RNA–Binding Protein HuD as a Versatile Factor in Neuronal and Non–Neuronal Systems
Abstract
:Simple Summary
Abstract
1. Introduction
2. General Characteristics of HuD
3. Regulation of RNA Metabolism by HuD
3.1. Regulation of RNA Metabolism by HuD in Neuronal Systems
3.2. Regulation of RNA Metabolism by HuD in Non–Neuronal Systems
4. Disease Relevance of HuD and Its Regulatory Mechanisms
4.1. Disease Relevance of HuD
4.2. Regulation of HuD Expression
5. Concluding Remarks and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McKee, A.E.; Silver, P.A. Systems perspectives on mRNA processing. Cell Res. 2007, 17, 581–590. [Google Scholar] [CrossRef] [Green Version]
- Lukong, K.E.; Chang, K.W.; Khandjian, E.W.; Richard, S. RNA–binding proteins in human genetic disease. Trends Genet. 2008, 24, 416–425. [Google Scholar] [CrossRef]
- Mitchell, S.F.; Parker, R. Principles and properties of eukaryotic mRNPs. Mol. Cell 2014, 54, 547–558. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.; Pratt, G.; Yeo, G.W.; Moore, M.J. The Clothes Make the mRNA: Past and Present Trends in mRNP Fashion. Annu. Rev. Biochem. 2015, 84, 325–354. [Google Scholar] [CrossRef] [Green Version]
- Gerstberger, S.; Hafner, M.; Tuschl, T. A census of human RNA–binding proteins. Nat. Rev. Genet. 2014, 15, 829–845. [Google Scholar] [CrossRef]
- Lunde, B.M.; Moore, C.; Varani, G. RNA–binding proteins: Modular design for efficient function. Nat. Rev. Mol. Cell Biol. 2007, 8, 479–490. [Google Scholar] [CrossRef] [Green Version]
- Castello, A.; Fischer, B.; Eichelbaum, K.; Horos, R.; Beckmann, B.M.; Strein, C.; Davey, N.E.; Humphreys, D.T.; Preiss, T.; Steinmetz, L.M.; et al. Insights into RNA biology from an atlas of mammalian mRNA–binding proteins. Cell 2012, 149, 1393–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hentze, M.W.; Castello, A.; Schwarzl, T.; Preiss, T. A brave new world of RNA–binding proteins. Nat. Rev. Mol. Cell Biol. 2018, 19, 327–341. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.; Jarvelin, A.I.; Davis, I.; Bond, G.L.; Castello, A. Expanding horizons: New roles for non–canonical RNA–binding proteins in cancer. Curr. Opin. Genet. Dev. 2018, 48, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Gebauer, F.; Schwarzl, T.; Valcarcel, J.; Hentze, M.W. RNA–binding proteins in human genetic disease. Nat. Rev. Genet. 2020. [Google Scholar] [CrossRef]
- Nussbacher, J.K.; Batra, R.; Lagier-Tourenne, C.; Yeo, G.W. RNA–binding proteins in neurodegeneration: Seq and you shall receive. Trends Neurosci. 2015, 38, 226–236. [Google Scholar] [CrossRef] [Green Version]
- Conlon, E.G.; Manley, J.L. RNA–binding proteins in neurodegeneration: Mechanisms in aggregate. Genes Dev. 2017, 31, 1509–1528. [Google Scholar] [CrossRef]
- Pereira, B.; Billaud, M.; Almeida, R. RNA–Binding Proteins in Cancer: Old Players and New Actors. Trends Cancer 2017, 3, 506–528. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Ni, H.; Liu, Y.; Yuan, Y.; Xi, T.; Li, X.; Zheng, L. RNA–binding proteins in tumor progression. J. Hematol. Oncol. 2020, 13, 90. [Google Scholar] [CrossRef]
- Magro, M.G.; Solimena, M. Regulation of beta–cell function by RNA–binding proteins. Mol. Metab. 2013, 2, 348–355. [Google Scholar] [CrossRef]
- Nutter, C.A.; Kuyumcu-Martinez, M.N. Emerging roles of RNA–binding proteins in diabetes and their therapeutic potential in diabetic complications. Wiley Interdiscip. Rev. RNA 2018, 9. [Google Scholar] [CrossRef]
- Szabo, A.; Dalmau, J.; Manley, G.; Rosenfeld, M.; Wong, E.; Henson, J.; Posner, J.B.; Furneaux, H.M. HuD, a paraneoplastic encephalomyelitis antigen, contains RNA–binding domains and is homologous to Elav and Sex–lethal. Cell 1991, 67, 325–333. [Google Scholar] [CrossRef]
- Robinow, S.; Campos, A.R.; Yao, K.M.; White, K. The elav gene product of Drosophila, required in neurons, has three RNP consensus motifs. Science 1988, 242, 1570–1572. [Google Scholar] [CrossRef] [PubMed]
- Okano, H.J.; Darnell, R.B. A hierarchy of Hu RNA binding proteins in developing and adult neurons. J. Neurosci. 1997, 17, 3024–3037. [Google Scholar] [CrossRef]
- Hinman, M.N.; Lou, H. Diverse molecular functions of Hu proteins. Cell Mol. Life Sci. 2008, 65, 3168–3181. [Google Scholar] [CrossRef] [Green Version]
- Colombrita, C.; Silani, V.; Ratti, A. ELAV proteins along evolution: Back to the nucleus? Mol. Cell Neurosci. 2013, 56, 447–455. [Google Scholar] [CrossRef]
- Bronicki, L.M.; Belanger, G.; Jasmin, B.J. Characterization of multiple exon 1 variants in mammalian HuD mRNA and neuron–specific transcriptional control via neurogenin 2. J. Neurosci. 2012, 32, 11164–11175. [Google Scholar] [CrossRef] [Green Version]
- Perrone–Bizzozero, N.; Bird, C.W. Role of HuD in nervous system function and pathology. Front. Biosci. (Schol Ed.) 2013, 5, 554–563. [Google Scholar] [CrossRef] [Green Version]
