Salivary Testosterone and Cortisol as Biomarkers for the Diagnosis of Sarcopenia and Sarcopenic Obesity in Community-Dwelling Older Adults
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Examination Protocol and Measurements
2.3. Degree of Dependence
2.4. Diagnosis of Sarcopenic Pathology
2.4.1. Grip Force (Upper Body Strength)
2.4.2. Lower Body Strength
2.4.3. Appendicular Skeletal Muscle Mass (ASMM)
2.4.4. Physical Performance
2.5. Diagnosis of Obesity
2.5.1. BMI
2.5.2. Waist Circumference (WC)
2.5.3. Total Body Fat Percentage (TBF%)
2.5.4. Triceps Skinfold (TS)
2.6. Diagnosis of Sarcopenic Obesity
2.7. Analysis of Biomarkers in Saliva: Cortisol and Testosterone
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shin, M.J.; Jeon, Y.K.; Kim, I.J. Testosterone and Sarcopenia. World J. Men’s Health 2018, 36, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Ruts, E.; Kim, J.; Janumala, I.; Heymsfield, S.; Gallagher, D. Sarcopenia and increased adipose tissue infiltration of muscle in elderly African American women. Am. J. Clin. Nutr. 2004, 79, 874–880. [Google Scholar] [CrossRef] [PubMed]
- Harris, T. Muscle mass and strength: Relation to function in population studies. J. Nutr. 1997, 127, 1004S–1006S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberg, I.H. Sarcopenia: Origins and clinical relevance. J. Nutr. 1997, 127, 990S–991S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcell, T.J. Sarcopenia: Causes, consequences, and preventions. J. Gerontol. A Biol. Sci. Med. Sci. 2003, 58, 911. [Google Scholar] [CrossRef]
- Baczek, J.; Silkiewicz, M.; Wojszel, Z.B. Myostatin as a biomarker of muscle wasting and other pathologies-state of the art and knowledge gaps. Nutrients 2020, 12, 2401. [Google Scholar] [CrossRef]
- LaPier, T.K. Glucocorticoid-induced muscle atrophy. The role of exercise in treatment and prevention. J. Cardiopulm. Rehabil. 1997, 17, 76–84. [Google Scholar] [CrossRef]
- Seene, T.; Alev, K. Effect of glucocorticoids on the turnover rate of actin and myosin heavy and light chains on different types of skeletal muscle fibres. J. Steroid Biochem. 1985, 22, 767–771. [Google Scholar] [CrossRef]
- Djaldetti, M.; Gafter, U.; Fishman, P. Ultrastructural observations in myopathy complicating Cushing’s disease. Am. J. Med. Sci. 1977, 273, 273–277. [Google Scholar] [CrossRef]
- Melby, J.C. Clinical pharmacology of systemic corticosteroids. Annu. Rev. Pharmacol. Toxicol. 1977, 17, 511–527. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Jackson, G.; Jones, T.H.; Matsumoto, A.M.; Nehra, A.; Perelman, M.A.; Swerdloff, R.S.; Traish, A.; Zitzmann, M.; Cunningham, G. Low testosterone associated with obesity and the metabolic syndrome contributes to sexual dysfunction and cardiovascular disease risk in men with type 2 diabetes. Diabetes Care 2011, 34, 1669–1675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, A.; Feldman, H.A.; McKinlay, J.B.; Longcope, C. Age, disease, and changing sex hormone levels in middle-aged men: Results of the Massachusetts Male Aging Study. J. Clin. Endocrinol. Metab. 1991, 73, 1016–1025. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, R.N.; Waters, D.L.; Gallagher, D.; Morley, J.E.; Garry, P.J. Predictors of skeletal muscle mass in elderly men and women. Mech. Ageing Dev. 1999, 107, 123–136. [Google Scholar] [CrossRef]
