GWAS Links New Variant in Long Non-Coding RNA LINC02006 with Colorectal Cancer Susceptibility
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Patients
2.3. Genome-Wide Microarray Allelotyping
2.4. Individual Genotyping
2.5. eQTL Analysis
2.6. Survival Curves
2.7. Statistical Analyses
2.7.1. Genome-Wide Allelotyping
2.7.2. Individual Genotyping
2.7.3. Stepwise Forward Logistic Regression Analysis
3. Results
3.1. Association Analyses
3.2. Risk Prediction Modeling
3.3. eQTL Bioinformatic Analysis
3.4. Survival Probability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2014, 136, E359–E386. [Google Scholar] [CrossRef]
- Religioni, U. Cancer incidence and mortality in Poland. Clin. Epidemiol. Glob. Health 2020, 8, 329–334. [Google Scholar] [CrossRef] [Green Version]
- Lichtenstein, P.; Holm, N.V.; Verkasalo, P.K.; Iliadou, A.; Kaprio, J.; Koskenvuo, M.; Pukkala, E.; Skytthe, A.; Hemminki, K. Environmental and heritable factors in the causation of cancer—Analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 2000, 343, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Mucci, L.A.; Hjelmborg, J.; Harris, J.R.; Czene, K.; Havelick, D.J.; Scheike, T.; Graff, R.E.; Holst, K.; Möller, S.; Unger, R.H.; et al. Familial risk and heritability of cancer among twins in Nordic countries. JAMA 2016, 315, 68–76. [Google Scholar] [CrossRef] [Green Version]
- De La Chapelle, A. Genetic predisposition to colorectal cancer. Nat. Rev. Cancer 2004, 4, 769–780. [Google Scholar] [CrossRef] [PubMed]
- Peters, U.; Bien, S.; Zubair, N. Genetic architecture of colorectal cancer. Gut 2015, 64, 1623–1636. [Google Scholar] [CrossRef] [PubMed]
- Huyghe, J.R.; Bien, S.A.; Harrison, T.A.; Kang, H.M.; Chen, S.; Schmit, S.L.; Conti, D.V.; Qu, C.; Jeon, J.; Edlund, C.K.; et al. Discovery of common and rare genetic risk variants for colorectal cancer. Nat. Genet. 2018, 51, 76–87. [Google Scholar] [CrossRef]
- Law, P.J.; Timofeeva, M.; Fernandez-Rozadilla, C.; Broderick, P.; Studd, J.; Fernandez-Tajes, J.; Farrington, S.; Svinti, V.; Palles, C.; Orlando, G.; et al. Association analyses identify 31 new risk loci for colorectal cancer susceptibility. Nat. Commun. 2019, 10, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Kweon, S.-S.; Tanikawa, C.; Jia, W.-H.; Xiang, Y.-B.; Cai, Q.; Zeng, C.; Schmit, S.L.; Shin, A.; Matsuo, K.; et al. Large-scale genome-wide association study of east Asians identifies loci associated with risk for colorectal cancer. Gastroenterology 2019, 156, 1455–1466. [Google Scholar] [CrossRef] [Green Version]
- MacArthur, J.; Bowler, E.; Cerezo, M.; Gil, L.; Hall, P.; Hastings, E.; Junkins, H.; McMahon, A.; Milano, A.; Morales, J.; et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 2016, 45, D896–D901. [Google Scholar] [CrossRef]