- Bronicki, L.M.; Jasmin, B.J. Emerging complexity of the HuD/ELAVl4 gene; implications for neuronal development, function, and dysfunction. RNA 2013, 19, 1019–1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akamatsu, W.; Fujihara, H.; Mitsuhashi, T.; Yano, M.; Shibata, S.; Hayakawa, Y.; Okano, H.J.; Sakakibara, S.; Takano, H.; Takano, T.; et al. The RNA–binding protein HuD regulates neuronal cell identity and maturation. Proc. Natl. Acad. Sci. USA 2005, 102, 4625–4630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Alessandro, V.; Muscarella, L.A.; la Torre, A.; Bisceglia, M.; Parrella, P.; Scaramuzzi, G.; Storlazzi, C.T.; Trombetta, D.; Kok, K.; De Cata, A.; et al. Molecular analysis of the HuD gene in neuroendocrine lung cancers. Lung. Cancer 2010, 67, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Abdelmohsen, K.; Hutchison, E.R.; Lee, E.K.; Kuwano, Y.; Kim, M.M.; Masuda, K.; Srikantan, S.; Subaran, S.S.; Marasa, B.S.; Mattson, M.P.; et al. miR–375 inhibits differentiation of neurites by lowering HuD levels. Mol. Cell Biol. 2010, 30, 4197–4210. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.K.; Kim, W.; Tominaga, K.; Martindale, J.L.; Yang, X.; Subaran, S.S.; Carlson, O.D.; Mercken, E.M.; Kulkarni, R.N.; Akamatsu, W.; et al. RNA–binding protein HuD controls insulin translation. Mol. Cell 2012, 45, 826–835. [Google Scholar] [CrossRef] [Green Version]
- Ahn, S.; Tak, H.; Kang, H.; Ryu, S.; Jeong, S.M.; Kim, W.; Lee, E.K. The RNA–binding protein, HuD regulates proglucagon biosynthesis in pancreatic alpha cells. Biochem. Biophys. Res. Commun. 2020, 530, 266–272. [Google Scholar] [CrossRef]
- Inman, M.V.; Levy, S.; Mock, B.A.; Owens, G.C. Gene organization and chromosome location of the neural–specific RNA binding protein Elavl4. Gene 1998, 208, 139–145. [Google Scholar] [CrossRef]
- Sekido, Y.; Bader, S.A.; Carbone, D.P.; Johnson, B.E.; Minna, J.D. Molecular analysis of the HuD gene encoding a paraneoplastic encephalomyelitis antigen in human lung cancer cell lines. Cancer Res. 1994, 54, 4988–4992. [Google Scholar]
- Steller, U.; Kohls, S.; Muller, B.; Soller, R.; Muller, R.; Schlender, J.; Blohm, D.H. The RNA binding protein HuD: Rat cDNA and analysis of the alternative spliced mRNA in neuronal differentiating cell lines P19 and PC12. Brain Res. Mol. Brain Res. 1996, 35, 285–296. [Google Scholar] [CrossRef]
- Clayton, G.H.; Perez, G.M.; Smith, R.L.; Owens, G.C. Expression of mRNA for the elav–like neural–specific RNA binding protein, HuD, during nervous system development. Brain Res. Dev. Brain Res. 1998, 109, 271–280. [Google Scholar] [CrossRef]
- Abe, R.; Uyeno, Y.; Yamamoto, K.; Sakamoto, H. Tissue–specific expression of the gene encoding a mouse RNA binding protein homologous to human HuD antigen. DNA Res. 1994, 1, 175–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keene, J.D. Why is Hu where? Shuttling of early–response–gene messenger RNA subsets. Proc. Natl. Acad. Sci. USA 1999, 96, 5–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, W.J.; Chung, S.; Furneaux, H. The Elav–like proteins bind to AU–rich elements and to the poly(A) tail of mRNA. Nucleic Acids Res. 1997, 25, 3564–3569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Tanaka Hall, T.M. Structural basis for recognition of AU–rich element RNA by the HuD protein. Nat. Struct. Biol. 2001, 8, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, S.; Yano, M.; Igarashi, M.; Okano, H.J.; Okano, H. Alternative role of HuD splicing variants in neuronal differentiation. J. Neurosci. Res. 2015, 93, 399–409. [Google Scholar] [CrossRef]
- Sasahira, T.; Kurihara, M.; Yamamoto, K.; Ueda, N.; Nakashima, C.; Matsushima, S.; Bhawal, U.K.; Kirita, T.; Kuniyasu, H. HuD promotes progression of oral squamous cell carcinoma. Pathobiology 2014, 81, 206–214. [Google Scholar] [CrossRef]
- Uhlen, M.; Fagerberg, L.; Hallstrom, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, A.; Kampf, C.; Sjostedt, E.; Asplund, A.; et al. Proteomics. Tissue–based map of the human proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef]
- Juan-Mateu, J.; Rech, T.H.; Villate, O.; Lizarraga-Mollinedo, E.; Wendt, A.; Turatsinze, J.V.; Brondani, L.A.; Nardelli, T.R.; Nogueira, T.C.; Esguerra, J.L.; et al. Neuron–enriched RNA–binding Proteins Regulate Pancreatic Beta Cell Function and Survival. J. Biol. Chem. 2017, 292, 3466–3480. [Google Scholar] [CrossRef] [Green Version]
