FLT3-ITD Allelic Burden and Acute Promyelocytic Leukemia Risk Stratification
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALP alkaline phosphatase |
ALT alanine aminotransferase |
AML acute myeloid leukemia |
ANOVA analysis of variance |
APL acute promyelocytic leukemia |
AST aspartate aminotransferase |
ATO arsenic trioxide |
ATRA all-trans retinoic acid |
AUC area under the curve |
bcr3 breakpoint cluster region 3 |
BMI body mass index |
CR complete remission |
DIC disseminated intravascular coagulation |
DS differentiation syndrome |
FAB French–American–British |
Fib fibrinogen |
FLT3-ITD fms-like tyrosine kinase 3 internal tandem duplication |
Hgb hemoglobin |
HR Sanz high risk |
ICH intracranial hemorrhage |
IR Sanz intermediate risk |
LDH lactate dehydrogenase |
LR Sanz low risk |
M3v microgranular variant M3 |
Morph morphology |
OS overall survival |
PCR polymerase chain reaction |
Plt platelet |
PML-RARa promyelocytic leukemia retinoic receptor alpha |
RFS relapse free survival |
TBili total bilirubin |
WBC white blood cell |
WT wild-type |
References
- Hillestad, L.K. Acute Promyelocytc Leukemia. Acta Med. Scand. 2009, 159, 189–194. [Google Scholar] [CrossRef]
- Thomas, X. Acute Promyelocytic Leukemia: A History over 60 Years—From the Most Malignant to the most Curable Form of Acute Leukemia. Oncol. Ther. 2019, 7, 33–65. [Google Scholar] [CrossRef] [Green Version]
- Matasar, M.J.; Ritchie, E.K.; Consedine, N.; Magai, C.; Neugut, A.I. Incidence rates of acute promyelocytic leukemia among Hispanics, blacks, Asians, and non-Hispanic whites in the United States. Eur. J. Cancer Prev. 2006, 15, 367–370. [Google Scholar] [CrossRef]
- Parcells, B.W.; Ikeda, A.K.; Simms-Waldrip, T.; Moore, T.B.; Sakamoto, K.M. FMS-Like Tyrosine Kinase 3 in Normal Hematopoiesis and Acute Myeloid Leukemia. StemCells 2006, 24, 1174–1184. [Google Scholar] [CrossRef] [PubMed]
- Papaemmanuil, E.; Gerstung, M.; Bullinger, L.; Gaidzik, V.I.; Paschka, P.; Roberts, N.D.; Potter, N.E.; Heuser, M.; Thol, F.; Bolli, N.; et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N. Engl. J. Med. 2016, 374, 2209–2221. [Google Scholar] [CrossRef] [PubMed]
- Beitinjaneh, A.; Jang, S.; Roukoz, H.; Majhail, N.S. Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations in acute promyelocytic leukemia: A systematic review. Leuk. Res. 2010, 34, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Melo, C.P.S.; Campos, C.B.; Dutra, Á.P.; Neto, J.C.A.; Fenelon, A.J.S.; Neto, A.H.; Carbone, E.K.; Pianovski, M.A.D.; Ferreira, A.C.D.S.; Assumpcão, J.G. Correlation between FLT3-ITD status and clinical, cellular and molecular profiles in promyelocytic acute leukemias. Leuk. Res. 2015, 39, 131–137. [Google Scholar] [CrossRef]
