Interaction between Metarhizium anisopliae and Its Host, the Subterranean Termite Coptotermes curvignathus during the Infection Process
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Termite Collection
2.2. Fungal Culture
2.3. Preparation of Conidial Suspension and Inoculation
2.4. Specimen Preparation for Electron Microscopy
2.5. Total Protein Extraction, Quantification, and Two-Dimensional Gel Electrophoresis (2-DE)
2.6. Gel Imaging and Protein Expression Analysis
2.7. In-Gel Digestion and MALDI-TOF Mass Spectrometry (MS) Analysis
2.8. Protein Identification and Annotation
3. Results
3.1. Observation of Metarhizium anisopliae Pathogenesis on Inoculated Coptotermes curvignathus
3.2. Protein Identities in the Coptotermes curvignathus–Metarhizium anisopliae Relationship
3.3. Gene Ontology (GO) Annotation
3.4. Identified Protein Expressions at Different Stages of Pathogenesis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roberts, D.W.; Leger, R.J.S. Metarhizium spp., Cosmopolitan Insect-Pathogenic Fungi: Mycological Aspects. Adv. Clin. Chem. 2004, 54, 1–70. [Google Scholar] [CrossRef]
- Neves, P.M.; Alves, S.B. External events related to the infection process of Cornitermes cumulans (Kollar) (Isoptera: Termitidae) by the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae. Neotrop. Èntomol. 2004, 33, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Alves, S.B. Fungos entomopatogênicos. In Controle Microbiano de Insetos; Alves, S.B., Ed.; Manole: São Paulo, Brazil, 1986; pp. 73–126. [Google Scholar]
- Gillooly, J.F.; Hou, C.; Kaspari, M. Eusocial insects as superorganisms. Commun. Integr. Biol. 2010, 3, 360–362. [Google Scholar] [CrossRef] [Green Version]
- Myles, T.G. Alarm, aggregation, and defense by Reticulitermes flavipes in response to a naturally occurring isolate of Metarhizium anisopliae. Sociobiology 2002, 40, 243–255. [Google Scholar]
- Rosengaus, R.B.; Jordan, C.; Lefebvre, M.L.; Traniello, J.F.A. Pathogen alarm behavior in a termite: A New form of communication in social insects. Naturwissenschaften 1999, 86, 544–548. [Google Scholar] [CrossRef] [PubMed]
- Yanagawa, A.; Shimizu, S. Resistance of the termite, Coptotermes formosanus Shiraki to Metarhizium anisopliae due to grooming. BioControl 2007, 52, 75–85. [Google Scholar] [CrossRef]
- Davis, H.E.; Meconcelli, S.; Radek, R.; McMahon, D.P. Termites shape their collective behavioural response based on stage of infection. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Maketon, M.; Sawangwan, P.; Sawatwarakul, W. Laboratory Study on the efficacy of Metarhizium anisopliae (Deuteromycota: Hyphomycetes) in controlling Coptotermes gestroi (Isoptera: Rhinotermitidae). Èntomol. Gen. 2007, 30, 203–218. [Google Scholar] [CrossRef]
- King, P.J.H.; Bong, C.-F.J.; Nyam, V.-T. Control of subterranean termite Coptotermes curvignathus (Isoptera: Rhinotermitidae) by entomopathogen Metarhizium anisopliae var. anisopliae cultured in liquid state fermentation. Am. J. Agric. Biol. Sci. 2015, 10, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Fuxa, J.R.; Henderson, G. Sporulation of Metarhizium anisopliae and Beauveria bassiana on Coptotermes formosanus and in vitro. J. Invertebr. Pathol. 2002, 81, 78–85. [Google Scholar] [CrossRef]
- Chouvenc, T.; Su, N.-Y. When subterranean termites challenge the rules of fungal epizootics. PLoS ONE 2012, 7, e34484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sajap, A.S.; Kaur, K. Histopathology of Metarhizium anisopliae, an entomopathogenic fungus, infection in the termite, Coptotermes curvignathus. Pertanika 1990, 13, 331–334. [Google Scholar]
