Subclinical Myocardial Dysfunction in Patients Recovered from COVID-19 Disease: Correlation with Exercise Capacity
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Echocardiographic Measurements
2.2. Strain Measurements
2.3. Exercise Stress Testing
2.4. Statistical Analysis
3. Results
3.1. Patients Baseline Caracteristics and Echocardiography
3.2. Exercise Echocardiography
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, T.; Fan, Y.; Chen, M.; Wu, X.; Zhang, L.; He, T.; Wang, H.; Wan, J.; Wang, X.; Lu, Z. Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 811–818. [Google Scholar] [CrossRef] [Green Version]
- Long, B.; Brady, W.J.; Koyfman, A.; Gottlieb, M. Cardiovascular complications in COVID-19. Am. J. Emerg. Med. 2020, 38, 1504–1507. [Google Scholar] [CrossRef]
- Chang, W.T.; Toh, H.S.; Liao, C.T.; Yu, W.L. Cardiac Involvement of COVID-19: A Comprehensive Review. Am. J. Med. Sci. 2021, 361, 14–22. [Google Scholar] [CrossRef]
- Rothschild, E.; Baruch, G.; Szekely, Y.; Lichter, Y.; Kaplan, A.; Taieb, P.; Laufer-Perl, M.; Beer, G.; Kapusta, L.; Topilsky, Y. The Predictive Role of Left and Right Ventricular Speckle-Tracking Echocardiography in COVID-19. JACC Cardiovasc. Imaging 2020, 13, 2471–2474. [Google Scholar] [CrossRef] [PubMed]
- Puntmann, V.O.; Carerj, M.L.; Wieters, I.; Fahim, M.; Arendt, C.; Hoffmann, J.; Shchendrygina, A.; Escher, F.; Vasa-Nicotera, M.; Zeiher, A.M.; et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 1265–1273. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zhao, P.; Tang, D.; Zhu, T.; Han, R.; Zhan, C.; Liu, W.; Zeng, H.; Tao, Q.; Xia, L. Cardiac Involvement in Patients Recovered From COVID-2019 Identified Using Magnetic Resonance Imaging. JACC Cardiovasc. Imaging 2020, 13, 2330–2339. [Google Scholar] [CrossRef]
- Rajpal, S.; Tong, M.S.; Borchers, J.; Zareba, K.M.; Obarski, T.P.; Simonetti, O.P.; Daniels, C.J. Cardiovascular Magnetic Resonance Findings in Competitive Athletes Recovering From COVID-19 Infection. JAMA Cardiol. 2021, 6, 116–118. [Google Scholar] [CrossRef]
- Reisner, S.A.; Lysyansky, P.; Agmon, Y.; Mutlak, D.; Lessick, J.; Friedman, Z. Global longitudinal strain: A novel index of left ventricular systolic function. J. Am. Soc. Echocardiogr. 2004, 17, 630–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinones, M.A.; Otto, C.M.; Stoddard, M.; Waggoner, A.; Zoghbi, W.A. Recommendations for quantification of Doppler echocardiography: A report from the Doppler Quantification Task Force of the Nomenclature and Standards Committee of the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2002, 15, 167–184. [Google Scholar] [CrossRef] [Green Version]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef] [Green Version]
- Voigt, J.U.; Pedrizzetti, G.; Lysyansky, P.; Marwick, T.H.; Houle, H.; Baumann, R.; Pedri, S.; Ito, Y.; Abe, Y.; Metz, S.; et al. Definitions for a common standard for 2D speckle tracking echocardiography: Consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. J. Am. Soc. Echocardiogr. 2015, 28, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Asch, F.M.; Miyoshi, T.; Addetia, K.; Citro, R.; Daimon, M.; Desale, S.; Fajardo, P.G.; Kasliwal, R.R.; Kirkpatrick, J.N.; Monaghan, M.J.; et al. Similarities and Differences in Left Ventricular Size and Function among Races and Nationalities: Results of the World Alliance Societies of Echocardiography Normal Values Study. J. Am. Soc. Echocardiogr. 2019, 32, 1396–1406.e2. [Google Scholar] [CrossRef] [Green Version]
