Tobacco Use and Periodontal Disease—The Role of Microvascular Dysfunction
Abstract
:Simple Summary
Abstract
1. Introduction
2. Pathophysiology of Periodontal Disease
3. Tobacco: Forms of Use and Composition
3.1. Forms of Use
3.2. Composition
4. Effects of Nicotine Administration and Tobacco Use on Cardiovascular Function
5. Effects of Nicotine and Tobacco Use on Oral Microcirculation
5.1. Acute Effects of Nicotine on Oral Microvascular Perfusion
5.2. Acute Effects of Tobacco Use on Oral Microvascular Perfusion
5.3. Chronic Effects of Tobacco Use on Oral Microvascular Perfusion
5.4. Effects of Tobacco Use on Oral Microvascular Morphology
5.5. Effects of Tobacco Use on the Vascular Endothelial Adhesive Properties
5.6. Chronic Effects of Tobacco Use on Periodontal Inflammation
5.7. Chronic Effects of Tobacco Use on Periodontal Angiogenesis
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Könönen, E.; Gursoy, M.; Gursoy, U. Periodontitis: A Multifaceted Disease of Tooth-Supporting Tissues. J. Clin. Med. 2019, 8, 1135. [Google Scholar] [CrossRef] [Green Version]
- Eke, P.I.; Dye, B.A.; Wei, L.; Slade, G.D.; Thornton-Evans, G.O.; Borgnakke, W.S.; Taylor, G.W.; Page, R.C.; Beck, J.D.; Genco, R.J. Update on Prevalence of Periodontitis in Adults in the United States: NHANES 2009 to 2012. J Periodontol 2015, 86, 139–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrizales-Sepúlveda, E.F.; Ordaz-Farías, A.; Vera-Pineda, R.; Flores-Ramírez, R. Periodontal Disease, Systemic Inflammation and the Risk of Cardiovascular Disease. Hear. Lung Circ. 2018, 27, 1327–1334. [Google Scholar] [CrossRef] [PubMed]
- Dumitrescu, A.L. Depression and inflammatory periodontal disease considerations-an interdisciplinary approach. Front. Psychol. 2016, 7, 347. [Google Scholar] [CrossRef] [Green Version]
- Abrishami, M.; Zamharir, Z.A.; Ghorbanzadeh, S. Association of periodontal diseases to anxiety and stress. Int. J. Contemp. Dent. Med. Rev. 2015, 2015. [Google Scholar] [CrossRef]
- Vettore, M.V.; Leão, A.T.T.; Monteiro Da Silva, A.M.; Quintanilha, R.S.; Lamarca, G.A. The relationship of stress and anxiety with chronic periodontitis. J. Clin. Periodontol. 2003, 30, 394–402. [Google Scholar] [CrossRef]
- Solis, A.C.O.; Lotufo, R.F.M.; Pannuti, C.M.; Brunheiro, E.C.; Marques, A.H.; Lotufo-Neto, F. Association of periodontal disease to anxiety and depression symptoms, and psychosocial stress factors. J. Clin. Periodontol. 2004, 31, 633–638. [Google Scholar] [CrossRef]
- Elter, J.R.; White, B.A.; Gaynes, B.N.; Bader, J.D. Relationship of Clinical Depression to Periodontal Treatment Outcome. J. Periodontol. 2002, 73, 441–449. [Google Scholar] [CrossRef]
- Kinane, D.F.; Stathopoulou, P.G.; Papapanou, P.N. Periodontal diseases. Nat. Rev. Dis. Prim. 2017, 3, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Nibali, L.; Di Iorio, A.; Tu, Y.K.; Vieira, A.R. Host genetics role in the pathogenesis of periodontal disease and caries. J. Clin. Periodontol. 2017, 44, S52–S78. [Google Scholar] [CrossRef] [Green Version]
- Sälzer, S.; Graetz, C.; Dörfer, C.E.; Slot, D.E.; Van der Weijden, F.A. Contemporary practices for mechanical oral hygiene to prevent periodontal disease. Periodontol. 2000 2020, 84, 35–44. [Google Scholar] [CrossRef]
- Gunepin, M.; Derache, F.; Trousselard, M.; Salsou, B.; Risso, J.J. Impact of chronic stress on periodontal health. J. Oral Med. Oral Surg. 2018, 24, 44–50. [Google Scholar] [CrossRef]
- Taylor, G.W. Bidirectional interrelationships between diabetes and periodontal diseases: An epidemiologic perspective. Ann. Periodontol. 2001, 6, 99–112. [Google Scholar] [CrossRef]
- Soskolne, A.W.; Klinger, A. The relationship between periodontal diseases and respiratory diseases. Ann. Periodontol. 2001, 6, 91–98. [Google Scholar] [CrossRef]
- Zhang, Y.; He, J.; He, B.; Huang, R.; Li, M. Effect of tobacco on periodontal disease and oral cancer. Tob. Induc. Dis. 2019, 17, 1–15. [Google Scholar] [CrossRef]
- Warnakulasuriya, S.; Bornstein, T.D.; Peidró, M.M.; Casals, E.; Preshaw, P.M.; Walter, C.; Wennström, J.L.; Bergström, J. Oral health risks of tobacco use and effects of cessation. Int. Dent. J. 2010, 60, 7–30. [Google Scholar] [CrossRef]
- Bibars, A.R.M.; Obeidat, S.R.; Khader, Y.; Mahasneh, A.M.; Khabour, O.F. The effect of waterpipe smoking on periodontal health. Oral Health Prev. Dent. 2015, 13, 253–259. [Google Scholar] [CrossRef]
- Kulkarni, V.; Uttamani, J.R.; Bhatavadekar, N.B. Comparison of clinical periodontal status among habitual smokeless-tobacco users and cigarette smokers. Int. Dent. J. 2016, 66, 29–35. [Google Scholar] [CrossRef]
- Giovannoni, M.L.; Valdivia-Gandur, I.; de Luaces, V.L.; Véliz, H.V.; Balasubbaiah, Y.; Chimenos-Kustner, E. Betel and tobacco chewing habit and its relation to risk factors for periodontal disease. Oral Dis. 2018, 24, 829–839. [Google Scholar] [CrossRef]
- Geisinger, M.L.; Geurs, N.C.; Ogdon, D.; Reddy, M.S. Targeting Underlying Biologic Mechanisms in Selecting Adjunctive Therapies to Improve Periodontal Treatment in Smokers: A Commentary. J. Periodontol. 2017, 88, 703–710. [Google Scholar] [CrossRef]
- Kotsakis, G.A.; Javed, F.; Hinrichs, J.E.; Karoussis, I.K.; Romanos, G.E. Impact of Cigarette Smoking on Clinical Outcomes of Periodontal Flap Surgical Procedures: A Systematic Review and Meta-Analysis. J. Periodontol. 2015, 86, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Bunæs, D.F.; Lie, S.A.; Enersen, M.; Aastrøm, A.N.; Mustafa, K.; Leknes, K.N. Site-specific treatment outcome in smokers following non-surgical and surgical periodontal therapy. J. Clin. Periodontol. 2015, 42, 933–942. [Google Scholar] [CrossRef] [Green Version]
- Papantonopoulos, G.H. Smoking Influences Decision Making in Periodontal Therapy: A Retrospective Clinical Study. J. Periodontol. 1999, 70, 1166–1173. [Google Scholar] [CrossRef]
- Nishida, N.; Yamamoto, Y.; Tanaka, M.; Maeda, K.; Kataoka, K.; Nakayama, K.; Morimoto, K.; Shizukuishi, S. Association between passive smoking and salivary markers related to periodontitis. J. Clin. Periodontol. 2006, 33, 717–723. [Google Scholar] [CrossRef]
- Sanders, A.E.; Slade, G.D.; Beck, J.D.; Ágústsdóttir, H. Secondhand smoke and periodontal disease: Atherosclerosis Risk in Communities study. Am. J. Public Health 2011, 101, 339–346. [Google Scholar] [CrossRef]
- Bergström, J.; Eliasson, S.; Dock, J. Exposure to tobacco smoking and periodontal health. J. Clin. Periodontol. 2000, 27, 61–68. [Google Scholar] [CrossRef]
- Bergström, J.; Boström, L. Tobacco smoking and periodontal hemorrhagic responsiveness. J. Clin. Periodontol. 2001, 28, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Gutterman, D.D.; Chabowski, D.S.; Kadlec, A.O.; Durand, M.J.; Freed, J.K.; Aissa, K.A.; Beyer, A.M. The Human Microcirculation—Regulation of flow and Beyond. Circ. Res. 2016, 118, 157–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quillen, J.E.; Rossen, J.D.; Oskarsson, H.J.; Minor, R.L.; Lopez, J.A.G.; Winniford, M.D. Acute effect of cigarette smoking on the coronary circulation: Constriction of epicardial and resistance vessels. J. Am. Coll. Cardiol. 1993, 22, 642–647. [Google Scholar] [CrossRef] [Green Version]
- Akishima, S.; Matsushita, S.; Sato, F.; Hyodo, K.; Imazuru, T.; Enomoto, Y.; Noma, M.; Hiramatsu, Y.; Shigeta, O.; Sakakibara, Y. Cigarette-Smoke-Induced Vasoconstriction of Peripheral Arteries—Evaluation by Synchrotron Radiation Microangiography. Circ. J. 2007, 71, 418–422. [Google Scholar] [CrossRef]
- Van Dyke, T.E. Inflammation and Periodontal Diseases: A Reappraisal. J. Periodontol. 2008, 79, 1501–1502. [Google Scholar] [CrossRef] [PubMed]
- Abusleme, L.; Dupuy, A.K.; Dutzan, N.; Silva, N.; Burleson, J.A.; Strausbaugh, L.D.; Gamonal, J.; Diaz, P.I. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J. 2013, 7, 1016–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quirynen, M.; Teughels, W.; de Soete, M.; Steenberghe, D. Van Topical antiseptics and antibiotics in the initial therapy of chronic adult periodontitis: Microbiological aspects. Periodontol. 2000 2002, 28, 72–90. [Google Scholar] [CrossRef] [PubMed]