- Chouvenc, T.; Su, N.-Y.; Robert, A. Cellular encapsulation in the eastern subterranean termite, Reticulitermes flavipes (Isoptera), against infection by the entomopathogenic fungus Metarhizium anisopliae. J. Invertebr. Pathol. 2009, 101, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Li, Y.-F.; Cheng, Y.; Liu, Y.; Chen, C.-C.; Wen, S.-Y. Immune-Related transcriptome of Coptotermes formosanus Shiraki workers: The defense mechanism. PLoS ONE 2013, 8, e69543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Sumathipala, N.; Rayaprolu, S.; Jiang, H. Recognition of microbial molecular patterns and stimulation of prophenoloxidase activation by a β-1,3-glucanase-related protein in Manduca sexta larval plasma. Insect Biochem. Mol. Biol. 2011, 41, 322–331. [Google Scholar] [CrossRef] [Green Version]
- Ligoxygakis, P.; Pelte, N.; Hoffmann, J.A.; Reichhart, J.-M. Activation of Drosophila toll during fungal infection by a blood serine protease. Science 2002, 297, 114–116. [Google Scholar] [CrossRef]
- Evans, J.D.; Aronstein, K.; Chen, Y.P.; Hetru, C.; Imler, J.-L.; Jiang, H.; Kanost, M.; Thompson, G.J.; Zou, Z.; Hultmark, D. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol. Biol. 2006, 15, 645–656. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, S.; Tanaka, H.; Nakazawa, H.; Ishibashi, J.; Shono, T.; Yamakawa, M. Inducible gene expression of moricin, a unique antibacterial peptide from the silkworm (Bombyx mori). Biochem. J. 1999, 340, 265–271. [Google Scholar] [CrossRef]
- Ntwasa, M.; Goto, A.; Kurata, S. Coleopteran antimicrobial peptides: Prospects for clinical applications. Int. J. Microbiol. 2012, 2012, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Barros, B.H.; Da Silva, S.H.; Marques, E.D.R.; Rosa, J.C.; Yatsuda, A.P.; Roberts, D.W.; Braga, G.U. A proteomic approach to identifying proteins differentially expressed in conidia and mycelium of the entomopathogenic fungus Metarhizium acridum. Fungal Biol. 2010, 114, 572–579. [Google Scholar] [CrossRef]
- Wang, C.; Leger, R.J.S. The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants. Eukaryot. Cell 2007, 6, 808–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, B.; Garrett, W.M.; Campbell, K.B. Shotgun identification of proteins from uredospores of the bean rust Uromyces appendiculatus. Proteomics 2006, 6, 2477–2484. [Google Scholar] [CrossRef] [PubMed]
- Bagga, S.; Hu, G.; Screen, S.E.; Leger, R.J.S. Reconstructing the diversification of subtilisins in the pathogenic fungus Metarhizium anisopliae. Gene 2004, 324, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Javar, S.; Mohamed, R.; Sajap, A.S.; Lau, W.-H. Expression of pathogenesis-related genes in Metarhizium anisopliae when infecting Spodoptera exigua. Biol. Control. 2015, 85, 30–36. [Google Scholar] [CrossRef]
- Kershaw, M.; Moorhouse, E.; Bateman, R.; Reynolds, S.; Charnley, A. The role of destruxins in the pathogenicity of Metarhizium anisopliae for three species of insect. J. Invertebr. Pathol. 1999, 74, 213–223. [Google Scholar] [CrossRef]
- Tamashiro, M.; Fujii, J.K.; Lai, P.-Y. A Simple method to observe, trap, and prepare large numbers of subterranean termites for laboratory and field experiments. Environ. Èntomol. 1973, 2, 721–722. [Google Scholar] [CrossRef]
- Tho, Y.P. Termites of Peninsular Malaysia; Malayan Forest Records No.36; Forest Research Institute Malaysia: Selangor, Malaysia, 1992; pp. 56–64. [Google Scholar]
- Samsuddin, A.S.; Sajap, A.S.; Mohamed, R. Metarhizium anisopliae of Peninsular Malaysia origin poses high pathogenicity toward Coptotermes curvignathus, a major wood and tree pest. Malays. For. 2015, 78, 41–48. Available online: http://psasir.upm.edu.my/id/eprint/56208 (accessed on 16 November 2019).