- Muraru, D.; Onciul, S.; Peluso, D.; Soriani, N.; Cucchini, U.; Aruta, P.; Romeo, G.; Cavalli, G.; Iliceto, S.; Badano, L.P. Sex- and Method-Specific Reference Values for Right Ventricular Strain by 2-Dimensional Speckle-Tracking Echocardiography. Circ. Cardiovasc. Imaging 2016, 9, e003866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lala, A.; Johnson, K.W.; Januzzi, J.L.; Russak, A.J.; Paranjpe, I.; Richter, F.; Zhao, S.; Somani, S.; Van Vleck, T.; Vaid, A.; et al. Prevalence and Impact of Myocardial Injury in Patients Hospitalized With COVID-19 Infection. J. Am. Coll. Cardiol. 2020, 76, 533–546. [Google Scholar] [CrossRef] [PubMed]
- Sandoval, Y.; Januzzi, J.L., Jr.; Jaffe, A.S. Cardiac Troponin for Assessment of Myocardial Injury in COVID-19: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2020, 76, 1244–1258. [Google Scholar] [CrossRef]
- Shi, S.; Qin, M.; Yang, B. Coronavirus Disease 2019 (COVID-19) and Cardiac Injury-Reply. JAMA Cardiol. 2020, 5, 1199–1200. [Google Scholar] [CrossRef]
- Poissy, J.; Goutay, J.; Caplan, M.; Parmentier, E.; Duburcq, T.; Lassalle, F.; Jeanpierre, E.; Rauch, A.; Labreuche, J.; Susen, S.; et al. Pulmonary Embolism in Patients With COVID-19: Awareness of an Increased Prevalence. Circulation 2020, 142, 184–186. [Google Scholar] [CrossRef]
- Zheng, Y.Y.; Ma, Y.T.; Zhang, J.Y.; Xie, X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 2020, 17, 259–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dweck, M.R.; Bularga, A.; Hahn, R.T.; Bing, R.; Lee, K.K.; Chapman, A.R.; White, A.; Salvo, G.D.; Sade, L.E.; Pearce, K.; et al. Global evaluation of echocardiography in patients with COVID-19. Eur. Heart J. Cardiovasc. Imaging 2020, 21, 949–958. [Google Scholar] [CrossRef]
- Giustino, G.; Croft, L.B.; Stefanini, G.G.; Bragato, R.; Silbiger, J.J.; Vicenzi, M.; Danilov, T.; Kukar, N.; Shaban, N.; Kini, A.; et al. Characterization of Myocardial Injury in Patients With COVID-19. J. Am. Coll. Cardiol. 2020, 76, 2043–2055. [Google Scholar] [CrossRef]
- Gul, M.; Inci, S.; Aktas, H.; Yildirim, O.; Alsancak, Y. Hidden danger of COVID-19 outbreak: Evaluation of subclinical myocardial dysfunction in patients with mild symptoms. Int. J. Cardiovasc. Imaging 2021, 1–8. [Google Scholar] [CrossRef]
- Lee, W.C. Subclinical myocardial dysfunction and reduced left ventricular global longitudinal strain in patients with COVID-19. Int. J. Cardiovasc. Imaging 2021, 37, 2991–2992. [Google Scholar] [CrossRef]
- Croft, L.B.; Krishnamoorthy, P.; Ro, R.; Anastasius, M.; Zhao, W.; Buckley, S.; Goldman, M.; Argulian, E.; Sharma, S.K.; Kini, A.; et al. Abnormal left ventricular global longitudinal strain by speckle tracking echocardiography in COVID-19 patients. Future Cardiol. 2021, 17, 655–661. [Google Scholar] [CrossRef]
- Taieb, P.; Szekely, Y.; Lupu, L.; Ghantous, E.; Borohovitz, A.; Sadon, S.; Lichter, Y.; Ben-Gal, Y.; Banai, A.; Hochstadt, A.; et al. Risk prediction in patients with COVID-19 based on haemodynamic assessment of left and right ventricular function. Eur. Heart J. Cardiovasc. Imaging 2021, 22, 1241–1254. [Google Scholar] [CrossRef]