- Häkkinen, K.; Pakarinen, A. Muscle strength and serum testosterone, cortisol and SHBG concentrations in middle-aged and elderly men and women. Acta Physiol. Scand. 1993, 148, 199–207. [Google Scholar] [CrossRef]
- Van Cauter, E.; Leproult, R.; Kupfer, D.J. Effects of gender and age on the levels and circadian rhythmicity of plasma cortisol. J. Clin. Endocrinol. Metab. 1996, 81, 2468–2473. [Google Scholar]
- Bernaola-Sagardui, I. Validation of the Barthel Index in the Spanish population. Enferm. Clin. 2018, 28, 210–211. [Google Scholar] [CrossRef]
- Anonymous. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [Green Version]
- Villafañe, J.H.; Pirali, C.; Dughi, S.; Testa, A.; Manno, S.; Bishop, M.D.; Negrini, S. Association between malnutrition and Barthel Index in a cohort of hospitalized older adults article information. J. Phys. Ther. Sci. 2016, 28, 607–612. [Google Scholar] [CrossRef] [Green Version]
- Mii, S.; Guntani, A.; Kawakubo, E.; Shimazoe, H. Barthel Index and Outcome of Open Bypass for Critical Limb Ischemia. Circ. J. 2017, 82, 251–257. [Google Scholar] [CrossRef] [Green Version]
- Mayoral, A.P.; Ibarz, E.; Gracia, L.; Mateo, J.; Herrera, A. The use of Barthel index for the assessment of the functional recovery after osteoporotic hip fracture: One year follow-up. PLoS ONE 2019, 14, e0212000. [Google Scholar] [CrossRef]
- Newman, A.B.; Kupelian, V.; Visser, M.; Simonsick, E.M.; Goodpaster, B.H.; Kritchevsky, S.B.; Tylavsky, F.A.; Rubin, S.M.; Harris, T.B. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Abellan van Kan, G. Epidemiology and consequences of sarcopenia. J. Nutr. Health Aging 2009, 13, 708–712. [Google Scholar] [CrossRef] [PubMed]
- Cesari, M.; Pahor, M.; Lauretani, F.; Zamboni, V.; Bandinelli, S.; Bernabei, R.; Guralnik, J.M.; Ferrucci, L. Skeletal muscle and mortality results from the inchianti study. J. Gerontol. Ser. A 2009, 64A, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Malmstrom, T.K.; Morley, J.E. SARC-F: A Simple Questionnaire to Rapidly Diagnose Sarcopenia. J. Am. Med. Dir. Assoc. 2013, 14, 531–532. [Google Scholar] [CrossRef] [PubMed]
- Hamasaki, H.; Kawashima, Y.; Katsuyama, H.; Sako, A.; Goto, A.; Yanai, H. Association of handgrip strength with hospitalization, cardiovascular events, and mortality in Japanese patients with type 2 diabetes. Sci. Rep. 2017, 7, 7041. [Google Scholar] [CrossRef] [Green Version]
- Trosclair, D.; Bellar, D.; Judge, L.W.; Smith, J.; Mazerat, N.; Brignac, A. Hand-Grip Strength as a Predictor of Muscular Strength and Endurance. J. Strength Cond. Res. 2011, 25, S99. [Google Scholar] [CrossRef]
- Gopinath, B.; Kifley, A.; Liew, G.; Mitchell, P. Handgrip strength and its association with functional independence, depressive symptoms and quality of life in older adults. Maturitas 2017, 106, 92–94. [Google Scholar] [CrossRef] [Green Version]