- Callens, C.; Chevret, S.; Cayuela, J.-M.; Cassinat, B.; Raffoux, E.; De Botton, S.; Thomas, X.; Guerci, A.; Fegueux, N.; Pigneux, A.; et al. Prognostic implication of FLT3 and Ras gene mutations in patients with acute promyelocytic leukemia (APL): A retrospective study from the European APL Group. Leukemia 2005, 19, 1153–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breccia, M.; Loglisci, G.; Loglisci, M.G.; Ricci, R.; Diverio, D.; Latagliata, R.; Foà, R.; Lo-Coco, F. FLT3-ITD confers poor prognosis in patients with acute promyelocytic leukemia treated with AIDA protocols: Long-term follow-up analysis. Haematologica 2013, 98, e161–e163. [Google Scholar] [CrossRef] [Green Version]
- Perl, A.E.; Martinelli, G.; Cortes, J.E.; Neubauer, A.; Berman, E.; Paolini, S.; Montesinos, P.; Baer, M.R.; Larson, R.A.; Ustun, C.; et al. Gilteritinib or Chemotherapy for Relapsed or Refractory FLT3-Mutated AML. N. Engl. J. Med. 2019, 381, 1728–1740. [Google Scholar] [CrossRef]
- Lucena-Araujo, A.R.; Kim, H.T.; Jacomo, R.H.; Melo, R.A.; Bittencourt, R.; Pasquini, R.; Pagnano, K.; Fagundes, E.M.; Chauffaille, M.D.L.; Chiattone, C.S.; et al. Internal tandem duplication of the FLT3 gene confers poor overall survival in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline-based chemotherapy: An International Consortium on Acute Promyelocytic Leukemia study. Ann. Hematol. 2014, 93, 2001–2010. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.A.; Lo Coco, F.; Martín, G.; Avvisati, G.; Rayón, C.; Barbui, T.; Díaz-Mediavilla, J.; Fioritoni, G.; González, J.D.; Liso, V.; et al. Definition of relapse risk and role of nonanthracycline drugs for consolidation in patients with acute promyelocytic leukemia: A joint study of the PETHEMA and GIMEMA cooper-ative groups. Blood 2000, 96, 1247–1253. [Google Scholar] [CrossRef]
- Chillón, M.D.C.; Santamaría, C.; García-Sanz, R.; Balanzategui, A.; Eugenia, S.M.; Alcoceba, M.; Marín, L.; Caballero, M.D.; Vidriales, M.B.; Ramos, F.; et al. Long FLT3 internal tandem duplications and reduced PML-RAR expression at diagnosis characterize a high-risk subgroup of acute promyelocytic leukemia patients. Haematologica 2010, 95, 745–751. [Google Scholar] [CrossRef] [Green Version]
- Schnittger, S.; Bacher, U.; Haferlach, C.; Kern, W.; Alpermann, T.; Haferlach, T. Clinical impact of FLT3 mutation load in acute promyelocytic leukemia with t(15;17)/PML-RARA. Haematologica 2011, 96, 1799–1807. [Google Scholar] [CrossRef] [Green Version]
- Kuchenbauer, F.; Schoch, C.; Kern, W.; Hiddemann, W.; Haferlach, T.; Schnittger, S. Impact of FLT3 mutations and promyelocytic leukaemia-breakpoint on clinical characteristics and prognosis in acute promyelocytic leukaemia. Br. J. Haematol. 2005, 130, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Gill, H.S.; Yim, R.; Kumana, C.R.; Tse, E.; Kwong, Y. Oral arsenic trioxide, all- trans retinoic acid, and ascorbic acid maintenance after first complete remission in acute promyelocytic leukemia: Long-term results and unique prognostic indicators. Cancer 2020, 126, 3244–3254. [Google Scholar] [CrossRef] [PubMed]