- Khani, M.; Tavana, S.; Tabary, M.; Naseri Kivi, Z.; Khaheshi, I. Prognostic implications of biventricular strain measurement in COVID-19 patients by speckle-tracking echocardiography. Clin. Cardiol. 2021, 44, 1475–1481. [Google Scholar] [CrossRef] [PubMed]
- Wibowo, A.; Pranata, R.; Astuti, A.; Tiksnadi, B.B.; Martanto, E.; Martha, J.W.; Purnomowati, A.; Akbar, M.R. Left and right ventricular longitudinal strains are associated with poor outcome in COVID-19: A systematic review and meta-analysis. J. Intensive Care 2021, 9, 9. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Zhu, S.; Xie, Y.; Wang, B.; He, L.; Zhang, D.; Zhang, Y.; Yuan, H.; Wu, C.; et al. Prognostic Value of Right Ventricular Longitudinal Strain in Patients With COVID-19. JACC Cardiovasc. Imaging 2020, 13, 2287–2299. [Google Scholar] [CrossRef] [PubMed]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef] [PubMed]
- Sanghvi, S.K.; Schwarzman, L.S.; Nazir, N.T. Cardiac MRI and Myocardial Injury in COVID-19: Diagnosis, Risk Stratification and Prognosis. Diagnostics 2021, 11, 130. [Google Scholar] [CrossRef]
- Kotecha, T.; Knight, D.S.; Razvi, Y.; Kumar, K.; Vimalesvaran, K.; Thornton, G.; Patel, R.; Chacko, L.; Brown, J.T.; Coyle, C.; et al. Patterns of myocardial injury in recovered troponin-positive COVID-19 patients assessed by cardiovascular magnetic resonance. Eur. Heart J. 2021, 42, 1866–1878. [Google Scholar] [CrossRef]
- Ozer, S.; Candan, L.; Ozyildiz, A.G.; Turan, O.E. Evaluation of left ventricular global functions with speckle tracking echocardiography in patients recovered from COVID-19. Int. J. Cardiovasc. Imaging 2021, 37, 2227–2233. [Google Scholar] [CrossRef] [PubMed]
- Lassen, M.C.H.; Skaarup, K.G.; Lind, J.N.; Alhakak, A.S.; Sengelov, M.; Nielsen, A.B.; Simonsen, J.O.; Johansen, N.D.; Davidovski, F.S.; Christensen, J.; et al. Recovery of cardiac function following COVID-19—ECHOVID-19: A prospective longitudinal cohort study. Eur. J. Heart Fail. 2021. [Google Scholar] [CrossRef] [PubMed]
- Baruch, G.; Rothschild, E.; Sadon, S.; Szekely, Y.; Lichter, Y.; Kaplan, A.; Taieb, P.; Banai, A.; Hochstadt, A.; Merdler, I.; et al. Evolution of right and left ventricle routine and speckle-tracking echocardiography in patients recovering from coronavirus disease 2019: A longitudinal study. Eur. Heart J. Cardiovasc. Imaging 2021, jeab190. [Google Scholar] [CrossRef] [PubMed]
- Lambadiari, V.; Mitrakou, A.; Kountouri, A.; Thymis, J.; Katogiannis, K.; Korakas, E.; Varlamos, C.; Andreadou, I.; Tsoumani, M.; Triantafyllidi, H.; et al. Association of COVID-19 with impaired endothelial glycocalyx, vascular function and myocardial deformation 4 months after infection. Eur. J. Heart Fail. 2021. [Google Scholar] [CrossRef] [PubMed]
- Nuzzi, V.; Castrichini, M.; Collini, V.; Roman-Pognuz, E.; Di Bella, S.; Luzzati, R.; Berlot, G.; Confalonieri, M.; Merlo, M.; Stolfo, D.; et al. Impaired Right Ventricular Longitudinal Strain Without Pulmonary Hypertension in Patients Who Have Recovered from COVID-19. Circ. Cardiovasc. Imaging 2021, 14, e012166. [Google Scholar] [CrossRef]