- Bellavia, D.; Mecarozzi, M.; Campese, A.F.; Grazioli, P.; Talora, C.; Frati, L.; Gulino, A.; Screpanti, I. Notch3 and the Notch3–upregulated RNA–binding protein HuD regulate Ikaros alternative splicing. EMBO J. 2007, 26, 1670–1680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckel-Mitchener, A.C.; Miera, A.; Keller, R.; Perrone-Bizzozero, N.I. Poly(A) tail length–dependent stabilization of GAP–43 mRNA by the RNA–binding protein HuD. J. Biol. Chem. 2002, 277, 27996–28002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barreau, C.; Paillard, L.; Osborne, H.B. AU–rich elements and associated factors: Are there unifying principles? Nucleic Acids Res. 2005, 33, 7138–7150. [Google Scholar] [CrossRef] [PubMed]
- Cuadrado, A.; Navarro-Yubero, C.; Furneaux, H.; Kinter, J.; Sonderegger, P.; Munoz, A. HuD binds to three AU–rich sequences in the 3’–UTR of neuroserpin mRNA and promotes the accumulation of neuroserpin mRNA and protein. Nucleic Acids Res. 2002, 30, 2202–2211. [Google Scholar] [CrossRef] [Green Version]
- Fukao, A.; Sasano, Y.; Imataka, H.; Inoue, K.; Sakamoto, H.; Sonenberg, N.; Thoma, C.; Fujiwara, T. The ELAV protein HuD stimulates cap–dependent translation in a Poly(A)– and eIF4A–dependent manner. Mol. Cell 2009, 36, 1007–1017. [Google Scholar] [CrossRef]
- Kullmann, M.; Gopfert, U.; Siewe, B.; Hengst, L. ELAV/Hu proteins inhibit p27 translation via an IRES element in the p27 5’UTR. Genes Dev. 2002, 16, 3087–3099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, H.; Hasman, R.A.; Barron, V.A.; Luo, G.; Lou, H. A nuclear function of Hu proteins as neuron–specific alternative RNA processing regulators. Mol. Biol. Cell 2006, 17, 5105–5114. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Hinman, M.N.; Hasman, R.A.; Mehta, P.; Lou, H. Regulation of neuron–specific alternative splicing of neurofibromatosis type 1 pre–mRNA. Mol. Cell Biol. 2008, 28, 1240–1251. [Google Scholar] [CrossRef] [Green Version]
- Mansfield, K.D.; Keene, J.D. Neuron–specific ELAV/Hu proteins suppress HuR mRNA during neuronal differentiation by alternative polyadenylation. Nucleic Acids Res. 2012, 40, 2734–2746. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.L.; Hinman, M.N.; Barron, V.A.; Geng, C.; Zhou, G.; Luo, G.; Siegel, R.E.; Lou, H. Hu proteins regulate alternative splicing by inducing localized histone hyperacetylation in an RNA–dependent manner. Proc. Natl. Acad. Sci. USA 2011, 108, E627–E635. [Google Scholar] [CrossRef] [Green Version]
- Tebaldi, T.; Zuccotti, P.; Peroni, D.; Kohn, M.; Gasperini, L.; Potrich, V.; Bonazza, V.; Dudnakova, T.; Rossi, A.; Sanguinetti, G.; et al. HuD Is a Neural Translation Enhancer Acting on mTORC1–Responsive Genes and Counteracted by the Y3 Small Non–coding RNA. Mol. Cell 2018, 71, 256–270 e210. [Google Scholar] [CrossRef] [Green Version]
- Atlas, R.; Behar, L.; Elliott, E.; Ginzburg, I. The insulin–like growth factor mRNA binding–protein IMP–1 and the Ras–regulatory protein G3BP associate with tau mRNA and HuD protein in differentiated P19 neuronal cells. J. Neurochem. 2004, 89, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.; Kim, H.H.; Kim, P.; Donnelly, C.J.; Kalinski, A.L.; Vuppalanchi, D.; Park, M.; Lee, S.J.; Merianda, T.T.; Perrone–Bizzozero, N.I.; et al. A HuD–ZBP1 ribonucleoprotein complex localizes GAP–43 mRNA into axons through its 3’ untranslated region AU–rich regulatory element. J. Neurochem. 2013, 126, 792–804. [Google Scholar] [CrossRef] [Green Version]
- Akten, B.; Kye, M.J.; Hao Le, T.; Wertz, M.H.; Singh, S.; Nie, D.; Huang, J.; Merianda, T.T.; Twiss, J.L.; Beattie, C.E.; et al. Interaction of survival of motor neuron (SMN) and HuD proteins with mRNA cpg15 rescues motor neuron axonal deficits. Proc. Natl. Acad. Sci. USA 2011, 108, 10337–10342. [Google Scholar] [CrossRef] [Green Version]
- Pandey, P.R.; Sarwade, R.D.; Khalique, A.; Seshadri, V. Interaction of HuDA and PABP at 5’UTR of mouse insulin2 regulates insulin biosynthesis. PLoS ONE 2018, 13, e0194482. [Google Scholar] [CrossRef] [PubMed]
- Fragkouli, A.; Koukouraki, P.; Vlachos, I.S.; Paraskevopoulou, M.D.; Hatzigeorgiou, A.G.; Doxakis, E. Neuronal ELAVL proteins utilize AUF–1 as a co–partner to induce neuron–specific alternative splicing of APP. Sci. Rep. 2017, 7, 44507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolognani, F.; Contente-Cuomo, T.; Perrone-Bizzozero, N.I. Novel recognition motifs and biological functions of the RNA–binding protein HuD revealed by genome–wide identification of its targets. Nucleic Acids Res. 2010, 38, 117–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheckel, C.; Drapeau, E.; Frias, M.A.; Park, C.Y.; Fak, J.; Zucker–Scharff, I.; Kou, Y.; Haroutunian, V.; Ma’ayan, A.; Buxbaum, J.D.; et al. Regulatory consequences of neuronal ELAV–like protein binding to coding and non–coding RNAs in human brain. Elife 2016, 5. [Google Scholar] [CrossRef]
- Dell’Orco, M.; Oliver, R.J.; Perrone-Bizzozero, N. HuD Binds to and Regulates Circular RNAs Derived from Neuronal Development– and Synaptic Plasticity–Associated Genes. Front. Genet. 2020, 11. [Google Scholar] [CrossRef]
