Markers of Genetic Variation in Blue Gourami (Trichogaster trichopterus) as a Model for Labyrinth Fish
Abstract
:Simple Summary
Abstract
1. Introduction
2. Sequencing Analysis of the 12S rRNA and Cytochrome b Gene Variations in Blue Gourami
3. Hypothalamus–Pituitary-Gonad (HPG) Axis Genes as Molecular Markers in Blue Gourami and Other Anabantoid Species
4. DNA Sequences of FSH and LH as Molecular for Genetic Similarity between Blue Gourami and Other Fish Species
5. Hypothalamic–Pituitary–Somatotropic (HPS) Axis Genes as Markers for Genetic Variation between Blue Gourami and Other Fish Species
6. GH and Prolactin (PRL) Family Hormones as Genetic Variation Markers for Blue Gourami and Other Anabantoid Fishes
7. Mitochondrial Cytochrome c Oxidase Subunit 1 (COI) Gene as a Variation Marker for Blue Gourami and Other Anabantoid Fishes
8. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maqsood, H.M.; Ahmad, S.M. Advances in molecular markers and their applications in aquaculture and fisheries. Genet. Aquat. Organ. 2017, 1, 27–41. [Google Scholar]
- Degani, G. Mitochondrial DNA sequence analysis in Anabantoidei fish. Adv. Biol. Chem. 2013, 3, 347–355. [Google Scholar] [CrossRef] [Green Version]
- Okumus, F.; Ciftci, Y. Fish population genetics and molecular markers II molecular markers and their applications in fisheries and aquaculture. Turk. J. Fishe. 2020, 51–79. [Google Scholar]
- Degani, G.; Alon, A.; Hajouj, A.; Meerson, A. Vitellogenesis in the blue gourami (Trichogaster trichopterus) is accompanied by changes in the brain transcriptome. Fishes 2019, 4, 54. [Google Scholar]
- Degani, G.; Veit, M. Electrophoretic variations of isozyme systems in the muscle and liver of Anabantidae fish. Isr. J. Aquacul. 1990, 42, 67–76. [Google Scholar]
- Chauhan, T.; Rajiv, K. Molecular markers and their applications in fisheries and aquaculture Advan. Biosc. Biotechn. 2010, 1, 281–291. [Google Scholar]
- Degani, G.; Jackson, K.; Yom-Din, S.; Goldberg, D. cDNA cloning and mRNA expression of growth hormone in Belontiidae (Anabantoidei suborder) fish. Isr. J. Aquacul. 2006, 58, 124–136. [Google Scholar]
- Degani, G.; Hurvitz, A.; Eliraz, Y.; Meerson, A. Sex-related gonadal gene expression differences in the Russian sturgeon (Acipenser gueldenstaedtii) grown in stable aquaculture conditions. Anim. Reprod. Sci. 2019, 199, 75–85. [Google Scholar] [CrossRef]
- Forselius, S. Studies of anabantid fishes. Parts I, II, III. Zoologiska Bidrag Fran Uppsala 1975, 32, 597. [Google Scholar]
- Vierke, J. Betta Gouramis and Other Anabantoid labyrinth Fishes of the World; T.F.H. Publication: Neptune, NJ, USA, 1988; pp. 1–102. [Google Scholar]
- Froese, R.; Pauly, D. Trichopodus trichopterus (Pallas, 1770). FishBase 2019. Trichogaster labiosus distribution U.S. Fish and Wildlife Service. Available online: http://www.fishbase.org/summary/Trichopodus-trichopterus (accessed on 29 February 2021).