- Van Essche, M.; Loozen, G.; Godts, C.; Boon, N.; Pauwels, M.; Quirynen, M.; Teughels, W. Bacterial Antagonism Against Periodontopathogens. J. Periodontol. 2013, 84, 801–811. [Google Scholar] [CrossRef] [PubMed]
- Darveau, R.P. Periodontitis: A polymicrobial disruption of host homeostasis. Nat. Rev. Microbiol. 2010, 8, 481–490. [Google Scholar] [CrossRef]
- Cekici, A.; Kantarci, A.; Hasturk, H.; Van Dyke, T.E. Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontol. 2000 2014, 64, 57–80. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Dong, G.; Guo, L.; Graves, D.T. The function of dendritic cells in modulating the host response. Mol. Oral Microbiol. 2018, 33, 13–21. [Google Scholar] [CrossRef]
- Tang, D.; Shi, Y.; Kang, R.; Li, T.; Xiao, W.; Wang, H.; Xiao, X. Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1. J. Leukoc. Biol. 2007, 81, 741–747. [Google Scholar] [CrossRef]
- AlQranei, M.S.; Chellaiah, M.A. Osteoclastogenesis in periodontal diseases: Possible mediators and mechanisms. J. Oral Biosci. 2020, 62, 123–130. [Google Scholar] [CrossRef]
- Graves, D.T.; Oates, T.; Garlet, G.P. Review of osteoimmunology and the host response in endodontic and periodontal lesions. J. Oral Microbiol. 2011, 3, 5304. [Google Scholar] [CrossRef]
- Navas-Acien, A. Global tobacco use: Old and new products. Ann. Am. Thorac. Soc. 2018, 15, S69–S75. [Google Scholar] [CrossRef]
- Forey, B.A.; Thornton, A.J.; Lee, P.N. Systematic review with meta-analysis of the epidemiological evidence relating smoking to COPD, chronic bronchitis and emphysema. BMC Pulm. Med. 2011, 11. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, T.; Tuder, R.M. Pathobiology of cigarette smoke-induced chronic obstructive pulmonary disease. Physiol. Rev. 2007, 87, 1047–1082. [Google Scholar] [CrossRef]
- Walser, T.; Cui, X.; Yanagawa, J.; Lee, J.M.; Heinrich, E.; Lee, G.; Sharma, S.; Dubinett, S.M. Smoking and lung cancer: The role of inflammation. Proc. Am. Thorac. Soc. 2008, 5, 811–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Li, M.D. Establishment of a strong link between smoking and cancer pathogenesis through DNA methylation analysis. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kondo, T.; Nakano, Y.; Adachi, S.; Murohara, T. Effects of tobacco smoking on cardiovascular disease. Circ. J. 2019, 83, 1980–1985. [Google Scholar] [CrossRef] [Green Version]
- Ding, N.; Sang, Y.; Chen, J.; Ballew, S.H.; Kalbaugh, C.A.; Salameh, M.J.; Blaha, M.J.; Allison, M.; Heiss, G.; Selvin, E.; et al. Cigarette Smoking, Smoking Cessation, and Long-Term Risk of 3 Major Atherosclerotic Diseases. J. Am. Coll. Cardiol. 2019, 74, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Perricone, C.; Versini, M.; Ben-Ami, D.; Gertel, S.; Watad, A.; Segel, M.J.; Ceccarelli, F.; Conti, F.; Cantarini, L.; Bogdanos, D.P.; et al. Smoke and autoimmunity: The fire behind the disease. Autoimmun. Rev. 2016, 15, 354–374. [Google Scholar] [CrossRef]
- Costenbader, K.H.; Karlson, E.W. Cigarette smoking and autoimmune disease: What can we learn from epidemiology? Lupus 2006, 15, 737–745. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Whitsel, L.P.; Blaha, M.J.; Huffman, M.D.; Krishan-Sarin, S.; Maa, J.; Rigotti, N.; Robertson, R.M.; Warner, J.J. New and Emerging Tobacco Products and the Nicotine Endgame: The Role of Robust Regulation and Comprehensive Tobacco Control and Prevention: A Presidential Advisory From the American Heart Association. Circulation 2019, 139, E937–E958. [Google Scholar] [CrossRef]
- Oakes, J.M.; Fuchs, R.M.; Gardner, J.D.; Lazartigues, E.; Yue, X. Nicotine and the Renin-Angiotensin System. Am J Physiol Regul Integr Comp Physiol 2018, 315, R895–R906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Striley, C.W.; Nutley, S.K. World vaping update. Curr. Opin. Psychiatry 2020, 33, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Knorst, M.M.; Benedetto, I.G.; Hoffmeister, M.C.; Gazzana, M.B. The electronic cigarette: The new cigarette of the 21st century? J. Bras. Pneumol. 2014, 40, 564–572. [Google Scholar] [CrossRef]
- Berman, M.; Crane, R.; Seiber, E.; Munur, M. Estimating the cost of a smoking employee. Tob. Control 2014, 23, 428–433. [Google Scholar] [CrossRef] [Green Version]
- Digiacomo, S.I.; Jazayeri, M.A.; Barua, R.S.; Ambrose, J.A. Environmental tobacco smoke and cardiovascular disease. Int. J. Environ. Res. Public Health 2019, 16, 96. [Google Scholar] [CrossRef] [Green Version]
- Thielen, A.; Klus, H.; Müller, L. Tobacco smoke: Unraveling a controversial subject. Exp. Toxicol. Pathol. 2008, 60, 141–156. [Google Scholar] [CrossRef]
- Barbour, S.E.; Nakashima, K.; Zhang, J.B.; Tangada, S.; Hahn, C.L.; Schenkein, H.A.; Tew, J.G. Tobacco and smoking: Environmental factors modify the host response (immune system) and have an impact on periodontal health. Crit. Rev. Oral Biol. Med. 1997, 8, 437–460. [Google Scholar] [CrossRef] [Green Version]
- Rodgman, A.; Green, C. Toxic Chemicals in Cigarette Mainstream Smoke—Hazard and Hoopla. Beitr. Tabakforsch. Int. 2003, 20, 481–545. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, D.W.; Wang, X.; Ercal, N. Enantiomeric composition of nicotine in smokeless tobacco, medicinal products, and commercial reagents. Chirality 1998, 10, 587–591. [Google Scholar] [CrossRef]
- Brčić Karačonji, I. Facts about nicotine toxicity. Arh. Hig. Rada Toksikol. 2005, 56, 363–371. [Google Scholar]
- Benowitz, N.L.; Hukkanen, J.; Jacob III, P. Nicotine Chemistry, Metabolism, Kinetics and Biomarkers. J. Psychopharmacol. 2009, 192, 29–60. [Google Scholar] [CrossRef]
- Hukkanen, J.; Jacob, P.; Benowitz, N.L. Metabolism and disposition kinetics of nicotine. Pharmacol. Rev. 2005, 57, 79–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benowitz, N.L. Nicotine Addiction. N. Engl. J. Med. 2010, 362, 2295–2303. [Google Scholar] [CrossRef]
- Benowitz, N.L. Clinical pharmacology of inhaled drugs of abuse: Implications in understanding nicotine dependence. NIDA Res. Monogr. Ser. 1990, 12–29. [Google Scholar]
- Smith-Simone, S.; Maziak, W.; Ward, K.; Eissenberg, T. Waterpipe tobacco smoking: Knowledge, attitudes, beliefs, and behavior in two U.S. samples. Nicotine Tob. Res. 2008, 10, 393–398. [Google Scholar] [CrossRef] [Green Version]
- El-Setouhy, M.; Loffredo, C.A.; Radwan, G.; Rahman, R.A.; Mahfouz, E.; Israel, E.; Mohamed, M.K.; Ayyad, S.B.A. Genotoxic Effects of Waterpipe Smoking on the Buccal Mucosa Cells. Mutat. Res. Rev. Mutat. Res. 2008, 665, 36–40. [Google Scholar] [CrossRef] [Green Version]
- El-Nachef, W.N.; Hammond, S.K. Exhaled Carbon Monoxide With Waterpipe Use in US Students. JAMA J. Am. Med. Assoc. 2008, 299, 36–38. [Google Scholar] [CrossRef]
- Hammal, F.; Mock, J.; Ward, K.D.; Eissenberg, T.; Maziak, W. A pleasure among friends: How narghile (waterpipe) smoking differs from cigarette smoking in Syria. Tob. Control 2008, 17, 1–8. [Google Scholar] [CrossRef]
- Jacob, P.; Yu, L.; Shulgin, A.T.; Benowitz, N.L. Minor tobacco alkaloids as biomarkers for tobacco use: Comparison of users of cigarettes, smokeless tobacco, cigars, and pipes. Am. J. Public Health 1999, 89, 731–736. [Google Scholar] [CrossRef] [Green Version]
- Leete, E. The Methylation of Nornicotine to Nicotine, a Minor Biosynthetic Pathway in Nicotiana tabacum. Beitrage zur Tab. Int. Contrib. to Tob. Res. 1984, 12, 113–116. [Google Scholar] [CrossRef]
- Su, C. Actions of nicotine and smoking on circulation. Pharmacol. Ther. 1982, 17, 129–141. [Google Scholar] [CrossRef]
- Benowitz, N.L. Clinical pharmacology of nicotine. Clin. Dermatol. 1986, 37, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Cryer, P.E.; Haymond, M.W.; Santiago, J.V.; Shah, S.D. Norepinephrine and Epinephrine Release and Adrenergic Mediation of Smoking-Associated Hemodynamic and Metabolic Events. N. Engl. J. Med. 1976, 295, 573–577. [Google Scholar] [CrossRef]
- Haak, T.; Jungmann, E.; Raab, C.; Usadel, K.H. Elevated Endothelin-1 Levels After Cigarette Smoking. Med. J. Aust. 1994, 430, 267–269. [Google Scholar] [CrossRef]