- Awadalla, M.; Mahmood, S.S.; Groarke, J.D.; Hassan, M.Z.O.; Nohria, A.; Rokicki, A.; Murphy, S.P.; Mercaldo, N.D.; Zhang, L.; Zlotoff, D.A.; et al. Global Longitudinal Strain and Cardiac Events in Patients with Immune Checkpoint Inhibitor-Related Myocarditis. J. Am. Coll. Cardiol. 2020, 75, 467–478. [Google Scholar] [CrossRef]
- Di Bella, G.; Gaeta, M.; Pingitore, A.; Oreto, G.; Zito, C.; Minutoli, F.; Anfuso, C.; Dattilo, G.; Lamari, A.; Coglitore, S.; et al. Myocardial deformation in acute myocarditis with normal left ventricular wall motion—A cardiac magnetic resonance and 2-dimensional strain echocardiographic study. Circ. J. 2010, 74, 1205–1213. [Google Scholar] [CrossRef] [Green Version]
- Raman, B.; Cassar, M.P.; Tunnicliffe, E.M.; Filippini, N.; Griffanti, L.; Alfaro-Almagro, F.; Okell, T.; Sheerin, F.; Xie, C.; Mahmod, M.; et al. Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge. EClinicalMedicine 2021, 31, 100683. [Google Scholar] [CrossRef]
- Baratto, C.; Caravita, S.; Faini, A.; Perego, G.B.; Senni, M.; Badano, L.P.; Parati, G. Impact of COVID-19 on exercise pathophysiology: A combined cardiopulmonary and echocardiographic exercise study. J. Appl. Physiol. 2021, 130, 1470–1478. [Google Scholar] [CrossRef]
- Rinaldo, R.F.; Mondoni, M.; Parazzini, E.M.; Pitari, F.; Brambilla, E.; Luraschi, S.; Balbi, M.; Sferrazza Papa, G.F.; Sotgiu, G.; Guazzi, M.; et al. Deconditioning as main mechanism of impaired exercise response in COVID-19 survivors. Eur. Respir. J. 2021, 2100870. [Google Scholar] [CrossRef] [PubMed]
- Nambiar, L.; Li, A.; Howard, A.; LeWinter, M.; Meyer, M. Left ventricular end-diastolic volume predicts exercise capacity in patients with a normal ejection fraction. Clin. Cardiol. 2018, 41, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Tsougos, E.; Angelidis, G.; Gialafos, E.; Tzavara, C.; Tzifos, V.; Tsougos, I.; Georgoulias, P. Myocardial strain may predict exercise tolerance in patients with reduced and mid-range ejection fraction. Hell. J. Cardiol. HJC 2018, 59, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Fava, A.M.; Alashi, A.; Saijo, Y.; Mathias, I.S.; Popovic, Z.; Thamilarasan, M.; Lever, H.; Desai, M.Y. Exercise capacity is associated with rest and peak-exercise left ventricular global longitudinal strain in patients with hypertrophic cardiomyopathy. Eur. Heart J. 2020, 41 (Suppl. 2), ehaa946-0081. [Google Scholar] [CrossRef]
COVID-19 Recovered n = 184 | Control n = 106 | p | |
---|---|---|---|
Age | 48 ± 12 | 49 ± 13 | 0.39 |
Gender (male) | 87 (47%) | 52 (49%) | 0.83 |
Hypertension | 17 (9) | 16 (15) | 0.2 |
Diabetes mellitus | 10 (5) | 3 (3) | 0.581 |
Hyperlipidemia | 21 (11) | 12 (11) | 0.877 |
Smoking | 8 (4) | 2 (2) | 0.44 |
ACEI/ARB | 10 (6) | 6 (6) | 0.852 |
Beta blockers | 5 (3) | 4 (4) | 0.88 |
Statins | 15 (8) | 9 (8) | 0.9 |
Symptoms | |||
Chest pain | 55 (30) | 36 (34) | 0.556 |
Dyspnea | 71 (39) | 41 (38) | 0.880 |
Palpitation | 28 (15) | 21 (20) | 0.4 |
Weakness | 20 (11) | 6 (6) | 0.2 |
No symptoms | 10 (5) | 2 (2) | 0.25 |
Disease severity | |||
Asymptomatic | 3 (2) | ||
Not severe disease | 157 (86) | ||
Severe disease | 22 (12) | ||
Time from disease Days (25–75%) | 57 (27–100) | ||
Laboratory results in 22 patients that were hospitalized | |||
Abnormal troponin | 1 patient (4%) | ||
CRP mg/L | 11.8 ± 1.3 | ||
Hemoglobin (g/dL) | 13.3 ± 1.9 | ||
White blood cells (K/uL) | 7.9 ± 0.8 | ||
Platelets (K/uL) | 175 ± 31 | ||