- Chung, S.; Eckrich, M.; Perrone-Bizzozero, N.; Kohn, D.T.; Furneaux, H. The Elav–like proteins bind to a conserved regulatory element in the 3’–untranslated region of GAP–43 mRNA. J. Biol. Chem. 1997, 272, 6593–6598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mobarak, C.D.; Anderson, K.D.; Morin, M.; Beckel-Mitchener, A.; Rogers, S.L.; Furneaux, H.; King, P.; Perrone-Bizzozero, N.I. The RNA–binding protein HuD is required for GAP–43 mRNA stability, GAP–43 gene expression, and PKC–dependent neurite outgrowth in PC12 cells. Mol. Biol. Cell 2000, 11, 3191–3203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, K.D.; Morin, M.A.; Beckel-Mitchener, A.; Mobarak, C.D.; Neve, R.L.; Furneaux, H.M.; Burry, R.; Perrone-Bizzozero, N.I. Overexpression of HuD, but not of its truncated form HuD I+II, promotes GAP–43 gene expression and neurite outgrowth in PC12 cells in the absence of nerve growth factor. J. Neurochem. 2000, 75, 1103–1114. [Google Scholar] [CrossRef] [Green Version]
- Anderson, K.D.; Sengupta, J.; Morin, M.; Neve, R.L.; Valenzuela, C.F.; Perrone-Bizzozero, N.I. Overexpression of HuD accelerates neurite outgrowth and increases GAP–43 mRNA expression in cortical neurons and retinoic acid–induced embryonic stem cells in vitro. Exp. Neurol. 2001, 168, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.L.; Afroz, R.; Bassell, G.J.; Furneaux, H.M.; Perrone-Bizzozero, N.I.; Burry, R.W. GAP–43 mRNA in growth cones is associated with HuD and ribosomes. J. Neurobiol. 2004, 61, 222–235. [Google Scholar] [CrossRef]
- Bolognani, F.; Tanner, D.C.; Merhege, M.; Deschenes–Furry, J.; Jasmin, B.; Perrone-Bizzozero, N.I. In vivo post–transcriptional regulation of GAP–43 mRNA by overexpression of the RNA–binding protein HuD. J Neurochem. 2006, 96, 790–801. [Google Scholar] [CrossRef]
- Bolognani, F.; Tanner, D.C.; Nixon, S.; Okano, H.J.; Okano, H.; Perrone-Bizzozero, N.I. Coordinated expression of HuD and GAP–43 in hippocampal dentate granule cells during developmental and adult plasticity. Neurochem. Res. 2007, 32, 2142–2151. [Google Scholar] [CrossRef]
- Lim, C.S.; Alkon, D.L. Protein kinase C stimulates HuD–mediated mRNA stability and protein expression of neurotrophic factors and enhances dendritic maturation of hippocampal neurons in culture. Hippocampus 2012, 22, 2303–2319. [Google Scholar] [CrossRef]
- Allen, M.; Bird, C.; Feng, W.; Liu, G.; Li, W.; Perrone-Bizzozero, N.I.; Feng, Y. HuD promotes BDNF expression in brain neurons via selective stabilization of the BDNF long 3’UTR mRNA. PLoS ONE 2013, 8, e55718. [Google Scholar] [CrossRef]
- Ratti, A.; Fallini, C.; Colombrita, C.; Pascale, A.; Laforenza, U.; Quattrone, A.; Silani, V. Post–transcriptional regulation of neuro–oncological ventral antigen 1 by the neuronal RNA–binding proteins ELAV. J. Biol. Chem. 2008, 283, 7531–7541. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.H.; Li, S.J.; Qi, Y.; Zhao, J.J.; Liu, X.Y.; Han, Y.; Xu, P.; Chen, X.H. HuD regulates the cpg15 expression via the 3’–UTR and AU–rich element. Neurochem Res. 2011, 36, 1027–1036. [Google Scholar] [CrossRef]
- Gomes, C.; Lee, S.J.; Gardiner, A.S.; Smith, T.; Sahoo, P.K.; Patel, P.; Thames, E.; Rodriguez, R.; Taylor, R.; Yoo, S.; et al. Axonal localization of neuritin/CPG15 mRNA is limited by competition for HuD binding. J. Cell Sci. 2017, 130, 3650–3662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deschenes-Furry, J.; Belanger, G.; Perrone-Bizzozero, N.; Jasmin, B.J. Post–transcriptional regulation of acetylcholinesterase mRNAs in nerve growth factor–treated PC12 cells by the RNA–binding protein HuD. J. Biol. Chem. 2003, 278, 5710–5717. [Google Scholar] [CrossRef] [Green Version]
- Deschenes-Furry, J.; Mousavi, K.; Bolognani, F.; Neve, R.L.; Parks, R.J.; Perrone-Bizzozero, N.I.; Jasmin, B.J. The RNA–binding protein HuD binds acetylcholinesterase mRNA in neurons and regulates its expression after axotomy. J. Neurosci. 2007, 27, 665–675. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Tidei, J.J.; Polich, E.D.; Gao, Y.; Zhao, H.; Perrone–Bizzozero, N.I.; Guo, W.; Zhao, X. Positive feedback between RNA–binding protein HuD and transcription factor SATB1 promotes neurogenesis. Proc. Natl. Acad. Sci. USA 2015, 112, E4995–E5004. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.J.; Abdelmohsen, K.; Hutchison, E.R.; Mitchell, S.J.; Grammatikakis, I.; Guo, R.; Noh, J.H.; Martindale, J.L.; Yang, X.; Lee, E.K.; et al. HuD regulates coding and noncoding RNA to induce APP––>Abeta processing. Cell Rep. 2014, 7, 1401–1409. [Google Scholar] [CrossRef] [Green Version]
- Lim, C.S.; Alkon, D.L. PKCepsilon promotes HuD–mediated neprilysin mRNA stability and enhances neprilysin–induced Abeta degradation in brain neurons. PLoS ONE 2014, 9, e97756. [Google Scholar] [CrossRef] [Green Version]