- Kwak, Y.; Kim, Y.; Chung, H. Sex-Associated differences in the handgrip strength of elderly individuals. West. J. Nurs. Res. 2019, 42, 262–268. [Google Scholar] [CrossRef]
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A review of the measurement of grip strength in clinical and epidemiological studies: Towards a standardised approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef] [Green Version]
- Kyle, U.G.; Genton, L.; Hans, D.; Pichard, C. Validation of a bioelectrical impedance analysis equation to predict appendicular skeletal muscle mass (ASMM). Clin. Nutr. 2003, 22, 537–543. [Google Scholar] [CrossRef]
- Oliveira, T.M.d.; Roriz, A.K.C.; Barreto-Medeiros, J.M.; Ferreira, A.J.F.; Ramos, L. Sarcopenic obesity in community-dwelling older women, determined by different diagnostic methods. Nutr. Hosp. 2019, 36, 1267–1272. [Google Scholar] [PubMed]
- Alvero-Cruz, J.R.; Correas Gómez, L.; Ronconi, M.; Fernández Vázquez, R.; Porta i Manzañido, J. La bioimpedancia eléctrica como método de estimación de la composición corporal, normas prácticas de utilización. Rev. Andal. Med. Deporte 2011, 4, 167–174. [Google Scholar]
- Studenski, S.; Perera, S.; Patel, K.; Rosano, C.; Faulkner, K.; Inzitari, M.; Brach, J.; Chandler, J.; Cawthon, P.; Connor, E.B.; et al. Gait speed and survival in older adults. JAMA 2011, 305, 50–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [Green Version]
- Lauretani, F.; Ticinesi, A.; Gionti, L.; Prati, B.; Nouvenne, A.; Tana, C.; Meschi, T.; Maggio, M. Short-Physical Performance Battery (SPPB) score is associated with falls in older outpatients. Aging Clin. Exp. Res. 2019, 31, 1435–1442. [Google Scholar] [CrossRef]
- Pavasini, R.; Guralnik, J.; Brown, J.C.; di Bari, M.; Cesari, M.; Landi, F.; Vaes, B.; Legrand, D.; Verghese, J.; Wang, C.; et al. Short Physical Performance Battery and all-cause mortality: Systematic review and meta-analysis. BMC Med. 2016, 14, 215. [Google Scholar] [CrossRef] [Green Version]
- Baumgartner, R.N.; Wayne, S.J.; Waters, D.L.; Janssen, I.; Gallagher, D.; Morley, J.E. Sarcopenic obesity predicts instrumental activities of daily living disability in the elderly. Obes. Res. 2004, 12, 1995–2004. [Google Scholar] [CrossRef]
- Kim, T.N.; Yang, S.J.; Yoo, H.J.; Lim, K.I.; Kang, H.J.; Song, W.; Seo, J.A.; Kim, S.G.; Kim, N.H.; Baik, S.H.; et al. Prevalence of sarcopenia and sarcopenic obesity in Korean adults: The Korean sarcopenic obesity study. Int. J. Obes. 2009, 33, 885–892. [Google Scholar] [CrossRef] [Green Version]
- Kemmler, W.; Teschler, M.; Weißenfels, A.; Sieber, C.; Freiberger, E.; von Stengel, S. Prevalence of sarcopenia and sarcopenic obesity in older German men using recognized definitions: High accordance but low overlap! Osteoporos. Int. 2017, 28, 1881–1891. [Google Scholar] [CrossRef]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation; World Health Organization: Geneva, Switzerland, 2000; pp. 1–253. [Google Scholar]
- Martínez-Sanz, J.M.; Urdampilleta, A. Protocolo de medición antropométrica en el deportista y ecuaciones de estimaciones de la masa corporal. EFDeportes 2012, 17, 174. [Google Scholar]