- Haass, M.; Kübler, W. Notice and sympathetic neurotransmission. Cardiovasc. Drugs Ther. 1997, 10, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Grassi, G.; Seravalle, G.; Calhoun, D.A.; Bolla, G.B.; Giannattasio, C.; Marabini, M.; Del Bo, A.; Mancia, G. Mechanisms responsible for sympathetic activation by cigarette smoking in humans. Circulation 1994, 90, 248–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazim Husain, M.; Frantz, A.G.; Ciarochi, F.; Robinson, A.G. Nicotine-stimulated release of neurophysin and vasopressin in humans. J. Clin. Endocrinol. Metab. 1975, 41, 1113–1117. [Google Scholar] [CrossRef] [PubMed]
- Rowe, J.W.; Kilgore, A.; Robertson, G.L. Evidence in man that cigarette smoking induces vasopressin release via an airway-specific mechanism. J. Clin. Endocrinol. Metab. 1980, 51, 170–172. [Google Scholar] [CrossRef] [PubMed]
- Waeber, B.; Schaller, M.D.; Nussberger, J. Skin blood flow reduction induced by cigarette smoking: Role of vasopressin. Am. J. Physiol. Heart Circ. Physiol. 1984, 16. [Google Scholar] [CrossRef]
- Nicod, P.; Rehr, R.; Winniford, M.D.; Campbell, W.B.; Firth, B.G.; David Hillis, L. Acute systemic and coronary hemodynamic and serologic responses to cigarette smoking in long-term smokers with atherosclerotic coronary artery disease. J. Am. Coll. Cardiol. 1984, 4, 964–971. [Google Scholar] [CrossRef] [Green Version]
- Guaderrama, M.M.; Corwin, E.J.; Kapelewski, C.H.; Klein, L.C. Sex differences in effects of cigarette smoking and 24-hr abstinence on plasma arginine vasopressin. Addict. Behav. 2011, 36, 1106–1109. [Google Scholar] [CrossRef]
- Chiodera, P.; d’Amato, L.; Davoli, C.; Volpi, R.; Delsignore, R.; Gnudi, A.; Coiro, V. Naloxone decreases the inhibitory effect of ethanol on the release of arginine-vasopressin induced by physical exercise in man. J. Neural Transm. 1987, 116, 1065–1069. [Google Scholar] [CrossRef]
- Chiodera, P.; Capretti, L.; Davoli, C.; Caiazza, A.; Bianconi, L.; Coiro, V. Effect of obesity and weight loss on arginine vasopressin response to metoclopramide and nicotine from cigarette smoking. Metabolism 1990, 39, 783–786. [Google Scholar] [CrossRef]
- Chiodera, P.; Capretti, L.; Marchesi, M.; Caiazza, A.; Bianconi, L.; Cavazzini, U.; Marchesi, C.; Volpi, R.; Coiro, V. Abnormal arginine vasopressin response to cigarette smoking and metoclopramide (but not to insulin-induced hypoglycemia) in elderly subjects. J. Gerontol. 1991, 46, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Cui, B.R.; Zhang, B.B.; Chu, C.P.; Cui, X.; Qiu, D.L. Nicotine excites corticotropin-releasing hormone mRNA-expressing neuron in the hypothalamic paraventricular nucleus in vitro in rats. Neuroreport 2016, 27, 580–586. [Google Scholar] [CrossRef]
- Lutfy, K.; Aimiuwu, O.; Mangubat, M.; Shin, C.S.; Nerio, N.; Gomez, R.; Liu, Y.; Friedman, T.C. Nicotine stimulates secretion of corticosterone via both CRH and AVP receptors. J. Neurochem. 2012, 120, 1108–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steptoe, A.; Ussher, M. Smoking, cortisol and nicotine. Int. J. Psychophysiol. 2006, 59, 228–235. [Google Scholar] [CrossRef]
- García Calzado, M.C.; García Rojas, J.F.; Mangas Rojas, A.; Millán, J. Tobacco and arterial pressure (II.). The acute effects on the angiotensin-converting enzyme. An. Med. Interna 1990, 7, 392–395. [Google Scholar]
- Laustiola, K.E.; Lassila, R.; Nurmi, A.K. Enhanced activation of the renin-angiotensin-aldosterone system in chronic cigarette smokers: A study of monozygotic twin pairs discordant for smoking. Clin. Pharmacol. Ther. 1988, 44, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.K.; Todd, G.L.; Johnson, W.T.; Fung, Y.K.; Dubois, L.M. Effects of Topical and Systemic Nicotine on Gingival Blood Flow in Dogs. J. Dent. Res. 1991, 70, 906–909. [Google Scholar] [CrossRef]
- Johnson, W.T.; Johnson, G.K.; Todd, G.L.; Fung, Y.K. Effects of systemic and topical nicotine on pulpal blood flow in dogs. Endod. Dent. Traumatol. 1993, 9, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Huckabee, K.D.; Barnes, R.T.; Williams, A.G.; Fan, W.L.; Downey, H.F. Effects of snuff on regional blood flow to the cheek and tongue of anesthetized dogs. Oral Surg. Oral Med. Oral Pathol. 1993, 76, 729–735. [Google Scholar] [CrossRef]
- Clarke, N.G.; Shephard, B.C.; Hirsch, R.S. The effects of intra-arterial epinephrine and nicotine on gingival circulation. Oral Surg. Oral Med. Oral Pathol. 1981, 52, 577–582. [Google Scholar] [CrossRef]
- Clarke, N.G.; Shephard, B.C. The Effects of Epinephrine and Nicotine on Gingival Blood Flow in the rabbit. Arch. Oral Biol. 1984, 29, 789–793. [Google Scholar] [CrossRef]
- Nielsen, T.A.; Nielsen, B.P.; Wang, K.; Arendt-Nielsen, L.; Boudreau, S.A. Psychophysical and Vasomotor Responses of the Oral Tissues: A Nicotine Dose-Response and Menthol Interaction Study. Nicotine Tob. Res. 2016, 18, 596–603. [Google Scholar] [CrossRef]
- Dessirier, J.; O’Mahony, M.; Carstens, E. Oral Irritant Effects of Nicotine: Psychophysical Evidence for Decreased Sensation following Repeated Application of and Lack of Cross-Desensitization to Capsaicin. Ann. N. Y. Acad. Sci. 2006, 855, 828–830. [Google Scholar] [CrossRef]
- Warner, D.O.; Joyner, M.J.; Charkoudian, N. Nicotine increases initial blood flow responses to local heating of human non-glabrous skin. J. Physiol. 2004, 559, 975–984. [Google Scholar] [CrossRef] [Green Version]
- Mavropoulos, A.; Brodin, P.; Rösing, C.K.; Aass, A.M.; Aars, H. Gingival Blood Flow in Periodontitis Patients Before and After Periodontal Surgery Assessed in Smokers and Non-Smokers. J. Periodontol. 2007, 78, 1774–1782. [Google Scholar] [CrossRef]
- Dussor, G.O.; Leong, A.S.; Gracia, N.B.; Kilo, S.; Price, T.J.; Hargreaves, K.M.; Flores, C.M. Potentiation of evoked calcitonin gene-related peptide release from oral mucosa: A potential basis for the pro-inflammatory effects of nicotine. Eur. J. Neurosci. 2003, 18, 2515–2526. [Google Scholar] [CrossRef] [Green Version]
- Mavropoulos, A.; Aars, H.; Brodin, P. The acute effects of smokeless tobacco (snuff) on gingival blood flow in man. J. Periodontal Res. 2001, 36, 221–226. [Google Scholar] [CrossRef]
- Mavropoulos, A.; Aars, H.; Brodin, P. Hyperaemic response to cigarette smoking in healthy gingiva. J. Clin. Periodontol. 2003, 30, 214–221. [Google Scholar] [CrossRef]
- Reuther, W.J.; Hale, B.; Matharu, J.; Blythe, J.N.; Brennan, P.A. Do you mind if i vape? Immediate effects of electronic cigarettes on perfusion in buccal mucosal tissue—A pilot study. Br. J. Oral Maxillofac. Surg. 2016, 54, 338–341. [Google Scholar] [CrossRef]
- Baab, D.A.; Öberg, P.Å. The effect of cigarette smoking on gingival blood flow in humans. J. Clin. Periodontol. 1987, 14, 418–424. [Google Scholar] [CrossRef]
- Meekin, T.N.; Wilson, R.F.; Scott, D.A.; Ide, M.; Palmer, R.M. Laser Doppler flowmeter measurement of relative gingival and forehead skin blood flow in light and heavy smokers during and after smoking. J. Clin. Periodontol. 2000, 27, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Izumi, H.; Karita, K. The parasympathetic vasodilator fibers in the trigeminal portion of the distal lingual nerve in the cat tongue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1994, 266, 1517–1522. [Google Scholar] [CrossRef]
- Fazekas, Á.; Vindisch, K.; Pósch, E.; Györfi, A. Experimentally-induced neurogenic inflammation in the rat oral mucosa. J. Periodontal Res. 1990, 25, 276–282. [Google Scholar] [CrossRef]
- Aars, H.; Brodin, P.; Andersen, E. A study of cholinergic and P-adrenergic components in the regulation of blood flow in the tooth pulp and gingiva in man. Acta Physiol. Scand. 1993, 148, 441–447. [Google Scholar] [CrossRef]
- Lundberg, J.M.; Änggård, A.; Fahrenkrug, J. Complementary role of vasoactive intestinal polypeptide (VIP) and acetylcholine for cat submandibular gland blood flow and secretion: III. Effects of local infusions. Acta Physiol. Scand. 1982, 114, 329–337. [Google Scholar] [CrossRef]
- Änggård, A.; Edwall, L. The effects of sympathetic nerve stimulation on the tracer disappearance rate and local blood content in the nasal mucosa of the cat. Acta Otolaryngol. 1974, 77, 131–139. [Google Scholar] [CrossRef]