- Degani, G. The effect of temperature, light, fish size and container size on breeding of Trichogaster Trichopterus Isr. J. Aquacul. 1989, 41, 67–73. [Google Scholar]
- Degani, G.; Ziv, Z. Male blue gourami (Trichogaster trichopterus) nest-building behavior is affected.by other males and females. Open J. Anim. Sci. 2016, 6, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Degani, G. The effect of sexual behavior on oocyte development and steroid changes in Trichogaster Trichopterus. Copeia 1993, 4, 1091–1096. [Google Scholar] [CrossRef]
- Ruber, L.; Britz, R.; Zarddya, R. Molecular phylogenetics and evolutionary diversification of labyrinth fishes (Perciformes: Anabantoidei). Syst. Biol. 2006, 55, 374–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Degani, G. Blue Gourami (Trichogaster trichopterus) Model for Labyrinth Fish; Laser Pages Publishing: Jerusalem, Israel, 2001; pp. 1–134. [Google Scholar]
- Pongthana, N. Aquaculture genetics research in Thailand. In Fish Genetics Research in Member Countries and Institutions of the International Network on Genetics in Aquaculture; Gupta, M.V., Acosta, B.O., Eds.; The World Fish Center, Penang: Bayan Lepas, Malaysia, 2001; pp. 77–89. [Google Scholar]
- Oakley, A.E.; Clifton, D.K.; Steiner, R.A. Kisspeptin signaling in the brain. Endoc. Rev. Esp. Herp. 2009, 30, 713–743. [Google Scholar] [CrossRef] [PubMed]
- Servili, A.; Le Page, Y.; Leprince, J.; Caraty, A.; Escobar, S.; Parhar, I.S.; Seong, J.Y.; Vaudry, H.; Olivier Kah, O. Organization of two Independent kisspeptin systems derived from evolutionary-ancient kiss genesin the brain of zebrafish. Endocrinology 2011, 152, 1527–1540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahjahan, M.; Motohashi, E.; Doi, H.; Hironori Ando, H. Elevation of Kiss2 and its receptor gene expression in the brain and pituitary of grass puffer during the spawning season. Gen. Comp. Endocrinol. 2010, 169, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Yaron, Z.; Levavi-Sivan, B. Endocrine regulation of fish reproduction In Encyclopedia of Fish Physiology: From Genome to Environment; Farrell, A.P., Ed.; Elsevier Inc.: San Diego, CA, USA, 2011; Volume 2, pp. 1500–1508. [Google Scholar]
- Degani, G.; Boker, R. Sensitivity to maturation inducing steroids and gonadotropin in the oocytes of Blue gourami Trichogaster trichopterus, (Anabantidae, Pallas, 1770) Gen. Comp. Endinocrinol. 1992, 85, 430–439. [Google Scholar] [CrossRef]
- Degani, G.; Boker, R. Vitellogenesis level and the induction of maturation in the ovary of the blue gourami Trichogaster trichopterus (Anabantidae, Pallas 1770). J. Exp. Zool. 1992, 263, 330–337. [Google Scholar] [CrossRef]
- Degani, G. The effects of human chorionic gonadotropin on steroid changes in Trichogaster trichopterus. Comp. Biochem. Physiol. 1990, 96A, 525–528. [Google Scholar] [CrossRef]
- Lee, Y.R.; Tsunekawa, K.; Moon, M.J.; Um, H.N.; Hwang, J.I.; Osugi, T.; Otaki, N.; Sunakawa, Y.; Kim, K.; Vaudry, H.; et al. Molecular evolution of multiple forms of kisspeptins and GPR5 4 receptors in vertebrates. Endocrinology 2009, 150, 2837–2846. [Google Scholar] [CrossRef] [Green Version]
- Kitahashi, T.; Ogawa, S.; Parhar, I.S. Cloning and expression of kiss2 in the zebrafish and medaka. Endocrinology 2009, 150, 821–831. [Google Scholar] [CrossRef]
- Huang, T.; Huang, X.; LuD, W.; Zhu, P.; Shi, Y.; Cheng, C.H.; Liu, X.; Lin, H. Structural and functional multiplicity of the kisspeptin/GPR54 system in goldfish (Carassius auratus). 8. J. Endocrinol. 2009, 201, 407–441. [Google Scholar]