- Cabañas Armesilla, M.D.; Alvero Cruz, J.R.; Herrero de Lucas, A. Protocolo de valoración de la composición corporal para el reconocimiento médico-deportivo. Documento de Consenso del Grupo Español de Cineantropometría de la Federación Española de Medicina del Deporte. Arch. Med. Deporte 2009, 139, 166–179. [Google Scholar]
- Baumgartner, R.N. Body composition in healthy aging. Ann. N. Y. Acad. Sci. 2000, 904, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Kuczmarski, M.F.; Kuczmarski, R.J.; Najjar, M. Descriptive anthropometric reference data for older Americans. J. Am. Diet. Assoc. 2000, 100, 59–66. [Google Scholar] [CrossRef]
- Young, E.A.; Abelson, J.; Lightman, S.L. Cortisol pulsatility and its role in stress regulation and health. Front. Neuroendocrinol. 2004, 25, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Teo, W.; McGuigan, M.R.; Newton, M.J. The effects of circadian rhythmicity of salivary cortisol and testosterone on maximal isometric force, maximal dynamic force, and power output. J. Strength Cond. Res. 2011, 25, 1538–1545. [Google Scholar] [CrossRef]
- Teo, W.; Newton, M.J.; McGuigan, M.R. Circadian rhythms in exercise performance: Implications for hormonal and muscular adaptation. J. Sports Sci. Med. 2011, 10, 600–606. [Google Scholar]
- Raff, H.; Raff, J.L.; Findling, J.W. Late-night salivary cortisol as a screening test for Cushing’s syndrome. J. Clin. Endocrinol. Metab. 1998, 83, 2681–2686. [Google Scholar] [CrossRef]
- Westermann, J.; Demir, A.; Herbst, V. Determination of cortisol in saliva and serum by a luminescene-enhanced enzyme immunoassay. Clin. Lab. 2004, 50, 11–24. [Google Scholar]
- Davison, S.L.; Bell, R.; Donath, S.; Montalto, J.G.; Davis, S.R. Androgen levels in adult females: Changes with age, menopause, and oophorectomy. J. Clin. Endocrinol. Metab. 2005, 90, 3847–3853. [Google Scholar] [CrossRef]
- Laughlin, G.A.; Goodell, V.; Barrett-Connor, E. Extremes of endogenous testosterone are associated with increased risk of incident coronary events in older women. J. Clin. Endocrinol. Metab. 2010, 95, 740–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, S.R.; Bell, R.J.; Robinson, P.J.; Handelsman, D.J.; Gilbert, T.; Phung, J.; Desai, R.; Lockery, J.E.; Woods, R.L.; Wolfe, R.S.; et al. Testosterone and estrone increase from the age of 70 Years: Findings from the sex hormones in Older Women Study. J. Clin. Endocrinol. Metab. 2019, 104, 6291–6300. [Google Scholar] [CrossRef] [PubMed]
- Saad, F. The relationship between testosterone deficiency and frailty in elderly men. Horm. Mol. Biol. Clin. Investig. 2010, 4, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Saad, F.; Röhrig, G.; von Haehling, S.; Traish, A. Testosterone deficiency and testosterone treatment in older men. Gerontology 2017, 63, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Heaney, J.L.J.; Phillips, A.C.; Carroll, D. Aging, health behaviors, and the diurnal rhythm and awakening response of salivary cortisol. Exp. Aging Res. 2012, 38, 295–314. [Google Scholar] [CrossRef] [Green Version]