Creatinine (mg/dL) | 0.88 ± 0.15 | ||
LDH U/L | 378 ± 39 |
COVID-19 Recovered Group n = 184 | Control Group n = 106 | p | |
---|---|---|---|
Heart rate (bpm) | 72.86 ± 12.26 | 70.63 ± 9.83 | 0.134 |
LVDD (cm) | 4.73 ± 2.38 | 4.51 ± 36 | 0.235 |
LVSD (cm) | 2.74 ± 45 | 2.73 ± 37 | 0.854 |
Septum thickness (cm) | 1.01 ± 15 | 1.09 ± 88 | 0.195 |
Posterior wall thickness (cm) | 0.92 ± 14 | 0.91 ± 14 | 0.475 |
LVEDV (mL) | 103.85 ± 27.50 | 103.78 ± 26.78 | 0.99 |
LVESV (mL) | 45.53 ± 16.70 | 44.14 ± 18.43 | 0.73 |
LVEF (%) | 57.89 ± 2.73 | 58.02 ± 2.10 | 0.65 |
LVOT VTI (cm) | 20.80 ± 3.52 | 20.57 ± 3.17 | 0.58 |
Stroke volume (mL) | 71.05 ± 15.49 | 70.28 ± 16.35 | 0.71 |
Left atrial area (cm2) | 16.54 ± 3.59 | 16.25 ± 2.96 | 0.49 |
Mitral inflow E (cm/s) | 74.30 ± 17.54 | 74.64 ± 14.97 | 0.869 |
Deceleration time (s) | 206.73 ± 69.35 | 202.13 ± 62.46 | 0.578 |
Mitral inflow A (cm/s) | 66.61 ± 22.45 | 64.76 ± 17.57 | 0.625 |
E’ lateral (cm/s) | 12.18 ± 4.11 | 11.89 ± 3.04 | 0.62 |
A’ lateral (cm/s) | 9.76 ± 2.96 | 9.54 ± 2.71 | 0.62 |
S’ lateral (cm/s) | 8.29 ± 1.65 | 7.88 ± 0.96 | 0.09 |
E’ septal (cm/s) | 9.15 ± 2.82 | 9.04 ± 2.22 | 0.79 |
A’ septal (cm/s) | 9.16 ± 2.07 | 8.96 ± 1.97 | 0.55 |
S’ septal (cm/s) | 7.53 ± 1.30 | 7.39 ± 1.00 | 0.51 |
Right ventricular diameter (mm) | 31.53 ± 4.97 | 32.65 ± 5.10 | 0.128 |
TAPSE (mm) | 19.57 ± 2.41 | 20.00 ± 1.88 | 0.48 |
TR velocity (m/s) | 2.42 ± 1.62 | 2.29 ± 0.28 | 0.48 |
S’ RV (cm/s) | 11.71 ± 1.39 | 12.40 ± 0.84 | 0.16 |
MR/No | 56 | 36 | 0.624 |
Mild | 126 | 70 | |
Mild to moderate | 2 | 0 | |
AR/No | 167 | 95 | 0.43 |
Mild | 17 | 11 | |
TR/No | 59 | 25 | 0.71 |
Mild | 124 | 81 | |
Mild to moderate | 1 | 0 | |
Pericardial/No effusion | 176 | 103 | 0.52 |
Minimal | 8 | 2 | |
Mild | 0 | 1 | |
FWRV strain (%) | −25.43 ± 4.93 | −27.24 ± 4.7 | 0.021 |
FWRV < −23% | 140 (85%) | 94 (89%) | 0.015 |
RV strain (%) | −22.09 ± 4.20 | −23.69 ± 3.44 | 0.001 |
RV strain < −20.3 | 135 (82%) | 92 (87%) | 0.015 |
GLS (%) | −19.39 ± 3.36 | −20.41 ± 2.32 | 0.001 |
GLS < −18% | 130 (79%) | 92 (87%) | 0.006 |
GLS < −20% | 61 (37%) | 53 (50%) | 0.017 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimoni, O.; Korenfeld, R.; Goland, S.; Meledin, V.; Haberman, D.; George, J.; Shimoni, S. Subclinical Myocardial Dysfunction in Patients Recovered from COVID-19 Disease: Correlation with Exercise Capacity. Biology 2021, 10, 1201. https://doi.org/10.3390/biology10111201
Shimoni O, Korenfeld R, Goland S, Meledin V, Haberman D, George J, Shimoni S. Subclinical Myocardial Dysfunction in Patients Recovered from COVID-19 Disease: Correlation with Exercise Capacity. Biology. 2021; 10(11):1201. https://doi.org/10.3390/biology10111201
Chicago/Turabian StyleShimoni, Or, Roman Korenfeld, Sorel Goland, Valery Meledin, Dan Haberman, Jacob George, and Sara Shimoni. 2021. "Subclinical Myocardial Dysfunction in Patients Recovered from COVID-19 Disease: Correlation with Exercise Capacity" Biology 10, no. 11: 1201. https://doi.org/10.3390/biology10111201
APA StyleShimoni, O., Korenfeld, R., Goland, S., Meledin, V., Haberman, D., George, J., & Shimoni, S. (2021). Subclinical Myocardial Dysfunction in Patients Recovered from COVID-19 Disease: Correlation with Exercise Capacity. Biology, 10(11), 1201. https://doi.org/10.3390/biology10111201