- Zhang, K.; Yuan-Ying, S.; Cai, L. An optimized protocol of single spore isolation for fungi. Cryptogam. Mycol. 2013, 34, 349–356. [Google Scholar] [CrossRef]
- Walker, J.M. (Ed.) The Proteomics Protocols Handbook; Humana Press: Totowa, NJ, USA, 2005; pp. 571–607. [Google Scholar]
- QuickGo: Gene Ontology and GO Annotations. Available online: https://www.ebi.ac.uk/QuickGO/ (accessed on 17 April 2019).
- Gene Ontology Consortium. The gene ontology project in 2008. Nucleic Acids Res. 2008, 36, D440–D444. [Google Scholar] [CrossRef] [Green Version]
- Krutmuang, P.; Mekchay, S. Pathogenicity of entomopathogenic fungi Metarhizium anisopliae against termites. In Conference on International Agricultural Research for Development; Tropentag 2005; University of Hoheheim: Stuggart, Germany, 2005; pp. 11–12. Available online: https://bit.ly/2LM5SKd (accessed on 16 November 2019).
- Leger, R.J.S.; Butt, T.M.; Goettel, M.S.; Staples, R.C.; Roberts, D.W. Production in vitro of appressoria by the entomopathogenic fungus Metarhizium anisopliae. Exp. Mycol. 1989, 13, 274–288. [Google Scholar] [CrossRef]
- Leger, R.J.S.; Butt, T.; Staples, R.C.; Roberts, D.W.; Birse, C.E.; Clutterbuck, A.J. Second messenger involvement in differentiation of the entomopathogenic fungus Metarhizium anisopliae. J. Gen. Microbiol. 1990, 136, 1779–1789. [Google Scholar] [CrossRef] [Green Version]
- Chouvenc, T.; Su, N.-Y.; Robert, A. Differences in cellular encapsulation of six termite (Isoptera) species against infection by the entomopathogenic fungus Metarhizium anisopliae. Fla. Èntomol. 2011, 94, 389–397. [Google Scholar] [CrossRef]
- Butt, T.M.; Jackson, C.; Magan, N. (Eds.) Fungi as Biocontrol Agents: Progress, Problems and Potential; CABI: Nosworthy Way, Wallingford, UK, 2001; pp. 23–71. [Google Scholar]
- Toledo, A.V.; de Lenicov, A.M.M.R.; Lastra, C.L. Histopathology caused by the entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae, in the adult planthopper, Peregrinus maidis, a maize virus vector. J. Insect Sci. 2010, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Schabel, H.G. Oral infection of Hylobius pales by Metarrhizium anisopliae. J. Invertebr. Pathol. 1976, 27, 377–383. [Google Scholar] [CrossRef]
- Chouvenc, T.; Su, N.-Y.; Elliott, M.I. Antifungal activity of the termite alkaloid norharmane against the mycelial growth of Metarhizium anisopliae and Aspergillus nomius. J. Invertebr. Pathol. 2008, 99, 345–347. [Google Scholar] [CrossRef] [PubMed]
- Siderhurst, M.S.; James, D.M.; Rithner, C.D.; Dick, D.L.; Bjostad, L.B. Isolation and characterization of norharmane from Reticulitermes termites (Isoptera: Rhinotermitidae). J. Econ. Èntomol. 2005, 98, 1669–1678. [Google Scholar] [CrossRef] [Green Version]
- Leadbetter, J.R.; Breznak, J.A. Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl. Environ. Microbiol. 1996, 62, 3620–3631. [Google Scholar] [CrossRef] [Green Version]
- Logan, J.W.; Cowie, R.H.; Wood, T. Termite (Isoptera) control in agriculture and forestry by non-chemical methods: A review. Bull. Èntomol. Res. 1990, 80, 309–330. [Google Scholar] [CrossRef]
- Culliney, T.W.; Grace, J.K. Prospects for the biological control of subterranean termites (Isoptera: Rhinotermitidae), with special reference to Coptotermes formosanus. Bull. Entomol. Res. 2000, 90, 9–21. [Google Scholar] [CrossRef]