- Behar, L.; Marx, R.; Sadot, E.; Barg, J.; Ginzburg, I. cis–acting signals and trans–acting proteins are involved in tau mRNA targeting into neurites of differentiating neuronal cells. Int. J. Dev. Neurosci. 1995, 13, 113–127. [Google Scholar] [CrossRef]
- Aranda–Abreu, G.E.; Behar, L.; Chung, S.; Furneaux, H.; Ginzburg, I. Embryonic lethal abnormal vision–like RNA–binding proteins regulate neurite outgrowth and tau expression in PC12 cells. J. Neurosci. 1999, 19, 6907–6917. [Google Scholar] [CrossRef]
- Dell’Orco, M.; Sardone, V.; Gardiner, A.S.; Pansarasa, O.; Bordoni, M.; Perrone-Bizzozero, N.I.; Cereda, C. HuD regulates SOD1 expression during oxidative stress in differentiated neuroblastoma cells and sporadic ALS motor cortex. Neurobiol. Dis. 2021, 148, 105211. [Google Scholar] [CrossRef]
- Ross, R.A.; Lazarova, D.L.; Manley, G.T.; Smitt, P.S.; Spengler, B.A.; Posner, J.B.; Biedler, J.L. HuD, a neuronal–specific RNA–binding protein, is a potential regulator of MYCN expression in human neuroblastoma cells. Eur. J. Cancer 1997, 33, 2071–2074. [Google Scholar] [CrossRef]
- Manohar, C.F.; Short, M.L.; Nguyen, A.; Nguyen, N.N.; Chagnovich, D.; Yang, Q.; Cohn, S.L. HuD, a neuronal–specific RNA–binding protein, increases the in vivo stability of MYCN RNA. J. Biol. Chem. 2002, 277, 1967–1973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joseph, B.; Orlian, M.; Furneaux, H. p21(waf1) mRNA contains a conserved element in its 3’–untranslated region that is bound by the Elav–like mRNA–stabilizing proteins. J. Biol. Chem. 1998, 273, 20511–20516. [Google Scholar] [CrossRef] [Green Version]
- Sosanya, N.M.; Cacheaux, L.P.; Workman, E.R.; Niere, F.; Perrone-Bizzozero, N.I.; Raab-Graham, K.F. Mammalian Target of Rapamycin (mTOR) Tagging Promotes Dendritic Branch Variability through the Capture of Ca2+/Calmodulin–dependent Protein Kinase II alpha (CaMKIIalpha) mRNAs by the RNA–binding Protein HuD. J. Biol. Chem. 2015, 290, 16357–16371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratti, A.; Fallini, C.; Cova, L.; Fantozzi, R.; Calzarossa, C.; Zennaro, E.; Pascale, A.; Quattrone, A.; Silani, V. A role for the ELAV RNA–binding proteins in neural stem cells: Stabilization of Msi1 mRNA. J. Cell Sci. 2006, 119, 1442–1452. [Google Scholar] [CrossRef] [Green Version]
- Zimmerman, A.J.; Hafez, A.K.; Amoah, S.K.; Rodriguez, B.A.; Dell’Orco, M.; Lozano, E.; Hartley, B.J.; Alural, B.; Lalonde, J.; Chander, P.; et al. A psychiatric disease–related circular RNA controls synaptic gene expression and cognition. Mol. Psychiatry 2020, 25, 2712–2727. [Google Scholar] [CrossRef] [Green Version]
- Sosanya, N.M.; Huang, P.P.C.; Cacheaux, L.P.; Chen, C.J.; Nguyen, K.; Perrone-Bizzozero, N.I.; Raab-Graham, K.F. Degradation of high affinity HuD targets releases Kv1.1 mRNA from miR–129 repression by mTORC1. J. Cell Biol. 2013, 202, 53–69. [Google Scholar] [CrossRef] [Green Version]
- Ince-Dunn, G.; Okano, H.J.; Jensen, K.B.; Park, W.Y.; Zhong, R.; Ule, J.; Mele, A.; Fak, J.J.; Yang, C.; Zhang, C.; et al. Neuronal Elav–like (Hu) proteins regulate RNA splicing and abundance to control glutamate levels and neuronal excitability. Neuron 2012, 75, 1067–1080. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.; Ahn, S.; Lee, E.K. RNA binding protein HuD and microRNA–203a cooperatively regulate insulinoma–associated 1 mRNA. Biochem. Biophys. Res. Commun. 2020, 521, 971–976. [Google Scholar] [CrossRef]
- Kim, C.; Lee, H.; Kang, H.; Shin, J.J.; Tak, H.; Kim, W.; Gorospe, M.; Lee, E.K. RNA–binding protein HuD reduces triglyceride production in pancreatic beta cells by enhancing the expression of insulin–induced gene 1. Biochim. Biophys. Acta 2016, 1859, 675–685. [Google Scholar] [CrossRef]
- Kim, C.; Kim, W.; Lee, H.; Ji, E.; Choe, Y.J.; Martindale, J.L.; Akamatsu, W.; Okano, H.; Kim, H.S.; Nam, S.W.; et al. The RNA–binding protein HuD regulates autophagosome formation in pancreatic beta cells by promoting autophagy–related gene 5 expression. J. Biol. Chem. 2014, 289, 112–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, Y.; Tak, H.; Kim, C.; Kang, H.; Ji, E.; Ahn, S.; Jung, M.; Kim, H.L.; Lee, J.H.; Kim, W.; et al. RNA binding protein HuD contributes to beta–cell dysfunction by impairing mitochondria dynamics. Cell Death Differ. 2020, 27, 1633–1643. [Google Scholar] [CrossRef]