- Mentis, G.; Lynn, B. An investigation into the extent to which flare in human skin crosses the mid-line. Exp. Physiol. 1992, 77, 765–768. [Google Scholar] [CrossRef] [Green Version]
- Mavropoulos, A.; Aars, H.; Brodin, P. The involvement of nervous and some inflammatory response mechanisms in the acute snuff-induced gingival hyperaemia in humans. J. Clin. Periodontol. 2002, 29, 855–864. [Google Scholar] [CrossRef] [PubMed]
- Olmedo, P.; Goessler, W.; Tanda, S.; Grau-Perez, M.; Jarmul, S.; Aherrera, A.; Chen, R.; Hilpert, M.; Cohen, J.E.; Navas-Acien, A.; et al. Metal concentrations in e-cigarette liquid and aerosol samples: The contribution of metallic coils. Environ. Health Perspect. 2018, 126. [Google Scholar] [CrossRef]
- DeVito, E.E.; Krishnan-Sarin, S. E-cigarettes: Impact of E-Liquid Components and Device Characteristics on Nicotine Exposure. Curr. Neuropharmacol. 2017, 15, 438–459. [Google Scholar] [CrossRef]
- Mullally, B.H. The Influence of Tobacco Smoking on the Onset of Periodontitis in Young Persons. Tob. Induc. Dis. 2004, 2, 6. [Google Scholar] [CrossRef]
- Malhotra, R.; Kapoor, A.; Grover, V.; Kaushal, S. Nicotine and periodontal tissues. J. Indian Soc. Periodontol. 2010, 14, 72. [Google Scholar] [CrossRef]
- McRae, K.E.; Pudwell, J.; Peterson, N.; Smith, G.N. Inhaled carbon monoxide increases vasodilation in the microvascular circulation. Microvasc. Res. 2019, 123, 92–98. [Google Scholar] [CrossRef]
- Thorup, C.; Jones, C.L.; Gross, S.S.; Moore, L.C.; Goligorsky, M.S. Carbon monoxide induces vasodilation and nitric oxide release but suppresses endothelial NOS. Am. J. Physiol. Ren. Physiol. 1999, 277. [Google Scholar] [CrossRef]
- Orekhova, L.Y.; Barmasheva, A.A. Doppler flowmetry as a tool of predictive, preventive and personalised dentistry. EPMA J. 2013, 4, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pindborg, J.J. Tobacco and Gingivitis. J. Dent. Res. 1947, 26, 261–264. [Google Scholar] [CrossRef]
- Le Bars, P.; Niagha, G.; Kouadio, A.A.; Demoersman, J.; Roy, E.; Armengol, V.; Soueidan, A. Pilot Study of Laser Doppler Measurement of Flow Variability in the Microcirculation of the Palatal Mucosa. Biomed Res. Int. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Bergström, J.; Floderus-Myrhed, B. Co-twin control study of the relationship between smoking and some periodontal disease factors. Community Dent. Oral Epidemiol. 1983, 11, 113–116. [Google Scholar] [CrossRef]
- Preber, H.; Bergström, J. Occurrence of gingival bleeding in smoker and non-smoker patients. Acta Odontol. Scand. 1985, 43, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Kazor, C.; Taylor, G.W.; Loesche, W.J. The prevalence of BANA-hydrolyzing periodontopathic bacteria in smokers. J. Clin. Periodontol. 1999, 26, 814–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Wolff, L.; Aeppli, D.; Guo, Z.; Luan, W.M.; Baelum, V.; Fejeskov, O. Cigarette smoking, salivary/ gingival crevicular fluid cotinine and periodontal status A 10-year longitudinal study. J. Clin. Periodontol. 2001, 28, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Hidalgo, F. Smoking and periodontal disease. Periodontol. 2000 2003, 32, 50–58. [Google Scholar] [CrossRef]
- Palmer, R.; Scott, D.; Meekin, T.; Poston, R.; Odell, E.; Wilson, R. Potential mechanisms of susceptibility to periodontitis in tobacco smokers. J. Periodontal Res. 1999, 34, 363–369. [Google Scholar] [CrossRef]
- Powell, J.T. Vascular damage from smoking: Disease mechanisms at the arterial wall. Vasc. Med. 1998, 3, 21–28. [Google Scholar] [CrossRef]
- Gebber, G.L. Neurogenic basis for the rise in blood pressure evoked by nicotine in the cat. J. Pharmacol. Exp. Ther. 1969, 166, 255–263. [Google Scholar]
- Klein, L.W.; Ambrose, J.; Pichard, A.; Holt, J.; Goblin, R.; Teichholz, L.E. Acute coronary hemodynamic response to cigarette smoking in patients with coronary artery disease. J. Am. Coll. Cardiol. 1984, 3, 879–886. [Google Scholar] [CrossRef] [Green Version]
- Conklin, B.S.; Surowiec, S.M.; Ren, Z.; Li, J.S.; Zhong, D.S.; Lumsden, A.B.; Chen, C. Effects of nicotine and cotinine on porcine arterial endothelial cell function. J. Surg. Res. 2001, 95, 23–31. [Google Scholar] [CrossRef]
- Huang, M.F.; Lin, W.L.; Ma, Y.C. A study of reactive oxygen species in mainstream of cigarette. Indoor Air 2005, 15, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Liaudet, L.; Vassalli, G.; Pacher, P. Role of peroxynitrite in the redox regulation of cell signal transduction pathways. Front. Biosci. 2009, 14, 4809–4814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lassègue, B.; Griendling, K.K. Reactive oxygen species in hypertension: An update. Am. J. Hypertens. 2004, 17, 852–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malinovschi, A.; Janson, C.; Holmkvist, T.; Norbäck, D.; Meriläinen, P.; Högman, M. Effect of smoking on exhaled nitric oxide and flow-independent nitric oxide exchange parameters. Eur. Respir. J. 2006, 28, 339–345. [Google Scholar] [CrossRef] [Green Version]
- Balint, B.; Donnelly, L.E.; Hanazawa, T.; Kharitonov, S.A.; Barnes, P.J. Increased nitric oxide metabolites in exhaled breath condensate after exposure to tobacco smoke. Thorax 2001, 56, 456–461. [Google Scholar] [CrossRef] [Green Version]
- Tonguç, M.Ö.; Öztürk, Ö.; Sütçü, R.; Ceyhan, B.M.; Kılınç, G.; Sönmez, Y.; Yetkin Ay, Z.; Şahin, Ü.; Baltacıoğlu, E.; Kırzıoğlu, F.Y. The Impact of Smoking Status on Antioxidant Enzyme Activity and Malondialdehyde Levels in Chronic Periodontitis. J. Periodontol. 2011, 82, 1320–1328. [Google Scholar] [CrossRef]
- Guentsch, A.; Preshaw, P.M.; Bremer-Streck, S.; Klinger, G.; Glockmann, E.; Sigusch, B.W. Lipid peroxidation and antioxidant activity in saliva of periodontitis patients: Effect of smoking and periodontal treatment. Clin. Oral Investig. 2008, 12, 345–352. [Google Scholar] [CrossRef]
- Lykkesfeldt, J. Smoking depletes vitamin C: Should smokers be recommended to take supplements? Cigar. Smoke Oxidative Stress 2006, 237–260. [Google Scholar] [CrossRef]
- Polidori, M.C.; Mecocci, P.; Stahl, W.; Sies, H. Cigarette smoking cessation increases plasma levels of several antioxidant micronutrients and improves resistance towards oxidative challenge. Br. J. Nutr. 2003, 90, 147–150. [Google Scholar] [CrossRef] [Green Version]
- Zappacosta, B.; Persichilli, S.; De Sole, P.; Mordente, A.; Giardina, B. Effect of smoking one cigarette on antioxidant metabolites in the saliva of healthy smokers. Arch. Oral Biol. 1999, 44, 485–488. [Google Scholar] [CrossRef]
- Buduneli, N.; Kardeşler, L.; Işik, H.; Willis, C.S.; Hawkins, S.I.; Kinane, D.F.; Scott, D.A. Effects of smoking and gingival inflammation on salivary antioxidant capacity. J. Clin. Periodontol. 2006, 33, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Rai, B.; Kharb, S.; Anand, S.C. Salivary enzymes and thiocynate: Salivary markers of periodontitis among smokers and non-smokers; a pilot study. Adv Med Dent Sci 2007, 1, 1–4. [Google Scholar]
- Rai, B.; Kaur, J.; Anand, S.; Laller, K. The effect of smoking on gingival crevicular fluid levels of myeloperoxidase Balwant. Indian J. Dent. Res. 2010, 21, 20–22. [Google Scholar] [CrossRef] [PubMed]
- Polizzi, A.; Torrisi, S.; Santonocito, S.; Di Stefano, M.; Indelicato, F.; Giudice, A. Lo Influence of myeloperoxidase levels on periodontal disease: An applied clinical study. Appl. Sci. 2020, 10, 1037. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.H.; Han, M.L.; Teng, N.C.; Lee, C.Y.; Huang, W.T.; Lin, C.T.; Huang, Y.K. Cigarette Smoking Aggravates the Activity of Periodontal Disease by Disrupting Redox Homeostasis- An Observational Study. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Berggreen, E.; Heyeraas, K.J. Role of K+ATP channels, endothelin A receptors, and effect of angiotensin II on blood flow in oral tissues. J. Dent. Res. 2003, 82, 33–37. [Google Scholar] [CrossRef]
- Zhu, B.; Parmley, W.W. Hemodynamic and vascular effects of active and passive smoking. Am. Heart J. 1995, 130, 1270–1275. [Google Scholar] [CrossRef]