- Lai, P.Y.; Tamashiro, M.; Fujii, J.K. Pathogenicity of six strains of entomogenous Coptotermes formosanus. J. Invertebr. Pathol. 1982, 39, 1–5. [Google Scholar] [CrossRef]
- Rosengaus, R.B.; Moustakas, J.E.; Calleri, D.V.; Traniello, J.F.A. Nesting ecology and cuticular microbial loads in dampwood (Zootermopsis angusticollis) and drywood termites (Incisitermes minor, I. schwarzi, Cryptotermes cavifrons). J. Insect Sci. 2003, 3, 1–6. [Google Scholar] [CrossRef]
- Netz, D.J.A.; Pierik, A.J.; Stümpfig, M.; Mühlenhoff, U.; Lill, R. The Cfd1–Nbp35 complex acts as a scaffold for iron-sulfur protein assembly in the yeast cytosol. Nat. Chem. Biol. 2007, 3, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, H.; Marshall, W.F. Ciliogenesis: Building the cell’s antenna. Nat. Rev. Mol. Cell Biol. 2011, 12, 222–234. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, A.; Lederer, C.W.; Surrey, T.; Vernos, I.; Santama, N. Motor protein KIFC5A interacts with Nubp1 and Nubp2, and is implicated in the regulation of centrosome duplication. J. Cell Sci. 2006, 119, 2035–2047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kypri, E.; Christodoulou, A.; Maimaris, G.; Lethan, M.; Markaki, M.; Lysandrou, C.; Lederer, C.W.; Tavernarakis, N.; Geimer, S.; Pedersen, L.B.; et al. The nucleotide-binding proteins Nubp1 and Nubp2 are negative regulators of ciliogenesis. Cell. Mol. Life Sci. 2013, 71, 517–538. [Google Scholar] [CrossRef]
- Sepuri, N.B.V.; Schülke, N.; Pain, D. GTP hydrolysis is essential for protein import into the mitochondrial matrix. J. Biol. Chem. 1998, 273, 1420–1424. [Google Scholar] [CrossRef] [Green Version]
- Hall, A. Rho GTPases and the actin cytoskeleton. Science 1998, 279, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Shrestha, S.; Prasad, S.V.; Kim, Y. Role of a small G protein Ras in cellular immune response of the beet armyworm, Spodoptera exigua. J. Insect Physiol. 2011, 57, 356–362. [Google Scholar] [CrossRef]
- Rojas, A.M.; Fuentes, G.; Rausell, A.; Valencia, A. The Ras protein superfamily: Evolutionary tree and role of conserved amino acids. J. Cell Biol. 2012, 196, 189–201. [Google Scholar] [CrossRef] [Green Version]
- Zettervall, C.-J.; Anderl, I.; Williams, M.J.; Palmer, R.; Kurucz, E.; Ando, I.; Hultmark, D. A directed screen for genes involved in Drosophila blood cell activation. Proc. Natl. Acad. Sci. USA 2004, 101, 14192–14197. [Google Scholar] [CrossRef] [Green Version]
- Scott, J.G. Cytochromes P450 and insecticide resistance. Insect Biochem. Mol. Biol. 1999, 29, 757–777. [Google Scholar] [CrossRef]
- Iga, M.; Kataoka, H. Recent studies on insect hormone metabolic pathways mediated by cytochrome P450 enzymes. Biol. Pharm. Bull. 2012, 35, 838–843. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, B.J.; Bibby, J.; Pignatelli, P.; Muangnoicharoen, S.; O’Neill, P.M.; Lian, L.-Y.; Müller, P.; Nikou, D.; Steven, A.; Hemingway, J.; et al. Cytochrome P450 6M2 from the malaria vector Anopheles gambiae metabolizes pyrethroids: Sequential metabolism of deltamethrin revealed. Insect Biochem. Mol. Biol. 2011, 41, 492–502. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Tang, W.; He, W.; Ma, X.; Vasseur, L.; Baxter, S.W.; Yang, G.; Huang, S.; Song, F.; You, M. Characterization and expression of the cytochrome P450 gene family in diamondback moth, Plutella xylostella (L.). Sci. Rep. 2015, 5, srep08952. [Google Scholar] [CrossRef] [PubMed]