- Lou, Y.; Ma, Y.; Suo, S.; Ni, W.; Wang, Y.; Pan, H.; Tong, H.; Qian, W.; Meng, H.; Mai, W.; et al. Prognostic factors of patients with newly diagnosed acute promyelocytic leukemia treated with arsenic trioxide-based frontline therapy. Leuk. Res. 2015, 39, 938–944. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Fu, Y.-K.; Zhu, Y.-M.; Lou, Y.-J.; Gu, Z.-H.; Shi, J.-Y.; Chen, B.; Chen, C.; Zhu, H.-M.; Hu, J.; et al. Mutations of Epigenetic Modifier Genes as a Poor Prognostic Factor in Acute Promyelocytic Leukemia Under Treatment With All-Trans Retinoic Acid and Arsenic Trioxide. EBioMedicine 2015, 2, 563–571. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Liu, Y.-F.; Wu, C.-F.; Xu, F.; Shen, Z.-X.; Zhu, Y.-M.; Li, J.-M.; Tang, W.; Zhao, W.-L.; Wu, W.; et al. Long-term efficacy and safety of all-trans retinoic acid/arsenic trioxide-based therapy in newly diagnosed acute promyelocytic leukemia. Proc. Natl. Acad. Sci. USA 2009, 106, 3342–3347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iland, H.J.; Bradstock, K.; Supple, S.G.; Catalano, A.; Collins, M.; Hertzberg, M.; Browett, P.; Grigg, A.; Firkin, F.; Hugman, A.; et al. All-trans-retinoic acid, idarubicin, and IV arsenic trioxide as initial therapy in acute promyelocytic leukemia (APML4). Blood 2012, 120, 1570–1580. [Google Scholar] [CrossRef]
- Hong, S.-D.; Kim, Y.-K.; Kim, H.-N.; Lee, S.R.; Ahn, J.-S.; Yang, D.-H.; Lee, J.-J.; Lee, I.-K.; Shin, M.-G.; Kim, H.-J. Treatment outcome of all-transretinoic acid/anthracycline combination chemotherapy and the prognostic impact of FLT3/ITD mutation in acute promyelocytic leukemia patients. Korean J. Hematol. 2011, 46, 24–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | ITD (n = 59) | WT (n = 79) | p-Value | HR (n = 47) | IR (n = 54) | LR (n = 37) | p-Value | ITD, HR (n = 37) | WT, HR (n = 10) | ITD, IR (n = 14) | WT, IR (n = 40) | ITD, LR (n = 8) | WT, LR (n = 29) | p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Age (Years) | 47 | 50 | 0.27 | 45 | 49 | 53 | 0.07 | 45 | 46 | 52 | 48 | 49 | 54 | 0.26 |
Gender | M (44%) F (56%) | M (52%) F (48%) | 0.39 | M (49%) F (51%) | M (48%) F (52%) | M (49%) F (51%) | 1.0 | M (49%) F (51%) | M (50%) F (50%) | M (43%) F (57%) | M (50%) F (50%) | M (25%) F (75%) | M (55%) F (45%) | 0.80 |
Ethnicity | W (53%) B (30%) O (17%) | W (56%) B (20%) O (24%) | 0.33 | W (44% B (28%) O (28%) | W (65%) B (22%) O (13%) | W (52%) B (24%) O (24%) | 0.26 | W (46%) B (32%) O (22%) | W (40%) B (10%) O (50%) | W (72%) B (21%) O (7%) | W (63%) B (22%) O (15%) | W (50%) B (38%) O (12%) | W (52%) B (21%) O (27%) | 0.39 |