- Kim, C.; Jeong, D.E.; Heo, S.; Ji, E.; Rho, J.G.; Jung, M.; Ahn, S.; Kim, Y.J.; Kim, Y.S.; Nam, S.W.; et al. Reduced expression of the RNA–binding protein HuD in pancreatic neuroendocrine tumors correlates with low p27(Kip1) levels and poor prognosis. J. Pathol 2018, 246, 231–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Molfenter, J.; Zhu, H.; Lou, H. Promotion of exon 6 inclusion in HuD pre–mRNA by Hu protein family members. Nucleic Acids Res. 2010, 38, 3760–3770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, Q.; Stump, M.R.; Zhou, Z. Regulation of Kv11.1 potassium channel C–terminal isoform expression by the RNA–binding proteins HuR and HuD. J. Biol. Chem. 2018, 293, 19624–19632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subhadra, B.; Schaller, K.; Seeds, N.W. Neuroserpin up–regulation in the Alzheimer’s disease brain is associated with elevated thyroid hormone receptor–beta1 and HuD expression. Neurochem. Int. 2013, 63, 476–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amadio, M.; Pascale, A.; Wang, J.; Ho, L.; Quattrone, A.; Gandy, S.; Haroutunian, V.; Racchi, M.; Pasinetti, G.M. nELAV proteins alteration in Alzheimer’s disease brain: A novel putative target for amyloid–beta reverberating on AbetaPP processing. J. Alzheimers Dis 2009, 16, 409–419. [Google Scholar] [CrossRef]
- Noureddine, M.A.; Qin, X.J.; Oliveira, S.A.; Skelly, T.J.; van der Walt, J.; Hauser, M.A.; Pericak-Vance, M.A.; Vance, J.M.; Li, Y.J. Association between the neuron–specific RNA–binding protein ELAVL4 and Parkinson disease. Hum. Genet. 2005, 117, 27–33. [Google Scholar] [CrossRef]
- Haugarvoll, K.; Toft, M.; Ross, O.A.; Stone, J.T.; Heckman, M.G.; White, L.R.; Lynch, T.; Gibson, J.M.; Wszolek, Z.K.; Uitti, R.J.; et al. ELAVL4, PARK10, and the Celts. Mov. Disord. 2007, 22, 585–587. [Google Scholar] [CrossRef]
- DeStefano, A.L.; Latourelle, J.; Lew, M.F.; Suchowersky, O.; Klein, C.; Golbe, L.I.; Mark, M.H.; Growdon, J.H.; Wooten, G.F.; Watts, R.; et al. Replication of association between ELAVL4 and Parkinson disease: The GenePD study. Hum. Genet. 2008, 124, 95–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Santis, R.; Alfano, V.; de Turris, V.; Colantoni, A.; Santini, L.; Garone, M.G.; Antonacci, G.; Peruzzi, G.; Sudria–Lopez, E.; Wyler, E.; et al. Mutant FUS and ELAVL4 (HuD) Aberrant Crosstalk in Amyotrophic Lateral Sclerosis. Cell Rep. 2019, 27, 3818–3831 e3815. [Google Scholar] [CrossRef] [Green Version]
- Tiruchinapalli, D.M.; Caron, M.G.; Keene, J.D. Activity–dependent expression of ELAV/Hu RBPs and neuronal mRNAs in seizure and cocaine brain. J. Neurochem. 2008, 107, 1529–1543. [Google Scholar] [CrossRef] [PubMed]
- Hakak, Y.; Walker, J.R.; Li, C.; Wong, W.H.; Davis, K.L.; Buxbaum, J.D.; Haroutunian, V.; Fienberg, A.A. Genome–wide expression analysis reveals dysregulation of myelination–related genes in chronic schizophrenia. Proc. Natl. Acad. Sci. USA 2001, 98, 4746–4751. [Google Scholar] [CrossRef] [Green Version]
- Dalmau, J.; Furneaux, H.M.; Gralla, R.J.; Kris, M.G.; Posner, J.B. Detection of the anti–Hu antibody in the serum of patients with small cell lung cancer––a quantitative western blot analysis. Ann. Neurol. 1990, 27, 544–552. [Google Scholar] [CrossRef]
- Dalmau, J.; Furneaux, H.M.; Cordon–Cardo, C.; Posner, J.B. The expression of the Hu (paraneoplastic encephalomyelitis/sensory neuronopathy) antigen in human normal and tumor tissues. Am. J. Pathol. 1992, 141, 881–886. [Google Scholar]
- Wang, F.; Lu, J.; Li, S.; Huo, X.; Liu, X.; Du, X.; Li, C.; Wang, J.; Chen, Z. Application of Serum ELAVL4 (HuD) Antigen Assay for Small Cell Lung Cancer Diagnosis. Anticancer Res. 2017, 37, 4515–4522. [Google Scholar] [CrossRef] [PubMed]
- King, P.H. Differential expression of the neuroendocrine genes Hel–N1 and HuD in small–cell lung carcinoma: Evidence for down–regulation of HuD in the variant phenotype. Int. J. Cancer 1997, 74, 378–382. [Google Scholar] [CrossRef]
- D’Alessandro, V.; Muscarella, L.A.; Copetti, M.; Zelante, L.; Carella, M.; Vendemiale, G. Molecular detection of neuron–specific ELAV–like–positive cells in the peripheral blood of patients with small–cell lung cancer. Cell Oncol. 2008, 30, 291–297. [Google Scholar] [CrossRef]
- Ball, N.S.; King, P.H. Neuron–specific hel–N1 and HuD as novel molecular markers of neuroblastoma: A correlation of HuD messenger RNA levels with favorable prognostic features. Clin. Cancer Res. 1997, 3, 1859–1865. [Google Scholar]
- Chagnovich, D.; Fayos, B.E.; Cohn, S.L. Differential activity of ELAV–like RNA–binding proteins in human neuroblastoma. J. Biol. Chem. 1996, 271, 33587–33591. [Google Scholar] [CrossRef] [Green Version]
- Cuadrado, A.; Navarro-Yubero, C.; Furneaux, H.; Munoz, A. Neuronal HuD gene encoding a mRNA stability regulator is transcriptionally repressed by thyroid hormone. J. Neurochem. 2003, 86, 763–773. [Google Scholar] [CrossRef]
- Loffreda, A.; Nizzardo, M.; Arosio, A.; Ruepp, M.D.; Calogero, R.A.; Volinia, S.; Galasso, M.; Bendotti, C.; Ferrarese, C.; Lunetta, C.; et al. miR–129–5p: A key factor and therapeutic target in amyotrophic lateral sclerosis. Prog. Neurobiol. 2020, 190, 101803. [Google Scholar] [CrossRef]