- Schmit, S.L.; Edlund, C.K.; Schumacher, F.R.; Gong, J.; Harrison, T.A.; Huyghe, J.R.; Qu, C.; Melas, M.; Berg, D.J.V.D.; Wang, H.; et al. Novel common genetic susceptibility loci for colorectal cancer. J. Natl. Cancer Inst. 2018, 111, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Matsuda, K.; Jia, W.-H.; Chang, J.; Kweon, S.-S.; Xiang, Y.-B.; Shin, A.; Jee, S.H.; Kim, D.-H.; Zhang, B.; et al. Identification of susceptibility loci and genes for colorectal cancer risk. Gastroenterology 2016, 150, 1633–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiao, S.; Peters, U.; Berndt, S.; Brenner, H.; Butterbach, K.; Caan, B.; Carlson, C.S.; Chan, A.T.; Chang-Claude, J.; Chanock, S.; et al. Estimating the heritability of colorectal cancer. Hum. Mol. Genet. 2014, 23, 3898–3905. [Google Scholar] [CrossRef] [PubMed]
- Jostins, L.; Barrett, J.C. Genetic risk prediction in complex disease. Hum. Mol. Genet. 2011, 20, R182–R188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Schmit, S.L.; Haiman, C.A.; Keku, T.O.; Kato, I.; Palmer, J.R.; Berg, D.V.D.; Wilkens, L.R.; Burnett, T.; Conti, D.V.; et al. Novel colon cancer susceptibility variants identified from a genome-wide association study in African Americans. Int. J. Cancer 2017, 140, 2728–2733. [Google Scholar] [CrossRef] [Green Version]
- Ledwoń, J.K.; Hennig, E.; Maryan, N.; Goryca, K.; Nowakowska, D.; Niwińska, A.; Ostrowski, J. Common low-penetrance risk variants associated with breast cancer in Polish women. BMC Cancer 2013, 13, 510. [Google Scholar] [CrossRef] [Green Version]
- Zagajewska, K.; Piątkowska, M.; Goryca, K.; Bałabas, A.; Kluska, A.; Paziewska, A.; Pośpiech, E.; Grabska-Liberek, I.; Hennig, E.E. GWAS links variants in neuronal development and actin remodeling related loci with pseudoexfoliation syndrome without glaucoma. Exp. Eye Res. 2018, 168, 138–148. [Google Scholar] [CrossRef]
- Ostrowski, J.; Paziewska, A.; Lazowska, I.; Ambrozkiewicz, F.; Goryca, K.; Kulecka, M.; Rawa, T.; Karczmarski, J.; Dabrowska, M.; Zeber-Lubecka, N.; et al. Genetic architecture differences between pediatric and adult-onset inflammatory bowel diseases in the Polish population. Sci. Rep. 2016, 6, 39831. [Google Scholar] [CrossRef] [Green Version]
- Paziewska, A.; Habior, A.; Rogowska, A.; Zych, W.; Goryca, K.; Karczmarski, J.; Dabrowska, M.; Ambrozkiewicz, F.; Walewska-Zielecka, B.; Krawczyk, M.; et al. A novel approach to genome-wide association analysis identifies genetic associations with primary biliary cholangitis and primary sclerosing cholangitis in Polish patients. BMC Med. Genom. 2017, 10, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hennig, E.E.; Piątkowska, M.; Goryca, K.; Pośpiech, E.; Paziewska, A.; Karczmarski, J.; Kluska, A.; Brewczyńska, E.; Ostrowski, J. Non-CYP2D6 variants selected by a GWAS improve the prediction of impaired tamoxifen metabolism in patients with breast cancer. J. Clin. Med. 2019, 8, 1087. [Google Scholar] [CrossRef] [Green Version]
- Gaj, P.; Maryan, N.; Hennig, E.E.; Ledwon, J.K.; Paziewska, A.; Majewska, A.; Karczmarski, J.; Nesteruk, M.; Wolski, J.; Antoniewicz, A.A.; et al. Pooled sample-based GWAS: A cost-effective alternative for identifying colorectal and prostate cancer risk variants in the Polish population. PLoS ONE 2012, 7, e35307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- HaploReg v4.1. Available online: https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php (accessed on 21 November 2020).