- Tsurimoto, T.; Stillman, B. Replication factors required for SV40 DNA replication in vitro. II. Switching of DNA polymerase alpha and delta during initiation of leading and lagging strand synthesis. J. Biol. Chem. 1991, 266, 1961–1968. [Google Scholar] [CrossRef]
- Watson, J.D. Molecular Biology of the Gene; Pearson/Cold Spring Harbor Lab Press: Cold Spring Harbor, NY, USA, 2014; pp. 257–312. [Google Scholar]
- Johnson, R.E.; Klassen, R.; Prakash, L.; Prakash, S. A major role of DNA polymerase δ in replication of both the leading and lagging DNA strands. Mol. Cell 2015, 59, 163–175. [Google Scholar] [CrossRef] [Green Version]
- Karkhanis, V.; Wang, L.; Tae, S.; Hu, Y.-J.; Imbalzano, A.N.; Sif, S. Protein arginine methyltransferase 7 regulates cellular response to DNA damage by methylating promoter histones H2A and H4 of the polymerase δ catalytic subunit gene, POLD1. J. Biol. Chem. 2012, 287, 29801–29814. [Google Scholar] [CrossRef] [Green Version]
- Inoue, M.; Chang, L.; Hwang, J.; Chiang, S.-H.; Saltiel, A.R. The exocyst complex is required for targeting of Glut4 to the plasma membrane by insulin. Nat. Cell Biol. 2003, 422, 629–633. [Google Scholar] [CrossRef]
- Riefler, G.M.; Balasingam, G.; Lucas, K.G.; Wang, S.; Hsu, S.-C.; Firestein, B.L. Exocyst complex subunit sec8 binds to postsynaptic density protein-95 (PSD-95): A novel interaction regulated by cypin (cytosolic PSD-95 interactor). Biochem. J. 2003, 373, 49–55. [Google Scholar] [CrossRef] [Green Version]
- TerBush, D.R.; Novick, P. Sec6, Sec8, and Sec15 are components of a multisubunit complex which localizes to small bud tips in Saccharomyces cerevisiae. J. Cell Biol. 1995, 130, 299–312. [Google Scholar] [CrossRef] [Green Version]
- Hsu, S.-C.; Ting, A.E.; Hazuka, C.D.; Davanger, S.; Kenny, J.W.; Kee, Y.; Scheller, R.H. The mammalian brain rsec6/8 complex. Neuron 1996, 17, 1209–1219. [Google Scholar] [CrossRef] [Green Version]
- Drubin, D.G.; Nelson, W. Origins of cell polarity. Cell 1996, 84, 335–344. [Google Scholar] [CrossRef] [Green Version]
- Grindstaff, K.K.; Yeaman, C.; Anandasabapathy, N.; Hsu, S.-C.; Rodriguez-Boulan, E.; Scheller, R.H.; Nelson, W. Sec6/8 complex is recruited to cell–cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Cell 1998, 93, 731–740. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Guo, Q.; Tu, J.; Li, X.; Meng, L.; Cao, L.; Dong, D.; Qiu, J.; Guan, X. Proteins differentially expressed in conidia and mycelia of the entomopathogenic fungus Metarhizium anisopliae sensu stricto. Can. J. Microbiol. 2013, 59, 443–448. [Google Scholar] [CrossRef]
- Liao, X.; Lu, H.-L.; Fang, W.; Leger, R.J.S. Overexpression of a Metarhizium robertsii HSP25 gene increases thermotolerance and survival in soil. Appl. Microbiol. Biotechnol. 2013, 98, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Santoro, M.G. Heat shock factors and the control of the stress response. Biochem. Pharmacol. 2000, 59, 55–63. [Google Scholar] [CrossRef]
- Walter, S.; Buchner, J. Molecular chaperones-cellular machines for protein folding. Angew. Chem. Int. Ed. Engl. 2002, 41, 1098–1113. [Google Scholar] [CrossRef]