- Espigares, F.; Rocha, A.; Gómez, A.; Carrill, M.; Zanuy, S. Photoperiod modulates the reproductive axis of European sea bass through regulation of kiss1 and gnrh2 neuronal expression. Gen. Com. Endo. 2017, 240, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Degani, G.; Alon, A.; Stoler, A.; Bercocvich, D. Evidence of a reproduction-related function for brine Kisspeptin 2 and its receptors in Anabantidae fish (Trichogaster trichopterus) Nternat. J. Zool. Invest. 2017, 2, 106–122. [Google Scholar]
- Sower, S.A.; Freamat, M.; Kavanaugh, S.I. The origins of the vertebrate hypothalamic-pituitary-gonadal (HPG) and hypothalamicpituitary-thyroid (HPT) endocrine systems: New insights from lampreys. Gen. Comp. Endocrinol. 2009, 161, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Levy, G.; Degani, G. Involvement of GnRH, PACAP and PRP in the reproduction of blue gourami females (Trichogaster trichopterus). J. Mol. Neurosci. 2012, 48, 9730–9738. [Google Scholar] [CrossRef] [PubMed]
- Levy, G.; Gothilf, Y.; Degani, G. Brain gonadotropin releasing hormone3 expression variation during oogenesis and sexual behavior and its effect on pituitary hormonal expression in the blue gourami. Com. Biochem. Physio. Part A 2009, 154, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Levy, G.; Degani, G. The role of brain peptides in the reproduction of blue gourami males (Trichogaster trichopterus). J. Exp. Zool. 2013, 9999A, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jackson, K.; Goldberg, G.; Ofir, R.; Abraham, M.; Degani, G. Blue gourami (Trichogaster trichopterus) gonadotropic subunits (I & II) cDNA sequences and expression during oogenesis J. Mol. Endocrinol. 1999, 23, 177–187. [Google Scholar]
- Yom Din, S.; Hurvitz, A.; Goldberg, D.; Jackson, K.; Levavi-Sivan, B.; Degani, G. Cloning of Russian sturgeon (Acipenser gueldenstaedtii) growth hormone and insulin-like growth factor 1 and their expression in male and female fish during the first period of growth. J. Endocrinol. Investig. 2008, 31, 201–210. [Google Scholar] [CrossRef]
- Levy, G.; Goldberg, D.; Jackson, K.; Degani, G. Association between pituitary adenylate cyclase activating polypeptide and reproduction in the blue gourami. Gen. Comp. Endo. 2010, 166, 83–93. [Google Scholar] [CrossRef]
- Vaughan, J.M.; Rivier, J.; Spiess, J.; Peng, C.; Chang, J.P.; Peter, R.E.; Vale, W. Isolation and characterization of hypothalamic growth-hormone releasing factor from common carp Cyprinus carpio. Neuroendocrinology 1992, 56, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Small, B.C.; Nonneman, D. Sequence and expression of a cDNA encoding both pituitary adenylate cyclase activating polypeptide and growth hormone-releasing hormone-like peptide in channel catfish (Ictalurus punctatus). Gen. Comp. Endocrinol. 2001, 122, 354–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, A.; Becerra, M.; Manso, M.J.; Tello, J.; Sherwood, N.M.; Anadon, R. Distribution of growth hormone-releasing hormone-like peptide: Immunoreactivity in the central nervous system of the adult zebrafish (Danio rerio). J. Comp. Neurol. 2009, 513, 685–701. [Google Scholar] [CrossRef] [PubMed]
- Lancien, F.; Mimassi, N.; Conlon, J.M.; Le Mevel, J.C. Central pituitary adenylate cyclase-activating polypeptide ( PACAP) and vasoactive intestinal peptide (VIP) decrease the baroreflex sensitivity in trout. Gen. Comp. Endocrinol. 2011, 171, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, D.; Jackson, K.; Yom-Din, S.; Degani, G. Growth hormone of Trichogaster trichopterus: cDNA cloning, sequencing and analysis of mRNA expression during oogenesis. J. Aqua. Trop. 2004, 19, 215–229. [Google Scholar]