BMI | 32.3 | 31.8 | 0.74 | 31.7 | 32.2 | 31.9 | 0.97 | 32.3 | 29.9 | 33.6 | 31.7 | 30.1 | 32.4 | 0.91 |
WBC | 29.9 | 5.1 | <0.001 | 41.8 | 2.8 | 1.5 | <0.001 | 45.9 | 26.7 | 4.2 | 2.3 | 1.5 | 1.6 | <0.001 |
Hgb | 9.7 | 8.9 | 0.03 | 9.7 | 8.4 | 10.0 | <0.001 | 9.8 | 9.0 | 9.1 | 8.2 | 10.1 | 9.9 | 0.003 |
Plt | 28.7 | 50.3 | 0.004 | 26.7 | 19.6 | 90.6 | <0.001 | 24.8 | 33.9 | 17.8 | 20.3 | 66.1 | 97.3 | <0.001 |
Creat | 1.01 | 0.91 | 0.28 | 0.91 | 0.99 | 0.94 | 0.76 | 0.94 | 0.79 | 1.04 | 0.97 | 1.25 | 0.86 | 0.45 |
AST | 44.5 | 30.2 | 0.001 | 49.3 | 27.6 | 32.4 | <0.001 | 49.8 | 47.6 | 28.4 | 27.4 | 48.6 | 27.9 | <0.001 |
ALT | 44.8 | 33.7 | 0.09 | 50.1 | 29.2 | 36.9 | 0.02 | 51.2 | 46.1 | 30.5 | 28.8 | 40.3 | 36.0 | 0.16 |
ALP | 83.7 | 81.4 | 0.73 | 86.8 | 68.8 | 95.9 | 0.002 | 87.8 | 83.1 | 68.1 | 69.0 | 90.0 | 97.6 | 0.02 |
TBili | 1.0 | 0.9 | 0.42 | 1.1 | 0.9 | 0.8 | 0.05 | 1.0 | 1.2 | 1.0 | 0.8 | 0.6 | 0.8 | 0.11 |
LDH | 968.1 | 1030.5 | 0.92 | 1145.4 | 1233.7 | 493.3 | 0.62 | 1172.9 | 1046.4 | 455.1 | 1506.3 | 944.5 | 368.9 | 0.86 |
Fib | 168.2 | 225.0 | 0.003 | 160.4 | 183.4 | 277.3 | <0.001 | 153.8 | 184.9 | 159.9 | 191.6 | 249.3 | 285.0 | <0.001 |
Morph | Classic (59%), Variant (41%) | Classic (94%), Variant (6%) | <0.001 | Classic (61%), Variant (39%) | Classic (85%), Variant (15%) | Classic (93%), Variant (7%) | 0.007 | Classic (52%), Variant (48%) | Classic (100%), Variant (0%) | Classic (67%), Variant (33%) | Classic (92%), Variant (8%) | Classic (80%), Variant (20%) | Classic (96%), Variant (4%) | 0.001 |
BCR | 1 (26%), 2 (5%), 3 (53%), 1/2 (0%), 2/3 (16%) | 1 (62%), 2 (2%), 3 (22%), 1/2(12%), 2/3 (2%) | <0.001 | 1 (29%), 2 (3%), 3 (52%), 1/2 (3%), 2/3 (13%) | 1 (59%), 2 (3%), 3 (22%), 1/2(10%), 2/3 (6%) | 1 (50%), 2 (5%), 3 (35%), 1/2 (5%), 2/3 (5%) | 0.22 | 1 (17%), 2 (4%), 3 (62%), 1/2 (0%), 2/3 (17%) | 1 (72%), 2 (0%), 3 (14%), 1/2(14%), 2/3 (0%) | 1 (33%), 2 (0%), 3 (45%), 1/2 (0%), 2/3 (22%) | 1 (70%), 2 (0%), 3 (13%), 1/2(13%), 2/3 (0%) | 1 (60%), 2 (20%), 3 (20%), 1/2 (0%), 2/3 (0%) | 1 (46%), 2 (0%), 3 (40%), 1/2 (7%), 2/3 (7%) | 0.002 |
DS | Yes (46%), No (54%) | Yes (35%), No (65%) | 0.29 | Yes (49%), No (51%) | Yes (39%), No (61%) | Yes (30%), No (70%) | 0.20 | Yes (49%), No (51%) | Yes (50%), No (50%) | Yes (57%), No (43%) | Yes (32%), No (68%) | Yes (12%), No (88%) | Yes (34%), No (66%) | 0.22 |
DIC | Yes (73%), No (27%) | Yes (48%), No (52%) | 0.005 | Yes (79%), No (21%) | Yes (61%), No (39%) | Yes (30%), No (70%) | <0.001 | Yes (81%), No (19%) | Yes (70%), No (30%) | Yes (79%), No (21%) | Yes (55%), No (45%) | Yes (25%), No (75%) | Yes (31%), No (69%) | <0.001 |
Bleeding | Yes (49%), No (51%) | Yes (41%), No (59%) | 0.39 | Yes (55%), No (45%) | Yes (48%), No (52%) | Yes (24%), No (76%) | 0.01 | Yes (57%), No (43%) | Yes (50%), No (50%) | Yes (43%), No (57%) | Yes (50%), No (50%) | Yes (25%), No (75%) | Yes (24%), No (76%) | 0.11 |