- Borges, J.C.; Ramos, C.H.I. Protein folding assisted by chaperones. Protein Pept. Lett. 2005, 12, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.D.; Rangel, D.E.N.; Braga, G.U.; Flint, S.; Kwon, S.-I.; Messias, C.L.; Roberts, D.W.; Anderson, A.J. Enzyme activities associated with oxidative stress in Metarhizium anisopliae during germination, mycelial growth, and conidiation and in response to near-UV irradiation. Can. J. Microbiol. 2004, 50, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, C.E.M.; Padilla-Guerrero, I.E.; Hernandez, G.A.G.; Solis, E.S.; Guzman, J.C.T. Catalase overexpression reduces the germination time and increases the pathogenicity of the fungus Metarhizium anisopliae. Appl. Microbiol. Biotechnol. 2010, 87, 1033–1044. [Google Scholar] [CrossRef] [PubMed]
- Pedrini, N.; Juárez, M.P.; Crespo, R.; De Alaniz, M.J. Clues on the role of Beauveria bassiana catalases in alkane degradation events. Mycologia 2006, 98, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Packer, L.; Witt, E.H.; Tritschler, H.J. Alpha-lipoic acid as a biological antioxidant. Free. Radic. Biol. Med. 1995, 19, 227–250. [Google Scholar] [CrossRef]
- Morikawa, T.; Yasuno, R.; Wada, H. Do mammalian cells synthesize lipoic acid? Identification of a mouse cDNA encoding a lipoic acid synthase located in the mitochondria. FEBS Lett. 2001, 498, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Stanchi, F.; Bertocco, E.; Toppo, S.; Dioguardi, R.; Simionati, B.; Cannata, N.; Zimbello, R.; Lanfranchi, G.; Valle, G. Characterization of 16 novel human genes showing high similarity to yeast sequences. Yeast 2001, 18, 69–80. [Google Scholar] [CrossRef]
- Schonauer, M.S.; Kastaniotis, A.J.; Kursu, V.A.S.; Hiltunen, J.K.; Dieckmann, C.L. Lipoic acid synthesis and attachment in yeast mitochondria. J. Biol. Chem. 2009, 284, 23234–23242. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.; Jin, K.; Ying, S.-H.; Zhang, Y.; Xiao, G.; Shang, Y.; Duan, Z.; Hu, X.; Xie, X.-Q.; Zhou, G.; et al. genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genet. 2011, 7, e1001264. [Google Scholar] [CrossRef] [Green Version]
- Linder, P.; Lasko, P.F.; Ashburner, M.; Leroy, P.; Nielsen, P.J.; Nishi, K.; Schnier, J.; Slonimski, P.P. Birth of the D-E-A-D box. Nat. Cell Biol. 1989, 337, 121–122. [Google Scholar] [CrossRef]
- Wassarman, D.A.; Steitz, J.A. RNA splicing. Alive with DEAD proteins. Nature 1991, 349, 463–464. [Google Scholar] [CrossRef]
- Kolykhalov, A.A.; Mihalik, K.; Feinstone, S.M.; Rice, C.M. Hepatitis C virus-encoded enzymatic activities and conserved RNA Elements in the 3′ nontranslated region are essential for virus replication in vivo. J. Virol. 2000, 74, 2046–2051. [Google Scholar] [CrossRef] [Green Version]
- Kusters, J.G.; van Vliet, A.H.M.; Kuipers, E.J. Pathogenesis of Helicobacter pylori infection. Clin. Microbiol. Rev. 2006, 19, 449–490. [Google Scholar] [CrossRef] [Green Version]
- Salman-Dilgimen, A.; Hardy, P.-O.; Dresser, A.R.; Chaconas, G. HrpA, a DEAH-Box RNA helicase, is involved in global gene regulation in the lyme disease spirochete. PLoS ONE 2011, 6, e22168. [Google Scholar] [CrossRef]
- Panepinto, J.; Liu, L.; Ramos, J.; Zhu, X.; Valyi-Nagy, T.; Eksi, S.; Fu, J.; Jaffe, H.A.; Wickes, B.; Williamson, P.R. The DEAD-box RNA helicase Vad1 regulates multiple virulence-associated genes in Cryptococcus neoformans. J. Clin. Investig. 2005, 115, 632–641. [Google Scholar] [CrossRef] [Green Version]