- Piazza, J.R.; Dmitrieva, N.O.; Charles, S.T.; Almeida, D.M.; Orona, G.A. Diurnal cortisol profiles, inflammation, and functional limitations in aging: Findings from the MIDUS study. Health Psychol. 2018, 37, 839–849. [Google Scholar] [CrossRef]
- Yanagita, I.; Fujihara, Y.; Kitajima, Y.; Tajima, M.; Honda, M.; Kawajiri, T.; Eda, T.; Yonemura, K.; Yamaguchi, N.; Asakawa, H.; et al. A High Serum Cortisol/DHEA-S Ratio Is a Risk Factor for Sarcopenia in Elderly Diabetic Patients. J. Endocr. Soc. 2019, 3, 801–813. [Google Scholar] [CrossRef]
- Storer, T.W.; Basaria, S.; Traustadottir, T.; Harman, S.M.; Pencina, K.; Li, Z.; Travison, T.G.; Miciek, R.; Tsitouras, P.; Hally, K.; et al. Effects of Testosterone Supplementation for 3 Years on Muscle Performance and Physical Function in Older Men. J. Clin. Endocrinol. Metab. 2017, 102, 583–593. [Google Scholar] [CrossRef] [Green Version]
- Hsu, B.; Cumming, R.G.; Handelsman, D.J. Testosterone, frailty and physical function in older men. Expert Rev. Endocrinol. Metab. 2018, 13, 159–165. [Google Scholar] [CrossRef]
- Blaya, R.; Blaya, P.; Rhoden, L.; Rhoden, E.L. Low Testosterone Levels and Metabolic Syndrome in Aging Male. Curr. Pharm. Des. 2017, 23, 4470–4474. [Google Scholar] [CrossRef]
- Furtado, G.E.; Carvalho, H.M.; Loureiro, M.; Patrício, M.; Uba-Chupel, M.; Colado, J.C.; Hogervorst, E.; Ferreira, J.P.; Teixeira, A.M. Chair-based exercise programs in institutionalized older women: Salivary steroid hormones, disabilities and frailty changes. Exp. Gerontol. 2020, 130, 110790. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Xu, Y. Association of sarcopenic obesity with the risk of all-cause mortality: A meta-analysis of prospective cohort studies. Geriatr. Gerontol. Int. 2016, 16, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Page, S.T.; Amory, J.K.; Bowman, F.D.; Anawalt, B.D.; Matsumoto, A.M.; Bremner, W.J.; Tenover, J.L. Exogenous testosterone (T) alone or with finasteride increases physical performance, grip strength, and lean body mass in older men with low serum T. J. Clin. Endocrinol. Metab. 2005, 90, 1502–1510. [Google Scholar] [CrossRef] [Green Version]
- Cappola, A.R.; Ratcliffe, S.J.; Bhasin, S.; Blackman, M.R.; Cauley, J.; Robbins, J.; Zmuda, J.M.; Harris, T.; Fried, L.P. Determinants of serum total and free testosterone levels in women over the age of 65 years. J. Clin. Endocrinol. Metab. 2007, 92, 509–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, D.; Tsai, P.; Lin, Y. Midnight salivary cortisol for the diagnosis of Cushing’s syndrome in a Chinese population. Singapore Med. J. 2019, 60, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Martocchia, A.; Gallucci, M.; Noale, M.; Maggi, S.; Cassol, M.; Stefanelli, M.; Postacchini, D.; Proietti, A.; Barbagallo, M.; Dominguez, L.J.; et al. The cortisol burden in elderly subjects with metabolic syndrome and its association with low-grade inflammation. Aging Clin. Exp. Res. 2020, 32, 1309–1315. [Google Scholar] [CrossRef]
- Marquez, D.X.; Hoyem, R.; Fogg, L.; Bustamante, E.E.; Staffileno, B.; Wilbur, J. Physical activity of urban community-dwelling older Latino adults. J. Phys. Act. Health 2011, 8 (Suppl.2), 161. [Google Scholar] [CrossRef]