ICH | Yes (14%), No (84%) | Yes (11%), No (89%) | 0.80 | Yes (19%), No (81%) | Yes (13%), No (87%) | Yes (3%), No (97%) | 0.06 | Yes (16%), No (84%) | Yes (30%), No (70%) | Yes (14%), No (86%) | Yes (12%), No (88%) | Yes (0%), No (100%) | Yes (3%), No (97%) | 0.23 |
Clot | Yes (19%), No (81%) | Yes (11%), No (89%) | 0.33 | Yes (21%), No (79%) | Yes (7%), No (93%) | Yes (16%), No (84%) | 0.12 | Yes (22%), No (78%) | Yes (20%), No (80%) | Yes (14%), No (86%) | Yes (5%), No (95%) | Yes (12%), No (88%) | Yes (17%), No (83%) | 0.31 |
CRinduc | Yes (89%), No (4%), Death (7%) | Yes (93%), No (3%), Death (4%) | 0.70 | Yes (90%), No (5%), Death (5%) | Yes (93%), No (0%), Death (7%) | Yes (91%), No (6%), Death (3%) | 0.42 | Yes (88%), No (6%), Death (6%) | Yes (100%), No (0%), Death (0%) | Yes (85%), No (0%), Death (15%) | Yes (95%), No (0%), Death (5%) | Yes (100%), No (0%), Death (0%) | Yes (88%), No (8%), Death (4%) | 0.68 |
CRcons | Yes (81%), No (4%), Death (15%) | Yes (97%), No (0), Death (3%) | 0.02 | Yes (86%), No (6%), Death (8%) | Yes (90%), No (0%), Death (10%) | Yes (93%), No (0%), Death (7%) | 0.61 | Yes (83%), No (7%), Death (10%) | Yes (100%), No (0%), Death (0%) | Yes (75%), No (0%), Death (25%) | Yes (97%), No (0%), Death (3%) | Yes (86%), No (0%), Death (14%) | Yes (95%), No (0%), Death (5%) | 0.26 |
5-Year OS | 79.7% | 94.4% | 0.02 | 87.1% | 85.5% | 92.4% | 0.33 | 83.7% | 100% | 68.8% | 91.6% | 83.3% | 96.6% | 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, A.Y.; Kashanian, S.M.; Hambley, B.C.; Zacholski, K.; Duong, V.H.; El Chaer, F.; Holtzman, N.G.; Gojo, I.; Webster, J.A.; Norsworthy, K.J.; et al. FLT3-ITD Allelic Burden and Acute Promyelocytic Leukemia Risk Stratification. Biology 2021, 10, 243. https://doi.org/10.3390/biology10030243
Li AY, Kashanian SM, Hambley BC, Zacholski K, Duong VH, El Chaer F, Holtzman NG, Gojo I, Webster JA, Norsworthy KJ, et al. FLT3-ITD Allelic Burden and Acute Promyelocytic Leukemia Risk Stratification. Biology. 2021; 10(3):243. https://doi.org/10.3390/biology10030243
Chicago/Turabian StyleLi, Andrew Y., Sarah M. Kashanian, Bryan C. Hambley, Kyle Zacholski, Vu H. Duong, Firas El Chaer, Noa G. Holtzman, Ivana Gojo, Jonathan A. Webster, Kelly J. Norsworthy, and et al. 2021. "FLT3-ITD Allelic Burden and Acute Promyelocytic Leukemia Risk Stratification" Biology 10, no. 3: 243. https://doi.org/10.3390/biology10030243
APA StyleLi, A. Y., Kashanian, S. M., Hambley, B. C., Zacholski, K., Duong, V. H., El Chaer, F., Holtzman, N. G., Gojo, I., Webster, J. A., Norsworthy, K. J., Smith, B. D., DeZern, A. E., Levis, M. J., Baer, M. R., Kamangar, F., Ghiaur, G., & Emadi, A. (2021). FLT3-ITD Allelic Burden and Acute Promyelocytic Leukemia Risk Stratification. Biology, 10(3), 243. https://doi.org/10.3390/biology10030243