- Donzelli, B.G.G.; Krasnoff, S.B.; Sun-Moon, Y.; Churchill, A.C.L.; Gibson, D.M. Genetic basis of destruxin production in the entomopathogen Metarhizium robertsii. Curr. Genet. 2012, 58, 105–116. [Google Scholar] [CrossRef]
- Javar, S.; Mohamed, R.; Sajap, A.S.; Lau, W.H. Expression profiles of lysozyme- and prophenoloxidase-encoding genes in Spodoptera species challenged with entomopathogenic fungus, Metarhizium anisopliae (Metchnikoff) Sorokin using qRT-PCR. Invertebr. Reprod. Dev. 2015, 59, 1–7. [Google Scholar] [CrossRef]
- Rosas-García, N.M.; Avalos-De-León, O.; Villegas-Mendoza, J.M.; Mireles-Martínez, M.; Barboza-Corona, J.E.; Castañeda-Ramírez, J.C. Correlation between Pr1 and Pr2 gene content and virulence in Metarhizium anisopliae strains. J. Microbiol. Biotechnol. 2014, 24, 1495–1502. [Google Scholar] [CrossRef]
- De Moreno, M.R.; Smith, J.F.; Smith, R.V. Mechanism studies of coomassie blue and silver staining of proteins. J. Pharm. Sci. 1986, 75, 907–911. [Google Scholar] [CrossRef]
- Neuhoff, V.; Stamm, R.; Pardowitz, I.; Arold, N.; Ehrhardt, W.; Taube, D. Essential problems in quantification of proteins following colloidal staining with Coomassie Brilliant Blue dyes in polyacrylamide gels, and their solution. Electrophoresis 1990, 11, 101–117. [Google Scholar] [CrossRef]
- Manalil, N.S.; Te’O, V.S.J.; Braithwaite, K.; Brumbley, S.; Samson, P.; Nevalainen, H. A proteomic view into infection of greyback canegrubs (Dermolepida albohirtum) by Metarhizium anisopliae. Curr. Genet. 2009, 55, 571–581. [Google Scholar] [CrossRef]
Spot ID | Score | No. of Peptides Matched | Sequence Coverage (%) | Theoretical Mr/pI | Protein Identity | Metabolic Pathway | Cellular Location | Accession no. (NCBInr), (Organism) | ||
---|---|---|---|---|---|---|---|---|---|---|
SWISS PROT | NCBInr | Mr (kDa) | pI | |||||||
21 | 44 | 331 | 11 | 26 | 42.72 | 6.15 | Phosphotriesterase-related protein | Zinc-ion binding | Extracellular exosome | KDR19492 (Zootermopsis nevadensis) |
31 | 34 | 387 | 6 | 13 | 58.90 | 8.63 | Putative cytochrome P450 6a13 | Monooxygenase | Membrane | KDR19800 (Zootermopsis nevadensis) |
37 | 44 | 55.8 | 18 | 18 | 40.33 | 8.90 | WD repeat- containing protein 5 isoform X1 | Histone acetylation | Nuclear region | KDR13642 (Zootermopsis nevadensis) |
40 | 53 | 761 | 7 | 26 | 41.79 | 5.30 | Actin-5C | ATP-binding | Cytoskeleton | KDR24293 (Zootermopsis nevadensis) |
45 | 55 | 626 | 17 | 27 | 67.28 | 6.04 | Large subunit GTPase 1-like protein | GTP-binding GTPase activity | Membrane | KDR18965 (Zootermopsis nevadensis) |
47 | 30 | 357 | 3 | 19 | 28.21 | 7.67 | Proteasome subunit alpha type-7-like | Endopeptidase activity | Cytosol/nuclear region | KDR19303 (Zootermopsis nevadensis) |
57 | 30 | 364 | 4 | 20 | 33.77 | 4.91 | Cytosolic Fe-S cluster assembly factor Nubp1 | ATP-binding | Cytosol | KDR12672 (Zootermopsis nevadensis) |
60 | 43 | 229 | 10 | 19 | 110.62 | 6.50 | Rho GTPase- activating protein 17 | GTPase activation | Membrane | KDR10828 (Zootermopsis nevadensis) |
65 | 44 | 162 | 26 | 21 | 116.44 | 8.71 | DNA polymerase delta catalytic subunit | Nucleotide binding | Nuclear region | BAJ78756 (Reticulitermes speratus) |
67 | 36 | 133 | 6 | 24 | 56.79 | 6.62 | Maelstrom-like protein | n/a | n/a | KDR08911 (Zootermopsis nevadensis) |
70 | 35 | 53.5 | 6 | 20 | 19.96 | 8.17 | Exonuclease 3’-5’ domain-containing protein 2 | Mature miRNA 3’-end processing | Nuclear region | KDR07728 (Zootermopsis nevadensis) |