- Levy, G.; David, D.; Degani, G. Effect of environmental temperature on growth and reproduction-related hormone gene expression in the female blue gourami (Trichogaster trichopterus). Com. Biochem. Physiol. Part A 2011, 160, 381–389. [Google Scholar] [CrossRef]
- Degani, G.; Yom-Din, S.; Goldberg, D.; Jackson, K. cDNA cloning of blue gourami (Trichogaster trichopterus) prolactin and its expression during the gonadal cycles of males and females. J. Endocrinol. Investig. 2010, 33, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Degani, G. Somatolactin transcription during oogenesis in female blue gourami (Trichogaster trichopterus). Advan. Biolog. Chemis. 2015, 5, 279–285. [Google Scholar] [CrossRef] [Green Version]
- Degani, G. Brain control reproduction by the endocrine system of female blue gourami (Trichogaster trichopterus). Biology 2020, 9, 109. [Google Scholar] [CrossRef]
- Davey, J.W.; Hohenlohe, P.A.; Etter, P.D.; Boone, J.Q.; Catchen, J.M.; Blaxter, M.L. Genome-wide genetic marker discovery and genotyping using next generation sequencing. Nat. Rev. Genet. 2011, 12, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K.T. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Degani, G.; Yom-Din, S.; Hurvitz, A. Transcription of insulin-like growth factor receptor in russian sturgeon (Acipenser Gueldenstaedtii) ovary during oogenesis. Univers. J. Agric. Res. 2017, 5, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Degani, G. DNA Variation of Capoeta damascina (Valenciennes, 1842) in three rivers in northern Israel. J. Biophys. Chem. 2014, 5, 107–117. [Google Scholar] [CrossRef]
- Levin, B.A.; Freyhof, J.; Lajbner, Z.; Perea, S.; Abdoli, A.; Gaffaroglu, M.; Ozulug, M.; Rubenyan, H.R.; Salnikov, V.B. and Doadrio, I. Phylogenetic relationships of the algae scraping cyprinid genus Capoeta (Teleostei Cyprinidae). Mol. Phylogenetics Evol. 2012, 62, 542–549. [Google Scholar] [CrossRef]
- Syaifudin, M.; Jubaedah, D.; Yonarta, D.; Hastuti, Z. DNA barcoding of snakeskin gourami Trichogaster pectoralis and blue gourami Trichogaster trichopterus based on cythocrome c oxidase subunit I (COI) gene. Earth. Enviro. Sci. 2019, 348, 012031. [Google Scholar] [CrossRef]
- Ratnasingham, S.; Hebert, P.D. Bold: The Barcode of Life Data System (http://www.barcodinglife.org). Mol. Ecol. Notes. 2007, 7, 355–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Order | Species | Accession No. | % Amino Acid Identity | % Nucleotide Identity |
---|---|---|---|---|
Perciformes (Scombridae) | Thunnus thynnus | EU239500 | 70.3 | 74.3 |
Perciformes (Serranidae) | Epinephelus bruneus | FJ380047 | 64.8 | 72.3 |
Perciformes (Cichlidae) | Oreochromis niloticus | AB101665 | 67 | 68.2 |
Perciformes (Moronidae) | Morone chrysops | DQ000672 | 61.5 | 62.6 |
Pleuronectiformes | Paralichthys olivaceus | DQ074693 | 50.5 | 51.4 |
Verasper variegatus | HM131600 | 62.6 | 70.5 | |
Atherinomorpha | Odontesthes bonariensisa | AY744689 | 33 | 22.6 |
Fundulus heteroclitus | AB302265 | 65.9 | 60.8 | |
Coregonus clupeaformisb | 47.3 | 54.2 | ||
Mugilomorpha | Mugil cephalus | AY373450 | 62.6 | 59 |
Species | Class/Order | Accession no. | bgPRL (%) |
---|---|---|---|
Perca flavescens | Perciformes | AY332491 | 79 |
Dientrarchus labrax | X78723 | 79 | |
Spaurus aurata | AF060541 | 77 | |