- Clements, A.D. Salivary cortisol measurement in developmental research: Where do we go from here? Dev. Psychobiol. 2013, 55, 205–220. [Google Scholar] [CrossRef]
- Karthikeyan, P.; Aswath, N. Stress as an etiologic co-factor in recurrent aphthous ulcers and oral lichen planus. J. Oral Sci. 2016, 58, 237–240. [Google Scholar] [CrossRef] [Green Version]
- Nadendla, L.K.; Meduri, V.; Paramkusam, G.; Pachava, K.R. Association of salivary cortisol and anxiety levels in lichen planus patients. J. Clin. Diagn. Res. 2014, 8, ZC01–ZC03. [Google Scholar] [CrossRef]
- Lopez-Jornet, P.; Cayuela, C.A.; Tvarijonaviciute, A.; Parra-Perez, F.; Escribano, D.; Ceron, J. Oral lichen planus: Salival biomarkers cortisol, immunoglobulin A., adiponectin. J. Oral Pathol. Med. 2016, 45, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Girardi, C.; Luz, C.; Cherubini, K.; de Maria Antonia Zancanaro, F.; Nunes, M.L.T.; Salum, F.G. Salivary cortisol and dehydroepiandrosterone (DHEA) levels, psychological factors in patients with oral lichen planus. Arch. Oral Biol. 2011, 56, 864–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moulias, R.; Meaume, S.; Raynaud-Simon, A. Sarcopenia, hypermetabolism, and aging. Z. Gerontol. Geriatr. 1999, 32, 425–432. [Google Scholar] [CrossRef] [PubMed]
65–75 Years | 75–85 Years | Total | ||
---|---|---|---|---|
Men (n) | 25 | 10 | 35 | |
Without sarcopenia 1 | 20 (80%) | 7 (70%) | 27 (77.1%) | |
Total sarcopenia 2 | 5 (20%) | 3 (30%) | 8 (22.9%) | |
Sarcopenia probable 3 | 4 (16%) | 2 (20%) | 6 (17.1%) | |
Sarcopenia confirmed 4 | 0 (0%) | 0 (0%) | 0 (0%) | |
Sarcopenia severe 5 | 1 (4%) | 1 (10%) | 2 (5.7%) | |
Women (n) | 95 | 60 | 155 | |
Without sarcopenia 1 | 78 (82.1%) | 38 (63.3%) | 116 (74.8%) | |
Total sarcopenia 2 | 17 (17.9%) | 22 (36.7%) | 39 (25.2%) | |
Sarcopenia probable 3 | 11 (11.6%) | 12 (20%) | 23 (14.8%) | |
Sarcopenia confirmed 4 | 4 (4.2%) | 5 (8.3%) | 9 (5.8%) | |
Sarcopenia severe 5 | 2 (2.1%) | 5 (8.3%) | 7 (4.5%) | |
Total (n) | 120 | 70 | 190 | |
Without sarcopenia 1 | 98 (81.7%) | 45 (64.3%) | 143 (75.3%) | |
Total sarcopenia 2 | 22 (18.3%) | 25 (35.7%) | 47 (24.7%) | |
Sarcopenia probable 3 | 15 (12.5%) | 14 (20.0%) | 29 (15.3%) | |
Sarcopenia confirmed 4 | 4 (3.3%) | 5 (7.1%) | 9 (4.7%) | |
Sarcopenia severe 5 | 3 (2.5%) | 6 (8.6%) | 9 (4.7%) |
GS 2 (kg) | STS 3 (s) | ASMM Total 4 (kg) | Gait Speed 5 | SPPB 6 (Score) | ||
---|---|---|---|---|---|---|
Men | ||||||
65–75 years | ||||||
Without Sarcopenia | 36.5 ± 7.5 | 10.2 ± 2.4 | 23.2 ± 3.1 | 1.1 ± 0.2 | 10.3 ± 1.5 | |
Sarcopenia Probable | 32.8 ± 5.0 | 16.2 ± 4.6 | 25.0 ± 1.3 | 0.9 ± 0.2 | 9.0 ± 2.0 | |
Sarcopenia Confirmed | - | - | - | - | - | |
Sarcopenia severe | 25.0 ± 0.0 | 21.0 ± 0.0 | 16.9 ± 0.0 | 0.8 ± 0.0 | 5.0 ± 0.0 | |
Total Sarcopenia | 28.9 ± 5.5 | 18.6 ± 3.4 | 20.9 ± 5.7 | 0.8 ± 0.1 | 7.0 ± 2.8 | |
75–85 years | ||||||
Without Sarcopenia | 32.7 ± 4.5 | 12.6 ± 2.7 | 23.0 ± 2.5 | 0.9 ± 0.1 | 9.3 ± 2.2 | |
Sarcopenia Probable | 28.7 ± 6.1 | 18.9 ± 1.4 | 24.5 ± 2.4 | 0.9 ± 0.3 | 5.3 ± 1.2 | |