- Baenziger, N.L.; Force, L.E.; Becherer, P.R. Histamine stimulates prostacyclin synthesis in cultured human umbilical vein endothelial cells. Biochem. Biophys. Res. Commun. 1980, 92, 1435–1440. [Google Scholar] [CrossRef]
- Minami, T.; Kuroishi, T.; Ozawa, A.; Shimauchi, H.; Endo, Y.; Sugawara, S. Histamine amplifies immune response of gingival fibroblasts. J. Dent. Res. 2007, 86, 1083–1088. [Google Scholar] [CrossRef]
- Venza, M.; Visalli, M.; Cucinotta, M.; Cicciù, D.; Passi, P.; Teti, D. Salivary Histamine Level as a Predictor of Periodontal Disease in Type 2 Diabetic and Non-Diabetic Subjects. J. Periodontol. 2006, 77, 1564–1571. [Google Scholar] [CrossRef]
- Bertl, K.; Haririan, H.; Laky, M.; Matejka, M.; Andrukhov, O.; Rausch-Fan, X. Smoking influences salivary histamine levels in periodontal disease. Oral Dis. 2012, 18, 410–416. [Google Scholar] [CrossRef]
- Morozumi, T.; Kubota, T.; Sato, T.; Okuda, K.; Yoshie, H. Smoking cessation increases gingival blood flow and gingival crevicular fluid. J. Clin. Periodontol. 2004, 31, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Ketabi, M.; Hirsch, R.S. Clinical periodontDloiiy The effects of local anesthetic containing adrenaline on gingival blood flow in smokers and non-smokers. J. Clin. Periodontol. 1997, 24, 888–892. [Google Scholar] [CrossRef]
- Molnár, E.; Lohinai, Z.; Demeter, A.; Mikecs, B.; Tóth, Z.; Vág, J. Assessment of heat provocation tests on the human gingiva: The effect of periodontal disease and smoking. Acta Physiol. Hung. 2015, 102, 176–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergström, J.; Persson, L.; Preber, H. Influence of cigarette smoking on vascular reaction during experimental gingivitis. Eur. J. Oral Sci. 1988, 96, 34–39. [Google Scholar] [CrossRef]
- Buduneli, N.; Scott, D.A. Tobacco-induced suppression of the vascular response to dental plaque. Mol. Oral Microbiol. 2018, 33, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Al-Bayaty, F.H.; Baharuddin, N.A.; Abdulla, M.A.; Ali, H.M.; Arkilla, M.B.; Albayaty, M.F. The influence of cigarette smoking on gingival bleeding and serum concentrations of haptoglobin and alpha 1-antitrypsin. Biomed Res. Int. 2013, 2013. [Google Scholar] [CrossRef]
- Holde, G.E.; Jönsson, B.; Oscarson, N.; Müller, H.P. To what extent does smoking affect gingival bleeding response to supragingival plaque? Site-specific analyses in a population-based study. J. Periodontal Res. 2020, 55, 277–286. [Google Scholar] [CrossRef]
- Subbarao, K.C.; Nattuthurai, G.S.; Sundararajan, S.K.; Sujith, I.; Joseph, J.; Syedshah, Y.P. Gingival Crevicular Fluid: An Overview. J. Pharm. Bioallied Sci. 2019, 11, S135–S139. [Google Scholar] [CrossRef]
- BinShabaib, M.; ALHarthi, S.S.; Akram, Z.; Khan, J.; Rahman, I.; Romanos, G.E.; Javed, F. Clinical periodontal status and gingival crevicular fluid cytokine profile among cigarette-smokers, electronic-cigarette users and never-smokers. Arch. Oral Biol. 2019, 102, 212–217. [Google Scholar] [CrossRef]
- Hanioka, T.; Tanaka, M.; Ojima, M.; Takaya, K.; Matsumori, Y.; Shizukuishi, S. Oxygen Sufficiency in the Gingiva of Smokers and Non-Smokers with Periodontal Disease. J. Periodontol. 2000, 71, 1846–1851. [Google Scholar] [CrossRef]
- Svalestad, J.; Hellem, S.; Vaagbø, G.; Irgens, Å.; Thorsen, E. Reproducibility of transcutaneous oximetry and laser Doppler flowmetry in facial skin and gingival tissue. Microvasc. Res. 2010, 79, 29–33. [Google Scholar] [CrossRef]
- Kouadio, A.A.; Jordana, F.; Koffi, N.J.; Le Bars, P.; Soueidan, A. The use of laser Doppler flowmetry to evaluate oral soft tissue blood flow in humans: A review. Arch. Oral Biol. 2018, 86, 58–71. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, M.; Fukami, T.; Yamanaka, H.; Higashi, E.; Sakai, H.; Yoshida, R.; Kwon, J.T.; McLeod, H.L.; Yokoi, T. Comprehensive evaluation of variability in nicotine metabolism and CYP2A6 polymorphic alleles in four ethnic populations. Clin. Pharmacol. Ther. 2006, 80, 282–297. [Google Scholar] [CrossRef] [Green Version]
- Hanioka, T.; Nagata, H.; Murakami, Y.; Tamagawa, H.; Shizukuishi, S. Mechanical stimulation by toothbrushing increases oxygen sufficiency in human gingivae. J. Clin. Periodontol. 1993, 20, 591–594. [Google Scholar] [CrossRef]
- Tanaka, M.; Hanioka, T.; Kishimoto, M.; Shizukuishi, S. Effect of mechanical toothbrush stimulation on gingival microcirculatory functions in inflamed gingiva of dogs. J. Clin. Periodontol. 1998, 25, 561–565. [Google Scholar] [CrossRef]
- Auerbach, O.; Hammond, E.C.; Garfinkel, L. Thickening of Walls of Arterioles and Small Arteries in Relation to Age and Smoking Habits. N. Engl. J. Med. 1968, 278, 980–984. [Google Scholar] [CrossRef]
- Auerbach, O.; Hammond, E.C.; Garfinkel, L.; Kirman, D. Thickness of walls of myocardial arterioles in relation to smoking and age. Arch. Environ. Health 1971, 22, 20–27. [Google Scholar] [CrossRef]
- Asmussen, I. Ultrastructure of the human placenta at term. Acta Obstet. Gynecol. Scand. 1977, 56, 119–126. [Google Scholar] [CrossRef]
- Burton, G.J.; Palmer, M.E.; Dalton, K.J. Morphometric differences between the placental vasculature of non-smokers, smokers and ex-smokers. BJOG Int. J. Obstet. Gynaecol. 1989, 96, 907–915. [Google Scholar] [CrossRef]
- Van Der Veen, F.; Fox, H. The effects of cigarette smoking on the human placenta: A light and electron microscopic study. Obstet. Gynecol. Surv. 1983, 38, 195–197. [Google Scholar] [CrossRef]
- Elmasry, S.; Asfour, S.; De Rivero Vaccari, J.P.; Travascio, F. Effects of tobacco smoking on the degeneration of the intervertebral disc: A finite element study. PLoS ONE 2015, 10, e0136137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindeboom, J.A.; Mathura, K.R.; Harkisoen, S.; Van Den Akker, H.P.; Ince, C. Effect of smoking on the gingival capillary density: Assessment of gingival capillary density with orthogonal polarization spectral imaging. J. Clin. Periodontol. 2005, 32, 1208–1212. [Google Scholar] [CrossRef]
- Lova, R.M.; Miniati, B.; Macchi, C.; Gulisano, M.; Gheri, G.; Catini, C.; Conti, A.A.; Gensini, G.F.; Florence, I. Morphologic changes in the microcirculation induced by chronic smoking habit: A videocapillaroscopic study on the human labial mucosa. Am. Heart J. 2002, 143, 301–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezavandi, K.; Palmer, R.M.; Odell, E.W.E.W.; Scott, D.A.; Wilson, R.F. Expression of ICAM-1 and E-selectin in gingival tissues of smokers and non-smokers with periodontitis. J. Oral Pathol. Med. 2002, 31, 59–64. [Google Scholar] [CrossRef]
- Scardina, G.A. The effect of cigar smoking on the lingual microcirculation. Odontology 2005, 93, 41–45. [Google Scholar] [CrossRef]
- Eickhoff, M.K.; Winther, S.A.; Hansen, T.W.; Diaz, L.J.; Persson, F.; Rossing, P.; Frimodt-Møller, M. Assessment of the sublingual microcirculation with the GlycoCheck system: Reproducibility and examination conditions. PLoS ONE 2020, 15, e0243737. [Google Scholar] [CrossRef]
- Sönmez, Ş.; Canda, T.; Özkara, E.; Ak, D. Quantitative Evaluation of the Vasculature and Fibronectin Localization in Gingival Connective Tissue of Smokers and Non-Smokers. J. Periodontol. 2003, 74, 822–830. [Google Scholar] [CrossRef]
- Kumar, V.; Faizuddin, M. Effect of smoking on gingival microvasculature: A histological study. J. Indian Soc. Periodontol. 2011, 15, 344–348. [Google Scholar] [CrossRef]
- Persson, L.; Bergström, J. Smoking and vascular density of healthy marginal gingiva. Eur. J. Oral Sci. 1998, 106, 953–957. [Google Scholar] [CrossRef]
- Scardina, G.A.; Messina, P. Morphologic changes in the microcirculation induced by chronic smoking habit: A videocapillaroscopic study on the human gingival mucosa. Am. J. Dent. 2005, 18, 301–304. [Google Scholar] [PubMed]
- Scardina, G.A.; Messina, M.; Melilli, D.; Cumbo, E.; Carini, F.; Tomasello, G.; Messina, P. Permanence of modifications in oral microcirculation in Ex-smokers. Med. Sci. Monit. 2019, 25, 866–871. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.K.; Fung, Y.K.; Squier, C.A. Effects of systemic administration of nicotine on capillaries in rat oral mucosa. J. Oral Pathol. Med. 1989, 18, 230–232. [Google Scholar] [CrossRef] [PubMed]