- Uhlen, M.; Zhang, C.; Lee, S.; Sjöstedt, E.; Fagerberg, L.; Bidkhori, G.; Benfeitas, R.; Arif, M.; Liu, Z.; Edfors, F.; et al. A pathology atlas of the human cancer transcriptome. Science 2017, 357, eaan2507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, S.D. qqman: An R package for visualizing GWAS results using Q–Q and manhattan plots. J. Open Source Softw. 2018, 3. [Google Scholar] [CrossRef] [Green Version]
- Durinck, S.; Spellman, P.T.; Birney, E.; Huber, W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 2009, 4, 1184–1191. [Google Scholar] [CrossRef] [Green Version]
- Durinck, S.; Moreau, Y.; Kasprzyk, A.; Davis, S.; De Moor, B.; Brazma, A.; Huber, W. BioMart and Bioconductor: A powerful link between biological databases and microarray data analysis. Bioinformatics 2005, 21, 3439–3440. [Google Scholar] [CrossRef] [Green Version]
- R Development Core Team. A Language and Environment for Statistical Computing: Reference Index; R Foundation for Statistical Computing: Vienna, Austria, 2010; ISBN 978-3-900051-07-5. [Google Scholar]
- Stevenson, M.; Nunes, T.; Heuer, C.; Marshall, J.; Sanchez, J.; Thornton, R.; Reiczigel, J. EpiR: Tools for the Analysis of Epidemiological Data. Available online: https://cran.r-project.org/web/packages/epiR/index.html (accessed on 21 November 2020).
- Graffelman, J. Exploring diallelic genetic markers: The Hardy Weinberg package. J. Stat. Softw. 2015, 64, 1–23. [Google Scholar] [CrossRef]
- Signorell, A.; Aho, K.; Alfons, A.; Anderegg, N.; Aragon, T.; Arachchige, C. DescTools: Tools for Descriptive Statistics. Available online: https://CRAN.R-project.org/package=DescTools (accessed on 20 November 2020).
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Aragon, T.; Fay, M.; Wollschlaeger, D.; Omidpanah, A. Epitools: Epidemiology Tools. Available online: https://CRAN.R-project.org/package=epitools (accessed on 20 November 2020).
- Robin, X.A.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Muller, M.J. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef] [PubMed]
- Kheradpour, P.; Kellis, M. Systematic discovery and characterization of regulatory motifs in ENCODE TF binding experiments. Nucleic Acids Res. 2013, 42, 2976–2987. [Google Scholar] [CrossRef] [Green Version]
- Panagiotou, O.A.; Ioannidis, J.P.A.; Project, F.T.G.-W.S. What should the genome-wide significance threshold be? Empirical replication of borderline genetic associations. Int. J. Epidemiol. 2011, 41, 273–286. [Google Scholar] [CrossRef]
- Kaler, A.S.; Purcell, L.C. Estimation of a significance threshold for genome-wide association studies. BMC Genom. 2019, 20, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Melén, E.; Himes, B.E.; Brehm, J.M.; Boutaoui, N.; Klanderman, B.J.; Sylvia, J.S.; Lasky-Su, J. Analyses of shared genetic factors between asthma and obesity in children. J. Allergy Clin. Immunol. 2010, 126, 631–637. [Google Scholar] [CrossRef] [Green Version]
- Thorleifsson, G.; Walters, G.B.; Gudbjartsson, D.F.; Steinthorsdottir, V.; Sulem, P.; Helgadottir, A.; Styrkarsdottir, U.; Gretarsdottir, S.; Thorlacius, S.; Jonsdottir, I.; et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat. Genet. 2008, 41, 18–24. [Google Scholar] [CrossRef]