Paralichthys olivaceus | AF047616 | 75 | |
Onchorhynchus mykiss | Salmoniformes | M24738 | 66 |
Coregonus autummalis | Z23114 | 66 | |
S. salar | X84787 | 66 | |
Heteropneustes fossilis | Siluriformes | AF372653 | 62 |
I. punctatus | AF267990 | 62 | |
Hypoththalmichtys molitrix | Cypriniformes | X61052 | 62 |
Danio rerio | AY135149 | 61 | |
Cyprinus carpio | X12541 | 61 | |
A. japonica | Anguiliformes | AY158009 | 59 |
A. anguilla | X69149 | 59 |
Cytochrome b | Mitochondrial RNA 12S Gene | Growth Hormone | Prolactin | PACAP | GnRH1 | GnRH2 | GnRH3 |
---|---|---|---|---|---|---|---|
Trichopterus trichopterus (gold) 100% | Trichogaster trichopterus (gold) 100% | Lates calcarifer 84% | Perca flavescens 79% | Oreochromis mossambicus 94% | Thunnus thynnus 74.3% | Epinephelus bruneus 78.5% | Dicentrar chus labrax 77.4% |
Colisa lalia 86.6% | Trichogaster leeri 91.4% | Seriola dumerili 84% | Dicentrarchus labrax 79% | Gadus morhua 97.4% | Epinephelu sruneus 72.3% | Verasper variegatus 74.9% | Pagrus major 70.2% |
Trichogaster leerii 86.0% | Colisa lalia 88.4% | Sparus aurata 83% | Sparus aurata 77% | Takifugu rubripes 97.4% | Verasper variegatus 70.5% | Paralichthys olivaceus 73.4% | Cynoscion nebulosus 58.1% |
Trichogaster labiosus 85.6% | Betta betta 82.6% | Acanthopagrus butcheri 82% | Paralichthys olivaceus 77% | Haplocho misburtoni 97.4% | Oreochromis niloticus 68.2% | Thunnus thynnus 72.8% | Rachycentron canadum 57.7% |
Macropodus opercularis 81.6% | Colisa chuna 41.4% | Oreochromis niloticus 79% | Onchorhynechus mykiss 66% | Epinephelu soioides 97.4% | Morone saxatilis 62.6% | Morone saxatilis 72.2% | Micropog onias undulates 57.5% |
Cyprinus carpio 77.9% | Trichogaster pectoralis 40.5% | Morone saxatilis 79% | Coregonus autumnalis 66% | Fundulus heteroclitus 60.8% | Odontesthes bonariensis 65.2% | Sciaenops ocellatus 57.5% | |
Betta betta 58.9% | Cternopoma setherici 41.1% | Caranx delicatissimus 74% | Salmo salar 66% | Mugil cephalus 59% | Mugil cephalus 65% | ||
Salmo salar 76.9% | Macropodus opercularis 41.1% | Oncorhynchus tshawytscha 69% | Heteropneustes fossilis 62% | Coregonus clupeaformis 54.2% | Fundulus heteroclitus 61.8% | ||
Trichogaster fasciatus 46.2% | Osphronemus goramy 40.5% | Salmon salar 68% | Ictalurus punctatus 62% | Odontesthes bonariensis 22.6% | Coregonus clupeaformis 59.6% | ||
Pangasius pangasius 64% | Hypophthalmi chthys molitrix 62% | ||||||
Pangasinodon gigas 64% | Danio rerio 61% | ||||||
Cyprinus carpio 64% | Cyprinus carpio 61% | ||||||
Carassius auratus 63% | Anguilla japonica 59% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Degani, G.; Veksler-Lublinsky, I.; Meerson, A. Markers of Genetic Variation in Blue Gourami (Trichogaster trichopterus) as a Model for Labyrinth Fish. Biology 2021, 10, 228. https://doi.org/10.3390/biology10030228
Degani G, Veksler-Lublinsky I, Meerson A. Markers of Genetic Variation in Blue Gourami (Trichogaster trichopterus) as a Model for Labyrinth Fish. Biology. 2021; 10(3):228. https://doi.org/10.3390/biology10030228
Chicago/Turabian StyleDegani, Gad, Isana Veksler-Lublinsky, and Ari Meerson. 2021. "Markers of Genetic Variation in Blue Gourami (Trichogaster trichopterus) as a Model for Labyrinth Fish" Biology 10, no. 3: 228. https://doi.org/10.3390/biology10030228
APA StyleDegani, G., Veksler-Lublinsky, I., & Meerson, A. (2021). Markers of Genetic Variation in Blue Gourami (Trichogaster trichopterus) as a Model for Labyrinth Fish. Biology, 10(3), 228. https://doi.org/10.3390/biology10030228