- Conklin, B.S.; Zhao, W.; Zhong, D.S.; Chen, C. Nicotine and cotinine up-regulate vascular endothelial growth factor expression in endothelial cells. Am. J. Pathol. 2002, 160, 413–418. [Google Scholar] [CrossRef] [Green Version]
- Egleton, R.D.; Brown, K.C.; Dasgupta, P. Angiogenic activity of nicotinic acetylcholine receptors: Implications in tobacco-related vascular diseases. Pharmacol. Ther. 2009, 121, 205–223. [Google Scholar] [CrossRef] [PubMed]
- Carty, C.S.; Huribal, M.; Marsan, B.U.; Ricotta, J.J.; Dryjski, M. Nicotine and its metabolite cotinine are mitogenic for human vascular smooth muscle cells. J. Vasc. Surg. 1997, 25, 682–688. [Google Scholar] [CrossRef] [Green Version]
- Carty, C.S.; Soloway, P.D.; Kayastha, S.; Bauer, J.; Marsan, B.; Ricotta, J.J.; Dryjski, M.; Cohen, J.R.; Pappas, P.J. Nicotine and cotinine stimulate secretion of basic fibroblast growth factor and affect expression of matrix metalloproteinases in cultured human smooth muscle cells. J. Vasc. Surg. 1996, 24, 927–935. [Google Scholar] [CrossRef] [Green Version]
- Bartlett, D. Pathophysiology of exposure to low concentrations of carbon monoxide. Arch. Environ. Health 1968, 16, 719–727. [Google Scholar] [CrossRef]
- Parthasarathi, K.; Lipowsky, H.H. Capillary recruitment in response to tissue hypoxia and its dependence on red blood cell deformability. Am. J. Physiol. Heart Circ. Physiol. 1999, 277, 2145–2157. [Google Scholar] [CrossRef]
- Richardson, D.; Coates, F.; Morton, R. Early effects of tobacco smoke exposure on vascular dynamics in the microcirculation. J. Appl. Physiol. 1975, 39, 119–123. [Google Scholar] [CrossRef]
- Svedman, C.; Cherry, G.W.; Ryan, T.J. The veno-arteriolar reflex in venous leg ulcer patients studied by laser Doppler imaging. Acta Derm. Venereol. 1998, 78, 258–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khiabani, H.Z.; Anvar, M.D.; Kroese, A.J.; Stranden, E. The role of the veno-arteriolar reflex (VAR) in the pathogenesis of peripheral oedema in patients with chronic critical limb ischaemia (CLI). Ann. Chir. Gynaecol. 2000, 89, 93–98. [Google Scholar]
- Hanioka, T.; Tanaka, M.; Takaya, K.; Matsumori, Y.; Shizukuishi, S. Pocket Oxygen Tension in Smokers and Non-Smokers with Periodontal Disease. J. Periodontol. 2000, 71, 550–554. [Google Scholar] [CrossRef]
- Vayssier-Taussat, M.; Camilli, T.; Aron, Y.; Meplan, C.; Hainaut, P.; Polla, B.S.; Weksler, B. Effects of tobacco smoke and benzo[a]pyrene on human endothelial cell and monocyte stress responses. Am. J. Physiol. Hear. Circ. Physiol. 2001, 280, 1293–1300. [Google Scholar] [CrossRef] [Green Version]
- Bernhard, D.; Pfister, G.; Huck, C.W.; Kind, M.; Salvenmoser, W.; Bonn, G.K.; Wick, G. Disruption of vascular endothelial homeostasis by tobacco smoke—Impact on atherosclerosis. FASEB J. 2003, 17, 2302–2304. [Google Scholar] [CrossRef]
- Pech-Amsellem, M.A.; Myara, I.; Storogenko, M.; Demuth, K.; Proust, A.; Moatti, N. Enhanced modifications of low-density lipoproteins (LDL) by endothelial cells from smokers: A possible mechanism of smoking-related atherosclerosis. Cardiovasc. Res. 1996, 31, 975–983. [Google Scholar] [CrossRef]
- Noronha-Dutra, A.A.; Epperlein, M.M.; Woolf, N. Effect of cigarette smoking on cultured human endothelial cells. Cardiovasc. Res. 1993, 27, 774–778. [Google Scholar] [CrossRef]
- Guarino, F.; Cantarella, G.; Caruso, M.; Russo, C.; Mancuso, S.; Arcidiacono, G.; Cacciola, R.R.; Bernardinp, R.; Polosa, R. Endothelial activation and injury by cigarette smoke exposure. J. Biol. Regul. Homeost. Agents 2011, 25, 259–268. [Google Scholar]
- Zhao, J.; Qiao, L.; Shang, P.; Hua, C.; Xie, Y.; Li, X.; Ding, M.; Liu, K.; Guo, J.; Zhao, G.; et al. Effects of smokeless tobacco on cell viability, reactive oxygen species, apoptosis, and inflammatory cytokines in human umbilical vein endothelial cells. Toxicol. Mech. Methods 2021, 1–31. [Google Scholar] [CrossRef]
- Noël, J.C.; Rainer, D.; Gstir, R.; Rainer, M.; Bonn, G. Quantification of selected aroma compounds in e-cigarette products and toxicity evaluation in HUVEC/Tert2 cells. Biomed. Chromatogr. 2020, 34. [Google Scholar] [CrossRef]
- Shen, Y.; Rattan, V.; Sultana, C.; Kalra, V.K. Cigarette smoke condensate-induced adhesion molecule expression and transendothelial migration of monocytes. Am. J. Physiol. Heart Circ. Physiol. 1996, 270. [Google Scholar] [CrossRef]
- Chen, H.; Lii, C.; Ku, H.; Wang, T. Cigarette Smoke Extract Induces Expression of Cell AdhesionMolecules in HUVECvia Actin Filament Reorganization. Environ. Mol. Mutagenesis 2010, 405, 391–405. [Google Scholar] [CrossRef]
- Allam, E.; Delacruz, K.; Ghoneima, A.; Sun, J.; Windsor, L. Effects of tobacco on cytokine expression from human endothelial cells. Oral Dis. 2013, 19, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Furie, M.B.; Raffanello, J.A.; Gergel, E.I.; Lisinski, T.J.; Horb, L.D. Extracts of smokeless tobacco induce pro-inflammatory changes in cultured human vascular endothelial cells. Immunopharmacology 2000, 47, 13–23. [Google Scholar] [CrossRef]
- Wang, L.; Wang, H.; Zhang, X. Effects of tobacco smoke on the expression of ICAM-1 in human umbilical vein endothelial cells. Zhonghua Yu Fang Yi Xue Za Zhi 2001, 35, 105–107. [Google Scholar]
- Koundouros, E.; Odell, E.; Coward, P.; Wilson, R.; Palmer, R.M. Soluble adhesion molecules in serum of smokers and non-smokers, with and without periodontitis. J. Periodontal Res. 1996, 31, 596–599. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.A.; Stapleton, J.A.; Wilson, R.F.; Sutherland, G.; Palmer, R.M.; Coward, P.Y.; Gustavsson, G. Dramatic decline in circulating intercellular adhesion molecule-1 concentration on quitting tobacco smoking. Blood Cells Mol. Dis. 2000, 26, 255–258. [Google Scholar] [CrossRef]
- Fraser, H.S.; Palmer, R.M.; Wilson, R.F.; Coward, P.Y.; Scott, D.A. Elevated systemic concentrations of soluble ICAM-1 (sICAM) are not reflected in the gingival crevicular fluid of smokers with periodontitis. J. Dent. Res. 2001, 80, 1643–1647. [Google Scholar] [CrossRef]
- Scott, D.; Palmer, R. The influence of tobacco smoking on adhesion molecule profiles. Tob. Induc. Dis. 2003, 1, 3. [Google Scholar] [CrossRef]
- Sbarbati, R.; De Boer, M.; Marzilli, M.; Scarlattini, M.; Rossi, G.; Van Mourik, J.A. Immunologic detection of endothelial cells in human whole blood. Blood 1991, 77, 764–769. [Google Scholar] [CrossRef]
- Zhang, J.; Juedes, N.; Narayan, V.M.; Yue, B.; Rockwood, A.L.; Palma, N.L.; Patel, J.M. A cellular model to mimic exhaled cigarette smokeinduced lung microvascular endothelial cell injury and death. Int. J. Clin. Exp. Med. 2010, 3, 223–232. [Google Scholar]
- Bergström, J. Periodontitis and Smoking: An Evidence-Based Appraisal. J. Evid. Based. Dent. Pract. 2006, 6, 33–41. [Google Scholar] [CrossRef]
- Bishop, E.; Breheny, D.; Hewitt, K.; Taylor, M.; Jaunky, T.; Camacho, O.M.; Thorne, D.; Gaça, M. Evaluation of a high-throughput in vitro endothelial cell migration assay for the assessment of nicotine and tobacco delivery products. Toxicol. Lett. 2020, 334, 110–116. [Google Scholar] [CrossRef]
- Michaud, S.É.; Dussault, S.; Haddad, P.; Groleau, J.; Rivard, A. Circulating endothelial progenitor cells from healthy smokers exhibit impaired functional activities. Atherosclerosis 2006, 187, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Antoniewicz, L.; Bosson, J.A.; Kuhl, J.; Abdel-Halim, S.M.; Kiessling, A.; Mobarrez, F.; Lundbäck, M. Electronic cigarettes increase endothelial progenitor cells in the blood of healthy volunteers. Atherosclerosis 2016, 255, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Ernst, E.; Hammerschmidt, D.E.; Bagge, U.; Matrai, A.; Dormandy, J.A. Leukocytes and the Risk of Ischemic Diseases. JAMA J. Am. Med. Assoc. 1987, 257, 2318–2324. [Google Scholar] [CrossRef]
- Ernst, E.; Koenig, W. Smoking and blood rheology. Adv. Exp. Med. Biol. 1990, 273, 295–300. [Google Scholar] [CrossRef]