- The GIANT consortium. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat. Genet. 2008, 41, 25–34. [Google Scholar] [CrossRef]
- Veerappa, A.M.; Saldanha, M.; Padakannaya, P.; Ramachandra, N.B. Family-based genome-wide copy number scan identifies five new genes of dyslexia involved in dendritic spinal plasticity. J. Hum. Genet. 2013, 58, 539–547. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Hwang, J.-S.; Lee, B.; Hong, J.; Lee, S. Newly identified cancer-associated role of human neuronal growth regulator 1 (NEGR1). J. Cancer 2014, 5, 598–608. [Google Scholar] [CrossRef] [Green Version]
- Okegawa, T.; Pong, R.-C.; Li, Y.; Hsieh, J.-T. The role of cell adhesion molecule in cancer progression and its application in cancer therapy. Acta Biochim. Pol. 2004, 51, 445–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epischedda, F.; Epiccoli, G. The IgLON family member negr1 promotes neuronal arborization acting as soluble factor via FGFR2. Front. Mol. Neurosci. 2016, 8, 89. [Google Scholar] [CrossRef] [Green Version]
- Szczurkowska, J.; Pischedda, F.; Pinto, B.; Managò, F.; Haas, C.A.; Summa, M.; Bertorelli, R.; Papaleo, F.; Schäfer, M.K.; Piccoli, G.; et al. NEGR1 and FGFR2 cooperatively regulate cortical development and core behaviours related to autism disorders in mice. Brain 2018, 141, 2772–2794. [Google Scholar] [CrossRef]
- Matsuda, Y.; Ishiwata, T.; Yamahatsu, K.; Kawahara, K.; Hagio, M.; Peng, W.-X.; Yamamoto, T.; Nakazawa, N.; Seya, T.; Ohaki, Y.; et al. Overexpressed fibroblast growth factor receptor 2 in the invasive front of colorectal cancer: A potential therapeutic target in colorectal cancer. Cancer Lett. 2011, 309, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Huang, T.; Zou, Q.; Liu, D.; Wang, Y.; Tan, X.; Wei, Y.; Qiu, H. FGFR2 promotes expression of PD-L1 in colorectal cancer via the JAK/STAT3 signaling pathway. J. Immunol. 2019, 202, 3065–3075. [Google Scholar] [CrossRef] [PubMed]
- Sakiyama, M.; Matsuo, H.; Nakaoka, H.; Kawamura, Y.; Kawaguchi, M.; Higashino, T.; Nakayama, A.; Akashi, A.; Ueyama, J.; Kondo, T.; et al. Common variant of BCAS3 is associated with gout risk in Japanese population: The first replication study after gout GWAS in Han Chinese. BMC Med. Genet. 2018, 19, 96. [Google Scholar] [CrossRef]
- Lee, J.; Lee, Y.; Park, B.; Won, S.; Han, J.S.; Heo, N.J. Genome-wide association analysis identifies multiple loci associated with kidney disease-related traits in Korean populations. PLoS ONE 2018, 13, e0194044. [Google Scholar] [CrossRef]
- Xiangfeng the CARDIoGRAMplusC4D Consortium. A comprehensive 1000 Genomes–based genome-wide association meta-analysis of coronary artery disease. Nat. Genet. 2015, 47, 1121–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bärlund, M.; Monni, O.; Kononen, J.; Cornelison, R.; Torhorst, J.; Sauter, G.; Kallioniemi, O.-P.; Kallioniemi, A. Multiple genes at 17q23 undergo amplification and overexpression in breast cancer. Cancer Res. 2000, 60, 5340–5344. [Google Scholar] [PubMed]
- Siva, K.; Venu, P.; Mahadevan, A.; Shankar, S.K.; Inamdar, M.S. Human BCAS3 expression in embryonic stem cells and vascular precursors suggests a role in human embryogenesis and tumor angiogenesis. PLoS ONE 2007, 2, e1202. [Google Scholar] [CrossRef]