Sarcopenia Confirmed | - | - | - | - | - | |
Sarcopenia severe | 28.0 ± 1.4 | 16.5 ± 0.0 | 19.6 ± 0.3 | 0.8 ± 0.1 | 6.5 ± 0.7 | |
Total Sarcopenia | 28.3 ± 0.5 | 17.7 ± 1.7 | 22.0 ± 3.5 | 0.8 ± 0.1 | 5.9 ± 0.8 | |
Women | ||||||
65–75 years | ||||||
Without Sarcopenia | 22.0 ± 3.8 | 10.3 ± 2.1 | 16.8 ± 2.4 | 1.1 ± 0.2 | 10.4 ± 1.4 | |
Sarcopenia Probable | 16.5 ± 5.8 | 14.1 ± 4.3 | 17.9 ± 2.0 | 1.0 ± 0.3 | 8.7 ± 1.7 | |
Sarcopenia Confirmed | 12.7 ± 3.2 | 11.6 ± 1.1 | 14.2 ± 2.2 | 1.0 ± 0.1 | 9.7 ± 2.1 | |
Sarcopenia severe | 15.0 ± 0.0 | 19.3 ± 0.0 | 14.4 ± 0.0 | 0.7 ± 0.0 | 5.0 ± 0.0 | |
Total Sarcopenia | 14.7 ± 1.9 | 15.0 ± 3.9 | 15.5 ± 2.1 | 0.9 ± 0.2 | 7.5 ± 2.1 | |
75–85 years | ||||||
Without Sarcopenia | 20.2 ± 3.6 | 11.0 ± 2.0 | 15.9 ± 2.2 | 1.0 ± 0.2 | 10 ± 1.4 | |
Sarcopenia Probable | 14.9 ± 3.0 | 17.2 ± 4.8 | 17.7 ± 2.4 | 0.7 ± 0.2 | 7.4 ± 1.7 | |
Sarcopenia Confirmed | 14.8 ± 1.5 | 12.7 ± 1.7 | 13.0 ± 2.4 | 0.9 ± 0.1 | 10.3 ± 1.5 | |
Sarcopenia severe | 12.6 ± 1.3 | 15.3 ± 4.6 | 13.9 ± 1.7 | 0.8 ± 0.2 | 7.8 ± 1.1 | |
Total Sarcopenia | 14.1 ± 1.3 | 15.1 ± 2.3 | 14.9 ± 2.5 | 0.8 ± 0.1 | 8.5 ± 1.6 | |
Men | ||||||
WS 7 (all sample size) | 34.6 ± 6 | 11.4 ± 2.6 | 23.1 ± 2.8 | 1.0 ± 0.2 | 9.8 ± 1.9 | |
TS 8 (all sample size) | 28.6 ±0.4 | 18.2 ± 0.6 | 21.5 ± 0.8 | 0.9 ± 0.0 | 6.5 ± 0.8 | |
Women | ||||||
WS 7 (all sample size) | 21.1 ± 3.4 | 10.7 ± 2.1 | 16.4 ± 2.3 | 1.1 ± 0.2 | 10.2 ± 1.4 | |
TS 8 (all sample size) | 14.4 ± 0.4 | 15.0 ± 0.0 | 15.2 ± 0.4 | 0.9 ± 0.1 | 8.0 ± 0.7 |
Women (n = 155) | Men (n = 35) | p-Value * | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
65–74 yr | ≥75 yr | p-Value * | Total | 65–74 yr | ≥75 yr | p-Value * | Total | |||
(n = 95) | (n = 60) | (n = 25) | (n = 10) | |||||||
Cortisol | Mean ± SD (ppb) | 1.96 ± 0.77 | 1.93 ± 0.69 | 0.081 | 1.95 ± 0.72 | 1.98 ± 0.81 | 1.93 ± 0.68 | 0.084 | 1.97 ± 0.76 | 0.092 |
Median (ppb) | 1.72 | 1.62 | 1.68 | 1.77 | 1.82 | 1.80 | ||||
P25 (ppb) ** | 1.45 | 1.34 | 1.41 | 1.52 | 1.55 | 1.52 | ||||
P75 (ppb) ** | 2.10 | 2.22 | 2.16 | 2.21 | 2.66 | 2.29 | ||||
Testosterone | Mean ± SD (ppb) | 0.59 ± 0.22 | 0.66 ± 0.31 | 0.068 | 0.63 ± 0.26 | 0.54 ± 0.19 | 0.44 ± 0.12 | 0.038 | 0.52 ± 0.17 | 0.003 |
Median (ppb) | 0.56 | 0.53 | 0.56 | 0.45 | 0.41 | 0.45 | ||||
P25 (ppb) ** | 0.40 | 0.36 | 0.38 | 0.37 | 0.25 | 0.34 | ||||
P75 (ppb) ** | 0.64 | 0.83 | 0.71 | 0.59 | 0.55 | 0.56 |
Women (n = 155) | Men (n = 35) | ||||||
---|---|---|---|---|---|---|---|
Sarcopenic (n = 39) | Non-Sarcopenic (n = 116) | p-Value * | Sarcopenic (n = 8) | Non-Sarcopenic (n = 27) | p-Value * | ||
Cortisol | Mean ± SD (ppb) | 1.94 ± 0.64 | 1.95 ± 1.17 | 0.944 | 1.72 ± 0.56 | 2.04 ± 0.77 | 0.276 |
Median (ppb) | 1.77 | 1.63 | 1.54 | 1.80 | |||
P25 (ppb) ** | 1.49 | 1.37 | 1.47 | 1.56 | |||
P75 (ppb) ** | 2.24 | 2.16 | 1.83 | 2.54 | |||
Testosterone | Mean ± SD (ppb) | 0.64 ± 0.37 | 0.63 ± 0.35 | 0.826 | 0.44 ± 0.08 | 0.62 ± 0.32 | 0.043 |
Median (ppb) | 0.57 | 0.55 | 0.45 | 0.46 | |||
P25 (ppb) ** | 0.41 | 0.38 | 0.40 | 0.31 | |||
P75 (ppb) ** | 0.73 | 0.70 | 0.50 | 0.65 |