- Popovitchenko, T.; Park, Y.; Page, N.F.; Luo, X.; Krsnik, Z.; Liu, Y.; Salamon, I.; Stephenson, J.D.; Kraushar, M.L.; Volk, N.L.; et al. Translational derepression of Elavl4 isoforms at their alternative 5’ UTRs determines neuronal development. Nat. Commun. 2020, 11, 1674. [Google Scholar] [CrossRef] [PubMed]
- Hubers, L.; Valderrama-Carvajal, H.; Laframboise, J.; Timbers, J.; Sanchez, G.; Cote, J. HuD interacts with survival motor neuron protein and can rescue spinal muscular atrophy–like neuronal defects. Hum. Mol. Genet. 2011, 20, 553–579. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, T.; Mori, Y.; Chu, D.L.; Koyama, Y.; Miyata, S.; Tanaka, H.; Yachi, K.; Kubo, T.; Yoshikawa, H.; Tohyama, M. CARM1 regulates proliferation of PC12 cells by methylating HuD. Mol. Cell Biol. 2006, 26, 2273–2285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascale, A.; Amadio, M.; Scapagnini, G.; Lanni, C.; Racchi, M.; Provenzani, A.; Govoni, S.; Alkon, D.L.; Quattrone, A. Neuronal ELAV proteins enhance mRNA stability by a PKCalpha–dependent pathway. Proc. Natl. Acad. Sci. USA 2005, 102, 12065–12070. [Google Scholar] [CrossRef] [Green Version]
- Nussbacher, J.K.; Tabet, R.; Yeo, G.W.; Lagier-Tourenne, C. Disruption of RNA Metabolism in Neurological Diseases and Emerging Therapeutic Interventions. Neuron 2019, 102, 294–320. [Google Scholar] [CrossRef]
Target | Study Systems | Regulatory Mechanism | Function | Ref. |
---|---|---|---|---|
I. Neuronal cells or brain | ||||
Acetylcholinesterase (AChE) | Rat pheochromocytoma–derived cell PC12 Superior cervical ganglion (SCG) from rat Brain from HuD O/E mice | mRNA stability ↑ | [73,74] | |
Amyloid Precursor Protein (APP) | Human neuroblastoma SK–N–F1 Brain from HuD O/E mice Brain from AD patient | mRNA stability ↑ | APP → Aβ processing ↑ | [76] |
Human neuroblastoma SK–N–SH | Alternative splicing(Exon 7 and 8 exclusion ↑) | [57] | ||
β–site APP–cleaving enzyme 1 (BACE1) and BACE–AS | Human neuroblastoma SK–N–F1 Brain from HuD O/E mice Brain from AD patient | mRNA stability ↑ | APP → Aβ processing ↑ | [76] |
Brain Derived Neurotrophic Factor (BDNF) long 3’UTR | Hippocampal neuron from E18 rat Hippocampal, cortical neuron from E17 mice Mouse catecholaminergic neural tumor cell CAD Brain from HuD O/E mice | mRNA stability ↑ | Dendritic maturation ↑ | [68,69] |
Calcitonin Gene–Related Peptide (CGPR) pre–mRNA | Human cervical tumor Hela Chinese hamster ovary (CHO) cell Mouse testicular teratoma F9 Rat pheochromocytoma–derived cell PC12 Human neuroblastoma SK–N–SH Mouse teratocarcinoma P19 Rat medullary thyroid carcinoma CA77 | Alternative splicing (Exon4 exclusion ↑) | [48] | |
Calcium/Calmodulin Dependent Protein Kinase II Alpha (CaMKⅡα) | Hippocampal neuron from E18–19 rat | mRNA stability ↑ | [84] | |
CDKN1A (p21) | Rat pheochromocytoma–derived cell PC12 | mRNA stability ↑ | Cell proliferation ↓ | [83] |
circHomer protein homolog1a (cirHomer1a) | Brain (frontal cortex) from HuD K/O and O/E mice | Synaptic expression ↑ | [60,86] | |
Growth Associated Protein 43 (GAP–43) | Rat pheochromocytoma–derived cell PC12 Mouse embryonic stem cell AB2.2 Cortical neuron from E19 rat Rat DRG/mouse neuroblastoma hybrid cell F11 Brain from rat Brain from HuD K/O and O/E mice | mRNA stability ↑ Transportation into neurites ↑ | Neurite outgrowth ↑ | [43,54,61,62,63,64,65,66,67] |
Glutaminase (Gls) | Brain (cortex) from HuC, HuD double K/O mice | Alternative splicing (Gls–long isoform ↓) | [88] | |
MYCN | Human neuroblastoma NBL–W–N Mouse fibroblast NIH 3T3 | mRNA stability ↑ | [81,82] | |
Neprilysin (NEP) | Human neuroblastoma SK–N–SH | mRNA stability ↑ | Aβ levels ↓ by NEP | [77] |
Nerve Growth Factor (NGF) | Hippocampal neuron from E18 rat | mRNA stability ↑ | Dendritic maturation ↑ | [68] |
Neuritin 1 (Nrn1/Cpg15) | Rat pheochromocytoma–derived cell PC12 Human neuroblastoma SH–SY5Y DRG neuron from rat Cortical neuron from E18 rat Hippocampal neuron from E18 rat Rat DRG/mouse neuroblastoma hybrid cell F11 Brain from HuD KO mice | Axonal localization ↑ mRNA stability ↑ | [55,71,72] | |
Neurofibromatosis type 1 (NF–1) pre–mRNA | Human cervical tumor cell Hela Rat medullary thyroid carcinoma CA77 Mouse embryonic stem cell R1 Cerebellar neurons from mice | Alternative splicing (Exon23a skipping ↑) Local transcription rate ↑ (NF–1 gene exon 23a) | [49,51] | |
Neuroserpin | Brain from rat Rat pheochromocytoma–derived cell PC12 | mRNA stability ↑ (?) | [45] | |
Neurotrophin 3 (NT–3) | Hippocampal neuron from E18 rat | mRNA stability ↑ | Dendritic maturation ↑ | [68] |
NOVA Alternative Splicing Regulator 1 (NOVA–1) | Mouse motor neuronal cell NSC34 | mRNA stability ↑ Translation ↑ | Splicing activity | [70] |