- Gururaj, A.E.; Singh, R.R.; Rayala, S.K.; Holm, C.; Hollander, P.D.; Zhang, H.; Balasenthil, S.; Talukder, A.H.; Landberg, G.; Kumar, R. MTA1, a transcriptional activator of breast cancer amplified sequence 3. Proc. Natl. Acad. Sci. USA 2006, 103, 6670–6675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shetty, R.; Joshi, D.; Jain, M.; Vasudevan, M.; Paul, J.C.; Bhat, G.; Banerjee, P.; Abe, T.; Kiyonari, H.; VijayRaghavan, K.; et al. Rudhira/BCAS3 is essential for mouse development and cardiovascular patterning. Sci. Rep. 2018, 8, 5632. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Bhat, G.P.; VijayRaghavan, K.; Inamdar, M.S. Rudhira/BCAS3 is a cytoskeletal protein that controls Cdc42 activation and directional cell migration during angiogenesis. Exp. Cell Res. 2012, 318, 753–767. [Google Scholar] [CrossRef]
- Joshi, D.; Inamdar, M.S. Rudhira/BCAS3 couples microtubules and intermediate filaments to promote cell migration for angiogenic remodeling. Mol. Biol. Cell 2019, 30, 1437–1450. [Google Scholar] [CrossRef]
- Han, Y.-N.; Li, Y.; Xia, S.-Q.; Zhang, Y.-Y.; Zheng, J.-H.; Li, W. PIWI proteins and PIWI-interacting RNA: Emerging roles in cancer. Cell. Physiol. Biochem. 2017, 44, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Rojas-Ríos, P.; Simonelig, M. piRNAs and PIWI proteins: Regulators of gene expression in development and stem cells. Development 2018, 145, dev161786. [Google Scholar] [CrossRef] [Green Version]
- Litwin, M.; Dubis, J.; Arczyńska, K.; Piotrowska, A.; Frydlewicz, A.; Karczewski, M.; Dzięgiel, P.; Witkiewicz, W. Correlation of HIWI and HILI Expression with cancer stem cell markers in colorectal cancer. Anticancer. Res. 2015, 35, 3317–3324. [Google Scholar] [PubMed]
- Wang, H.; Chen, B.; Cao, X.; Wang, J.; Hu, X.; Mu, X.; Chen, X. The clinical significances of the abnormal expressions of Piwil1 and Piwil2 in colonic adenoma and adenocarcinoma. OncoTargets Ther. 2015, 8, 1259–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raeisossadati, R.; Abbaszadegan, M.R.; Moghbeli, M.; Tavassoli, A.; Kihara, A.H.; Forghanifard, M.M. Aberrant expression of DPPA2 and HIWI genes in colorectal cancer and their impacts on poor prognosis. Tumor Biol. 2014, 35, 5299–5305. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Gao, C.-L.; Li, D.-H.; Li, B.-J.; Ding, Y.-H. Expression status of PIWIL1 as a prognostic marker of colorectal cancer. Dis. Markers 2017, 2017, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.; Qu, L.-K.; Meng, L.; Liu, C.-Y.; Dong, B.; Xing, X.-F.; Wu, J.; Shou, C.-C. HIWI expression profile in cancer cells and its prognostic value for patients with colorectal cancer. Chin. Med. J. 2011, 124, 2144–2149. [Google Scholar] [PubMed]
- Liu, C.; Qu, L.; Xing, X.; Ren, T.; Zeng, Y.; Jiang, B.; Meng, L.; Wu, J.; Shou, C.; Dong, B. Combined phenotype of 4 markers improves prognostic value of patients with colon cancer. Am. J. Med. Sci. 2012, 343, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Sellitto, A.; Geles, K.; D’Agostino, Y.; Conte, M.; Alexandrova, E.; Rocco, D.; Nassa, G.; Giurato, G.; Tarallo, R.; Weisz, A.; et al. Molecular and Functional Characterization of the Somatic PIWIL1/piRNA Pathway in Colorectal Cancer Cells. Cells 2019, 8, 1390. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Sood, A.K.; Dang, C.V.; Zhang, L. The role of long noncoding RNAs in cancer: The dark matter matters. Curr. Opin. Genet. Dev. 2018, 48, 8–15. [Google Scholar] [CrossRef]