75 | 45 | 525 | 17 | 21 | 111.68 | 5.99 | Protein diaphanous | Cytokinesis | Cytoskeleton | KDR17398 (Zootermopsis nevadensis) |
83 | 41 | 325 | 20 | 10 | 221.97 | 5.14 | Protein disabled | Synaptic vesicle endocytosis | Cytoplasm | KDR22018 (Zootermopsis nevadensis) |
Spot ID | Score | No. of Peptides Matched | Sequence Coverage (%) | Theoretical Mr/pI | Protein Identity | Metabolic Pathway | Cellular Location | Accession no. (NCBInr), (Organism) | ||
---|---|---|---|---|---|---|---|---|---|---|
SWISS PROT | NCBInr | Mr (kDa) | pI | |||||||
16 | 46 | 174 | 6 | 57 | 29.14 | 5.64 | Methylthioribulose-1-phosphate dehydratase | L-methionine biosynthesis via salvage pathway | Cytoplasm | OAA48651 (Metarhizium rileyi RCEF 4871) |
27 | 90 | 196 | 28 | 34 | 119.45 | 5.63 | Sec8 exocyst complex component specific domain protein | Exocystosis | Exocyst | KID86834 (Metarhizium guizhouense ARSEF 977) |
29 | 55 | 447 | 13 | 47 | 45.92 | 9.19 | Lipoic acid synthetase | Lipoate biosynthetic process | Mitochondrion | XP_014580459 (Metarhizium majus ARSEF 297) |
32 | 65 | 914 | 17 | 31 | 87.74 | 6.29 | Heat shock protein 78 | ATP-binding | Nuclear region | XP_014546332 (Metarhizium brunneum ARSEF 3297) |
51 | 48 | 414 | 15 | 39 | 60.05 | 7.25 | ATP-dependent RNA helicase DBP8 | ATP-binding | Nuclear region/cytoplasm | OAA38096 (Metarhizium rileyi RCEF 4871) |
87 | 48 | 434 | 13 | 36 | 53.00 | 6.06 | ATP dependent RNA helicase DBP5 | ATP-binding | Nuclear region/cytoplasm | XP_007808948 (Metarhizium acridum CQMa 102) |
88 | 45 | 334 | 7 | 30 | 41.82 | 6.12 | Methylthioribose-1-phosphate isomerase | L-methionine biosynthetic process | Nuclear region/cell projection | XP_014549852 (Metarhizium brunneum ARSEF 3297) |
89 | 39 | 43.5 | 8 | 29 | 58.41 | 5.43 | Defects-in-morphology protein 1-like | Nucleic acid phosphodiester bond hydrolysis | Nuclear region/cytosol | OAA48471 (Metarhizium rileyi RCEF 4871) |
90 | 62 | 21.8 | 22 | 20 | 56.04 | 6.4 | Peroxisomal catalase | Peroxidase/ oxidoreductase activity | Peroxisome | XP_007809457 (Metarhizium acridum CQMa 102) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syazwan, S.A.; Lee, S.Y.; Sajap, A.S.; Lau, W.H.; Omar, D.; Mohamed, R. Interaction between Metarhizium anisopliae and Its Host, the Subterranean Termite Coptotermes curvignathus during the Infection Process. Biology 2021, 10, 263. https://doi.org/10.3390/biology10040263
Syazwan SA, Lee SY, Sajap AS, Lau WH, Omar D, Mohamed R. Interaction between Metarhizium anisopliae and Its Host, the Subterranean Termite Coptotermes curvignathus during the Infection Process. Biology. 2021; 10(4):263. https://doi.org/10.3390/biology10040263
Chicago/Turabian StyleSyazwan, Samsuddin Ahmad, Shiou Yih Lee, Ahmad Said Sajap, Wei Hong Lau, Dzolkhifli Omar, and Rozi Mohamed. 2021. "Interaction between Metarhizium anisopliae and Its Host, the Subterranean Termite Coptotermes curvignathus during the Infection Process" Biology 10, no. 4: 263. https://doi.org/10.3390/biology10040263
APA StyleSyazwan, S. A., Lee, S. Y., Sajap, A. S., Lau, W. H., Omar, D., & Mohamed, R. (2021). Interaction between Metarhizium anisopliae and Its Host, the Subterranean Termite Coptotermes curvignathus during the Infection Process. Biology, 10(4), 263. https://doi.org/10.3390/biology10040263