Musashi–1 (MSI1) | Neural stem/progenitor cell (NSC) in SVZfrom mice Human neuroblastoma SH–SY5Y | mRNA stability ↑ | [85] | |
Potassium voltage–gated channel subfamily A member 1 (Kv1.1) | Cortical neuron from E18–19 rat | Translation ↑ | [87] | |
Special AT–rich DNA–binding protein 1 (SATB1) | Neural stem/progenitor cell (NSC) in SVZ from HuD KO mice | mRNA stability ↑ | NSC differentiation ↑ | [75] |
Superoxide Dismutase 1 (SOD1) long 3′UTR | Human neuroblastoma SH–SY5Y Brain from ALS patients | mRNA stability ↑ | [80] | |
Tau | Rat pheochromocytoma–derived cell PC12Mouse teratocarcinoma P19 | Transportation into neurites ↑ | Neurite outgrowth ↑ | [53,78,79] |
Others: mTORC–responsive genes | Mouse motor neuronal cell NSC34 | Translation ↑ | [52] | |
II. Non–neuronal cells or other tissues | ||||
Autophagy Related Gene 5 (ATG5) | Mouse insulinoma βTC6 Pancreatic islet from HuD KO mice, db/db mice | Translation ↑ | Autophagosome formation ↑ | [89] |
CDKN1B (p27) | Human embryonic kidney cell 293T and human cervical tumor Hela Mouse insulinoma βTC6 and MIN6 Pancreatic NET from patients | Translation ↑ or ↓ | Cell proliferation ↑ or ↓ | [47,90] |
HuD mRNA | Human cervical tumor HelaRat medullary thyroid carcinoma CA77 | Alternative splicing(Exon 6 inclusion ↑) | [91] | |
Hu Antigen R (HuR) | Mouse teratocarcinoma P19 | Alternative polyadenylation ↑ | [50] | |
Insulin Induced Gene 1 (Insig1) | Mouse insulinoma βTC6 | Translation ↑ | TG accumulation ↓ | [92] |
Insulinoma–Associated Protein 1 (INSM1) | Mouse insulinoma βTC6 | mRNA stability ↓ | [93] | |
Ikaros (IK) | Thymocyte from N3–Ictg, N3–Ictg/pTα−/− and pTα–/– mice Human T–All cell line Molt–3 | Alternative splicing (Ik–6, 8, 5/7, 9 ↑) | T cell lymphomagenesis | [42] |
Matrix Metallopeptidase–2 and –9 (MMP–2 and –9) | Human oral squamous cell carcinoma HSC3 | mRNA stability ↑ (?) | [39] | |
Mitofusin 2 (Mfn2) | Mouse insulinoma βTC6Pancreatic islet from HuD KO mice | Mitochondria fusion ↑ | [94] | |
Potassium Voltage–Gated Channel Subfamily H Member 2 (KCNH2) | Human embryonic kidney 293 | Alternative polyadenylation ↓ | Kv11.1a isoform expression ↑ Kv11.1 channel current ↑ | [95] |
Preproglucagon (Gcg) | Mouse glucagonoma αTC1 Pancreatic islet from HuD KO mice | Translation ↑ | Glucagon biosynthesis | [29] |
Preproinsulin2 (Ins2) | Mouse insulinoma βTC6 Pancreatic islet from HuD KO mice | Translation ↓ | Insulin biosynthesis | [28,56] |
Vascular Endothelial Growth Factor–A and –D (VEGF–A and VEGF–D) | Human oral squamous cell carcinoma HSC3 | mRNA stability ↑ (?) | [39] |
Disease | Disease Relevance of HuD | Ref. |
---|---|---|
Alzheimer’s diseases (AD) | HuD mRNA and HuD protein ↑ in superior temporal gyrus (STG) of AD patients | [76] |
HuD protein ↑ in the brain of AD patients | [96] | |
nELAVL protein ↓ in hippocampus of AD patients | [97] | |
Parkinson’s diseases (PD) | Several SNPs (rs967582, 2494876, 3902720) were identified. | [98,99,100] |
Epilepsy | HuD mRNA↑ in dentate gyrus of kainic acid–induced seizures model | [67] |
Dendritic localization of HuD protein ↑ in hippocampal neurons of pilocarpine–induced seizure model | [101] | |
Schizophrenia | HuD mRNA ↑ in the dorsolateral prefrontal cortex from patients with chronic schizophrenia | [102] |
Amyotrophic lateral sclerosis (ALS) | HuD mRNA and HuD protein ↑ in motor cortex of sporadic ALS patients | [80] |
HuD protein ↑ in human iPSCs carrying the FUSP525L mutation | [103] | |
Neuroblastoma | HuD mRNA was detected in primary NB tumor samples. | [104] |
Small cell lung carcinoma (SCLC) | HuD protein ↑ in serum from SCLC patients | [105,106,107] |
HuD mRNA ↑ in primary tissue from SCLC patients | [108] | |
HuD mRNA ↑ in blood from SCLC patients | [109] | |
Oral squamous cell carcinoma (OSCC) | HuD (+) group is associated with poor prognosis of OSCC patients. | [39] |
Pancreatic neuroendocrine tumor (PNET) | HuD (–) group is associated with poor prognosis of PNET patients. | [90] |
Type 2 diabetes mellitus (T2DM) | HuD mRNA and HuD protein ↓ in islet from db/db mice | [94] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, M.; Lee, E.K. RNA–Binding Protein HuD as a Versatile Factor in Neuronal and Non–Neuronal Systems. Biology 2021, 10, 361. https://doi.org/10.3390/biology10050361
Jung M, Lee EK. RNA–Binding Protein HuD as a Versatile Factor in Neuronal and Non–Neuronal Systems. Biology. 2021; 10(5):361. https://doi.org/10.3390/biology10050361
Chicago/Turabian StyleJung, Myeongwoo, and Eun Kyung Lee. 2021. "RNA–Binding Protein HuD as a Versatile Factor in Neuronal and Non–Neuronal Systems" Biology 10, no. 5: 361. https://doi.org/10.3390/biology10050361
APA StyleJung, M., & Lee, E. K. (2021). RNA–Binding Protein HuD as a Versatile Factor in Neuronal and Non–Neuronal Systems. Biology, 10(5), 361. https://doi.org/10.3390/biology10050361