.46 (2.37 to 4.55) | 1.49 (0.48 to 2.49) | 0.012 |
Weight-bearing on the forefoot of the affected side, standing, %, mean (95% CI) | 2.73 (1.67 to 3.79) | 1.49 (0.65 to 2.34) | 0.028 |
Weight-bearing on the affected side, walking, %, mean (95% CI) | 3.15 (1.53 to 4.77) | 1.33 (0.49 to 2.17) | 0.016 |
Weight-bearing on the forefoot, walking, %, mean (95% CI) | 4.06 (2.14 to 5.99) | 1.93 (0.67 to 3.20) | 0.043 |
Early stance phase, %, mean (95% CI) | 5.00 (3.21 to 6.79) | 2.68 (1.86 to 3.50) | 0.023 |
Mid stance phase, %, mean (95% CI) | −5.68 (−8.29 to −3.07) | −1.36(−3.10 to 0.38) | 0.013 |
Late stance phase, %, mean (95% CI) | 0.68 (−2.28 to 3.64) | −1.32 (−3.23 to 0.59) | 0.472 |
6MWT, mean (SD) | 64.68 (32.12) | 47.88 (31.67) | 0.069 |
FMA-L, mean (95% CI) | 7.00 (5.97 to 8.03) | 5.48 (4.52 to 6.44) | 0.029 |
BBS, mean (SD) | 6.28 (2.99) | 4.04 (2.35) | 0.005 |
BI, mean (95% CI) | 12.40 (10.24 to 14.56) | 9.00 (7.31 to 10.69) | 0.009 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Qiao, L.; Yu, L.; Wang, Y.; Taiar, R.; Zhang, Y.; Fu, W. Effect of Customized Insoles on Gait in Post-Stroke Hemiparetic Individuals: A Randomized Controlled Trial. Biology 2021, 10, 1187. https://doi.org/10.3390/biology10111187
Wang J, Qiao L, Yu L, Wang Y, Taiar R, Zhang Y, Fu W. Effect of Customized Insoles on Gait in Post-Stroke Hemiparetic Individuals: A Randomized Controlled Trial. Biology. 2021; 10(11):1187. https://doi.org/10.3390/biology10111187
Chicago/Turabian StyleWang, Jie, Lei Qiao, Long Yu, Yanmin Wang, Redha Taiar, Ying Zhang, and Weijie Fu. 2021. "Effect of Customized Insoles on Gait in Post-Stroke Hemiparetic Individuals: A Randomized Controlled Trial" Biology 10, no. 11: 1187. https://doi.org/10.3390/biology10111187
APA StyleWang, J., Qiao, L., Yu, L., Wang, Y., Taiar, R., Zhang, Y., & Fu, W. (2021). Effect of Customized Insoles on Gait in Post-Stroke Hemiparetic Individuals: A Randomized Controlled Trial. Biology, 10(11), 1187. https://doi.org/10.3390/biology10111187