- Caro, C.G. Cigarette smoking causes acute changes in arterial wall mechanics and the pattern of arterial blood flow in healthy subjects: Possible insight into mechanisms of atherogenesis. Adv. Exp. Med. Biol. 1990, 273, 273–280. [Google Scholar] [CrossRef]
- Yin, W.; Kim, J.; Weksler, B.B.; Ghebrehiwet, B.; Peerschke, E.I.B. Tobacco Smoke and Elevated Shear Stress Enhance Classical Pathway Complement Activation on Human Endothelial Cells. Blood 2006, 108, 3934. [Google Scholar] [CrossRef]
- Kew, R.R.; Ghebrehiwet, B.; Janoff, A. Cigarette smoke can activate the alternative pathway of complement in vitro by modifying the third component of complement. J. Clin. Investig. 1985, 75, 1000–1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, W.; Ghebrehiwet, B.; Weksler, B.; Peerschke, E.I.B. Regulated complement deposition on the surface of human endothelial cells: Effect of tobacco smoke and shear stress. Thromb. Res. 2008, 122, 221–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batista, A.C.; Silva, T.A.; Chun, J.H.; Lara, V.S. Nitric oxide synthesis and severity of human periodontal disease. Oral Dis. 2002, 8, 254–260. [Google Scholar] [CrossRef]
- Fujioka, D.; Nakamura, S.; Yoshino, H.; Shinohara, H.; Shiba, H.; Mizuno, N.; Hasegawa, N.; Shindoh, N.; Uchida, Y.; Ogawa, T.; et al. Expression of endothelins and their receptors in cells from human periodontal tissues. J. Periodontal Res. 2003, 38, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Yu, J.; Zhou, W.; Liu, N.; E, L.L.; Wang, D.S.; Liu, H. Endothelin-1 Stimulates Proinflammatory Cytokine Expression in Human Periodontal Ligament Cells via Mitogen-Activated Protein Kinase Pathway. J. Periodontol. 2014, 85, 618–626. [Google Scholar] [CrossRef]
- Lester, S.R.; Bain, J.L.; Serio, F.G.; Harrelson, B.D.; Johnson, R.B. Relationship Between Gingival Angiopoietin-1 Concentrations and Depth of the Adjacent Gingival Sulcus. J. Periodontol. 2009, 80, 1447–1453. [Google Scholar] [CrossRef]
- McCarter, S.D.; Lai, P.F.H.; Suen, R.S.; Stewart, D.J. Experimental Biology and Medicine: Introduction. Exp. Biol. Med. 2006, 231, 1449. [Google Scholar] [CrossRef]
- Son, G.Y.; Bak, E.J.; Kim, J.H.; Lee, D.E.; Kang, S.M.; Lee, S.Y.; Choi, L.; Sun, J.S.; Kim, S.K.; Park, W.; et al. Endothelin regulates Porphyromonas gingivalis-induced production of inflammatory cytokines. PLoS ONE 2016, 11, e0167713. [Google Scholar] [CrossRef] [Green Version]
- Linden, G.J.; Mullally, B.H.; Burden, D.J.; Lamey, P.J.; Shaw, C.; Ardill, J.; Lundy, F.T. Changes in vasoactive intestinal peptide in gingival crevicularfluid in response to periodontal treatment. J. Clin. Periodontol. 2002, 29, 484–489. [Google Scholar] [CrossRef]
- Lundy, F.T.; Shaw, C.; McKinnell, J.; Lamey, P.J.; Linden, G.J. Calcitonin gene-related peptide in gingival crevicular fluid in periodontal health and disease. J. Clin. Periodontol. 1999, 26, 212–216. [Google Scholar] [CrossRef]
- Tymkiw, K.D.; Thunell, D.H.; Johnson, G.K.; Joly, S.; Burnell, K.K.; Cavanaugh, J.E.; Brogden, K.A.; Guthmiller, J.M. Influence of smoking on gingival crevicular fluid cytokines in severe chronic periodontitis. J. Clin. Periodontol. 2011, 38, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Al-Tayeb, D. The Effects of Smoking on the Periodontal Condition of Young Adult Saudi Population. Eff. Smok. Periodontal Egypt. Dent. J. 2008, 54, 15. [Google Scholar]
- Naderi, N.J.; Semyari, H.; Hemmati, R. The effect of smoking on mast cells density and angiogenesis in chronic periodontitis. Iran. J. Pathol. 2017, 12, 384–391. [Google Scholar] [CrossRef]
- Matthews, J.B.; Chen, F.M.; Milward, M.R.; Wright, H.J.; Carter, K.; McDonagh, A.; Chapple, I.L.C. Effect of nicotine, cotinine and cigarette smoke extract on the neutrophil respiratory burst. J. Clin. Periodontol. 2011, 38, 208–218. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhou, X.; Cheng, L.; Li, M. The Impact of Smoking on Subgingival Microflora: From Periodontal Health to Disease. Front. Microbiol. 2020, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.B.; Serio, F.G.; Da, X. Vascular endothelial growth factors and liver diseases. J. Periodontol. 1999, 70, 848–852. [Google Scholar] [CrossRef] [PubMed]
- Kasprzak, A.; Surdacka, A.; Tomczak, M.; Przybyszewska, W.; Seraszek-Jaros, A.; Malkowska-Lanzafame, A.; Siodla, E.; Kaczmarek, E. Expression of angiogenesis-stimulating factors (VEGF, CD31, CD105) and angiogenetic index in gingivae of patients with chronic periodontitis. Folia Histochem. Cytobiol. 2012, 50, 554–564. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz Şaştım, Ç.; Gürsoy, M.; Könönen, E.; Kasurinen, A.; Norvio, S.; Gürsoy, U.K.; Doğan, B. Salivary and serum markers of angiogenesis in periodontitis in relation to smoking. Clin. Oral Investig. 2020. [Google Scholar] [CrossRef] [PubMed]
- Aspriello, S.D.; Zizzi, A.; Lucarini, G.; Rubini, C.; Faloia, E.; Boscaro, M.; Tirabassi, G.; Piemontese, M. Vascular Endothelial Growth Factor and Microvessel Density in Periodontitis Patients With and Without Diabetes. J. Periodontol. 2009, 80, 1783–1789. [Google Scholar] [CrossRef]
- Prapulla, D.V.; Sujatha, P.B.; Pradeep, A.R. Gingival Crevicular Fluid VEGF Levels in Periodontal Health and Disease. J. Periodontol. 2007, 78, 1783–1787. [Google Scholar] [CrossRef] [PubMed]
- Pradeep, A.R.; Prapulla, D.V.; Sharma, A.; Sujatha, P.B. Gingival crevicular fluid and serum vascular endothelial growth factor: Their relationship in periodontal health, disease and after treatment. Cytokine 2011, 54, 200–204. [Google Scholar] [CrossRef]
- Türer, Ç.C.; Durmuş, D.; Balli, U.; Güven, B. Effect of Non-Surgical Periodontal Treatment on Gingival Crevicular Fluid and Serum Endocan, Vascular Endothelial Growth Factor-A, and Tumor Necrosis Factor-Alpha Levels. J. Periodontol. 2017, 88, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Vladau, M.; Cimpean, A.M.; Balica, R.A.; Jitariu, A.A.; Popovici, R.A.; Raica, M. VEGF/VEGFR2 Axis in Periodontal Disease Progression and Angiogenesis: Basic Approach for a New Therapeutic Strategy. In Vivo 2016, 30, 53–60. [Google Scholar] [PubMed]
- Zekeridou, A.; Giannopoulou, C.; Cancela, J.; Courvoisier, D.; Mombelli, A. Effect of initial periodontal therapy on gingival crevicular fluid cytokine profile in subjects with chronic periodontitis. Clin. Exp. Dent. Res. 2017, 3, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Penmetsa, G.S.; Baddam, S.; Manyam, R.; Dwarakanath, C. Comparison of the number of gingival blood vessels between type 2 diabetes mellitus and chronic periodontitis patients: An immunohistological study. J. Indian Soc. Periodontol. 2015, 19, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, T.; Bernimoulin, J.-P.; Glynn, R.J. The Effect of Cigarette Smoking on Gingival Bleeding. J. Periodontol. 2004, 75, 16–22. [Google Scholar] [CrossRef]
- Naderi, N.J.; Semyari, H.; Elahinia, Z. The Impact of Smoking on Gingiva: A Histopathological Study. Iran. J. Pathol. 2015, 10, 214–220. [Google Scholar]
- Nagai, K.; Betsuyaku, T.; Ito, Y.; Nasuhara, Y.; Nishimura, M. Decrease of vascular endothelial growth factor in macrophages from long-term smokers. Eur. Respir. J. 2005, 25, 626–633. [Google Scholar] [CrossRef] [PubMed]
- Daloee, M.H.; Avan, A.; Mirhafez, S.R.; Kavousi, E.; Hasanian-Mehr, M.; Darroudi, S.; Tajfard, M.; Tayefi, M.; Qazizade, H.; Mohammadi, A.; et al. Impact of Cigarette Smoking on Serum Pro- and Anti-Inflammatory Cytokines and Growth Factors. Am. J. Mens. Health 2017, 11, 1169–1173. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Lucke, C.; Belgore, F.; Reinhold, D.; Ansorge, S.; Klein, H.U.; Schmidt-Lucke, J.A.; Lip, G.Y.H. Soluble vascular endothelial growth factor, soluble VEGF receptor Flt-1 and endothelial function in healthy smokers. Int. J. Cardiol. 2005, 100, 207–212. [Google Scholar] [CrossRef]
- Alomari, M.A.; Al-Sheyab, N.A.; Khabour, O.F.; Alzoubi, K.H. Serum VEGF level is different in adolescents smoking waterpipe versus cigarettes: The irbid TRY. Biomolecules 2018, 8, 102. [Google Scholar] [CrossRef] [Green Version]
- Scott, D.A.; Singer, D.L. Suppression of overt gingival inflammation in tobacco smokers - clinical and mechanistic considerations. Int. J. Dent. Hyg. 2004, 2, 104–110. [Google Scholar] [CrossRef]