Women (n = 155) | Men (n = 35) | ||||||
---|---|---|---|---|---|---|---|
Sarcopenic Obesity (n = 25) | Non-Sarcopenic Obesity (n = 130) | p-Value * | Sarcopenic Obesity (n = 7) | Non-Sarcopenic Obesity (n = 28) | p-Value * | ||
Cortisol | Mean ± SD (ppb) | 2.03 ± 0.66 | 1.93 ± 1.12 | 0.685 | 1.77 ± 0.59 | 2.09 ± 0.81 | 0.293 |
Median (ppb) | 1.77 | 1.65 | 1.61 | 2.30 | |||
P25 (ppb)** | 1.56 | 1.39 | 1.46 | 1.58 | |||
P75 (ppb) ** | 2.24 | 2.16 | 1.72 | 2.54 | |||
Testosterone | Mean ± (ppb) | 0.64 ± 0.43 | 0.63 ± 0.34 | 0.894 | 0.53± | 0.72± | 0.048 |
Median (ppb) | 0.51 | 0.56 | 0.47 | 0.49 | |||
P25 (ppb) ** | 0.41 | 0.38 | 0.40 | 0.31 | |||
P75 (ppb) ** | 0.71 | 0.71 | 0.52 | 0.55 |
Cortisol (rs *) | p-Value ** | Testosterone (rs *) | p-Value ** | ||
---|---|---|---|---|---|
Women | Cortisol | 1.000 | - | 0.363 | 0.000 |
Grip strength | −0.104 | 0.196 | −0.175 | 0.029 | |
Sit to stand | 0.030 | 0.713 | 0.043 | 0.598 | |
ASMM | 0.040 | 0.620 | −0.039 | 0.629 | |
Gait speed | −0.061 | 0.450 | −0.149 | 0.064 | |
% Fat mass | −0.006 | 0.938 | −0.088 | 0.275 | |
Men | Cortisol | 1.000 | 0.354 | 0.037 | |
Grip strength | 0.114 | 0.513 | 0.182 | 0.298 | |
Sit to stand | −0.102 | 0.561 | −0.064 | 0.714 | |
ASMM | −0.146 | 0.404 | 0.047 | 0.791 | |
Gait speed | −0.016 | 0.928 | 0.204 | 0.240 | |
% Fat mass | 0.045 | 0.796 | −0.286 | 0.096 |
Sarcopenia OR (95% CI) * | Sarcopenic Obesity OR (95% CI) * | |||||
---|---|---|---|---|---|---|
Women | Men | Total | Women | Men | Total | |
Cortisol | 0.54 | 0.97 | 0.93 | 0.54 | 1.08 | 1.01 |
(0.13–2.34) | (0.67–1.41) | (0.64–1.34) | (0.13–2.31) | (0.73–1.60) | (0.68–1.51) | |
Testosterone | 0.31 | 1.15 | 1.03 | 0.31 | 1.01 | 0.87 |
(0.01–18.3) | (0.40–3.32) | (0.37–2.87) | (0.005–18.3) | (0.29–3.56) | (0.61–3.76) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diago-Galmés, A.; Guillamón-Escudero, C.; Tenías-Burillo, J.M.; Soriano, J.M.; Fernández-Garrido, J. Salivary Testosterone and Cortisol as Biomarkers for the Diagnosis of Sarcopenia and Sarcopenic Obesity in Community-Dwelling Older Adults. Biology 2021, 10, 93. https://doi.org/10.3390/biology10020093
Diago-Galmés A, Guillamón-Escudero C, Tenías-Burillo JM, Soriano JM, Fernández-Garrido J. Salivary Testosterone and Cortisol as Biomarkers for the Diagnosis of Sarcopenia and Sarcopenic Obesity in Community-Dwelling Older Adults. Biology. 2021; 10(2):93. https://doi.org/10.3390/biology10020093
Chicago/Turabian StyleDiago-Galmés, Angela, Carlos Guillamón-Escudero, Jose M. Tenías-Burillo, Jose M. Soriano, and Julio Fernández-Garrido. 2021. "Salivary Testosterone and Cortisol as Biomarkers for the Diagnosis of Sarcopenia and Sarcopenic Obesity in Community-Dwelling Older Adults" Biology 10, no. 2: 93. https://doi.org/10.3390/biology10020093
APA StyleDiago-Galmés, A., Guillamón-Escudero, C., Tenías-Burillo, J. M., Soriano, J. M., & Fernández-Garrido, J. (2021). Salivary Testosterone and Cortisol as Biomarkers for the Diagnosis of Sarcopenia and Sarcopenic Obesity in Community-Dwelling Older Adults. Biology, 10(2), 93. https://doi.org/10.3390/biology10020093