- Kibayashi, M.; Tanaka, M.; Nishida, N.; Kuboniwa, M.; Kataoka, K.; Nagata, H.; Nakayama, K.; Morimoto, K.; Shizukuishi, S. Longitudinal Study of the Association Between Smoking as a Periodontitis Risk and Salivary Biomarkers Related to Periodontitis. J. Periodontol. 2007, 78, 859–867. [Google Scholar] [CrossRef] [PubMed]
- Grudianov, A.I.; Kemulariia, I.V. Laser doppler estimation of the influence of tobacco-smoking on the blood microcirculation in the periodont at the patients with the different stages of periodontal diseases. Stomatologiia (Mosk.) 2010, 89, 10–14. [Google Scholar] [PubMed]
- Erdemir, E.O.; Duran, I.; Haliloglu, S. Effects of smoking on clinical parameters and the gingival crevicular fluid levels of IL-6 and TNF-α in patients with chronic periodontitis. J. Clin. Periodontol. 2004, 31, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Nair, P.; Sutherland, G.; Palmer, R.M.; Wilson, R.F.; Scott, D.A. Gingival bleeding on probing increases after quitting smoking. J. Clin. Periodontol. 2003, 30, 435–437. [Google Scholar] [CrossRef]
- Alves, C.R.; Berlt, F.A.; Mário, T.D.; Sfreddo, C.S.; Maier, J.; Moreira, C.H. Correlations between supra- and subgingival clinical parameters in smokers and individuals who have never smoked. Rev. Odontol. UNESP 2015, 44, 152–156. [Google Scholar] [CrossRef] [Green Version]
- Biddle, A.J.; Palmer, R.M.; Wilson, R.F.; Watts, T.L.P. Comparison of the validity of periodontal probing measurements in smokers and non-smokers. J. Clin. Periodontol. 2001, 28, 806–812. [Google Scholar] [CrossRef] [PubMed]
- Sakallioğlu, E.E.; Sakallioğlu, U.; Lütfioğlu, M.; Pamuk, F.; Kantarci, A. Vascular endothelial cadherin and vascular endothelial growth factor in periodontitis and smoking. Oral Dis. 2015, 21, 263–269. [Google Scholar] [CrossRef]
Authors | Species/Strain | Nicotine Dose and Administration Route | Measurement Site | Assessment Technique | Main Results |
---|---|---|---|---|---|
Clarke et al. (1981) [93] | New-Zealand lop-eared rabbits under urethane anesthesia | Intra-arterial administration (right common carotid artery) | Gingiva | Thermal-diffusion transducer | Perfusion decrease |
Clarke et al. (1984) [94] | New-Zealand lop-eared rabbits under urethane anesthesia | Systemic administration (16.2 μg/mL) via infusion pump. Ten infusions were given at 30 min intervals over a 5-hour period. Infusions were repeated over a 6-month period | Gingiva | Thermal-diffusion transducer | Perfusion decrease |
Huckabee et al. (1993) [92] | Dogs under sodium thiamylal anesthesia | Topical administration of moist snuff containing 3.12, 6.25, 12.5, 25, 50, and 100 mg/kg of nicotine for 7 min | Cheek mucosa and tongue | Radiolabeled microsphere method | Perfusion increase at the application site and decrease at the contralateral site. |
Johnson et al. (1991) [90] | Dogs | Topical (8 mg/kg/day) administration for 28 days | Mandibular gingiva | Radiolabeled microsphere method | Perfusion increase in anterior mandibular gingiva regardless of the administration route |
Systemic (2.5 mg/kg/day) administration by subcutaneous osmotic mini-pumps | |||||
Johnson et al. (1993) [91] | Dogs | Topical (8 mg/kg/day) administration for 28 days | Anterior mandibular gingiva | Radiolabeled microsphere method | Perfusion increase regardless of the administration route |
Systemic (2.5 mg/kg/day) administration by subcutaneous osmotic mini-pumps for 28 days |
Authors | Subjects (Sample Size; Mean Age; Tobacco Habits) | Tobacco Product | Assessment Site | Assessment Technique | Main Results |
---|---|---|---|---|---|
Baab et al. (1987) [103] | Healthy habitual smokers (n = 12, 22.4 y.o., 5–15/day for 2–8 years) | Cigarette | Gingival margin and forearm skin | Laser Doppler flowmetry | Increased gingival blood flow, SBP and DBP—blood flow returned to the baseline after 10 min. Reduced forearm blood flow. |
Meekin et al. (2000) [104] | Healthy habitual smokers (n = 15, mean age 34–36 y.o., 6 light smokers, 9 heavy smokers) | Filterless cigarette | Gingival and forehead skin | Laser Doppler flowmetry | Significant increase in forehead perfusion in light smokers. Non-significant perfusion increase in gingiva in all the groups |
Mavropoulos et al. (2001) [100] | Healthy habitual tobacco consumers (n = 22, 25.9 y.o.) | Smokeless tobacco (snuff) | Gingiva, applied unilaterally | Laser Doppler flowmetry | Blood flow increase at the applied and contralateral sites. Heart rate and blood pressure increased. Neural or endocrine mechanism may be involved. |
Mavropoulos et al. (2002) [111] | Healthy human subjects (n = 18, 26 y.o.) | 500 mg of snuff (1% nicotine) | Buccal maxillary gingiva; skin of the forehead and thumb | Laser Doppler flowmetry | Rapid increase in gingival and blood flow. Blood pressure and heart rate increased. Vasodilation was attenuated by infraorbital nerve block (mepivacaine) |
Mavropoulos et al. (2003) [101] | Humans, healthy casual smokers (n = 13) | Cigarette smoke | Gingiva and thumb and forehead skin | Laser Doppler flowmetry | Vasoconstriction in gingiva, overcome by increased blood pressure, which led to a higher blood flow. |
Authors | Subjects (Sample Size; Mean Age; Tobacco Habits) | Assessment Site | Assessment Technique | Main Results |
---|---|---|---|---|
Persson et al. (1988) [180] | Healthy habitual female smokers (n = 7, 33.6 y.o., mean 16.1/day for a mean of 13.1 years) | Gingival margin of the mandibular and maxillary anterior regions | Stereophotography | No significant differences in capillary density when compared to age-matched non-smokers |
Lindeboom et al. (2005) [173] | Healthy habitual male smokers (n = 10, 25.0 y.o., 15–25/day in the previous 5 years) | Gingival margin (buccal aspect) of the first right maxillary premolar region | Orthogonal polarization spectral imaging | No significant differences in capillary density when compared to age- and gender-matched non-smokers |
Scardina et al. (2019) [182] | Healthy ex-smokers (n = 25, 58.4 y.o., smoking duration of 17.28 years, cessation duration of 13.28 years) | Gingival mucosa | Videocapillaroscopy | Significantly higher capillary density, smaller and more tortuous capillaries in ex-smokers and in smokers when compared to age-matched non-smokers |
Scardina et al. (2005) [176] | Healthy cigar smokers (n = 25, 56.7 y.o. | Lingual mucosa | Videocapillaroscopy | Significantly higher capillary density and tortuosity and lower caliber when compared with age-matched non-smokers |
Lova et al. (2002) [174] | Healthy cigarette smokers | Labial mucosa | Videocapillaroscopy | Significantly higher capillary density and tortuosity and lower caliber when compared with age-matched non-smokers |
Sönmez et al. (2003) [178] | Cigarette smokers with periodontitis (n = 38, 38 y.o., from less than 10 to more than 20 years of smoking) | Gingival mucosa | Histomorphometric analysis | No significant changes in vascular density when compared with age-matched non-smokers |
Kumar et al. (2011) [179] | Cigarette smokers with periodontitis (n = 18, 46.3 y.o., ≥10 cigarettes/day for more than 10 years) | Gingival mucosa from periodontal surgical sites and tooth extraction sites | Histomorphometric analysis | No significant changes in vascular density and lumen area when compared with age-matched non-smokers |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, H. Tobacco Use and Periodontal Disease—The Role of Microvascular Dysfunction. Biology 2021, 10, 441. https://doi.org/10.3390/biology10050441
Silva H. Tobacco Use and Periodontal Disease—The Role of Microvascular Dysfunction. Biology. 2021; 10(5):441. https://doi.org/10.3390/biology10050441
Chicago/Turabian StyleSilva, Henrique. 2021. "Tobacco Use and Periodontal Disease—The Role of Microvascular Dysfunction" Biology 10, no. 5: 441. https://doi.org/10.3390/biology10050441
APA StyleSilva, H. (2021). Tobacco Use and Periodontal Disease—The Role of Microvascular Dysfunction. Biology, 10(5), 441. https://doi.org/10.3390/biology10050441