- Sun, B.; Liu, C.; Zhang, L.; Luo, G.; Liang, S. Research progress on the interactions between long non-coding RNAs and microRNAs in human cancer (Review). Oncol. Lett. 2019, 19, 595–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poursheikhani, A.; Abbaszadegan, M.R.; Kerachian, M.A. Mechanisms of long non-coding RNA function in colorectal cancer tumorigenesis. Asia Pacific J. Clin. Oncol. 2020, 17, 7–23. [Google Scholar] [CrossRef]
- Deng, Q.; He, B.; Gao, T.; Pan, Y.; Sun, H.; Xu, Y.; Li, R.; Ying, H.; Wang, F.; Liu, X.; et al. Up-regulation of 91H promotes tumor metastasis and predicts poor prognosis for patients with colorectal cancer. PLoS ONE 2014, 9, e103022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; He, M.; Xu, W.; Huang, S. LINC01354 interacting with hnRNP-D contributes to the proliferation and metastasis in colorectal cancer through activating Wnt/β-catenin signaling pathway. J. Exp. Clin. Cancer Res. 2019, 38, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Zhou, C.; Chang, Y.; Zhang, Z.; Hu, Y.; Zhang, F.; Lu, Y.; Zheng, L.; Zhang, W.; Li, X.; et al. Long non-coding RNA CASC11 interacts with hnRNP-K and activates the WNT/β-catenin pathway to promote growth and metastasis in colorectal cancer. Cancer Lett. 2016, 376, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Sun, B.; Wu, W.; Yu, C.; Tian, T.; Lian, Z.; Liang, Q.; Zhou, Y. LINC01123 facilitates proliferation, invasion and chemoresistance of colon cancer cells. Biosci. Rep. 2020, 40. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Z.; Lan, Z. Silencing UNC5B antisense lncRNA 1 represses growth and metastasis of human Colon cancer cells via raising miR-622. Artif. Cells Nanomed. Biotechnol. 2019, 48, 60–67. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Zhang, R.; Zhao, J. The novel long noncoding RNA TUSC7 inhibits proliferation by sponging MiR-211 in colorectal cancer. Cell. Physiol. Biochem. 2017, 41, 635–644. [Google Scholar] [CrossRef]
- Li, L.; Sun, R.; Liang, Y.; Pan, X.; Li, Z.; Bai, P.; Zeng, X.; Zhang, D.; Zhang, L.; Gao, L. Association between polymorphisms in long non-coding RNA PRNCR1 in 8q24 and risk of colorectal cancer. J. Exp. Clin. Cancer Res. 2013, 32, 104. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Sun, H.; Wang, Y.; Yang, X.; Meng, Q.; Yang, H.; Zhu, H.; Tang, W.; Li, X.; Aschner, M.; et al. MALAT1 rs664589 polymorphism inhibits binding to miR-194-5p, contributing to colorectal cancer risk, growth, and metastasis. Cancer Res. 2019, 79, 5432–5441. [Google Scholar] [CrossRef] [Green Version]
- Gong, J.; Tian, J.; Lou, J.; Ke, J.; Li, L.; Li, J.; Yang, Y.; Gong, Y.; Zhu, Y.; Zhang, Y.; et al. A functional polymorphism inlnc-LAMC2-1:1confers risk of colorectal cancer by affecting miRNA binding. Carcinogenesis 2016, 37, 443–451. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wu, S.; Yang, X.; Li, X.; Chen, R. Association between polymorphism in the promoter region of lncRNA GAS5 and the risk of colorectal cancer. Biosci. Rep. 2019, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.-L.; Huang, Z.; Wu, L.-N.; Wu, R.; Ding, H.-X.; Wang, B.-G. lncRNA-PCAT1 rs2632159 polymorphism could be a biomarker for colorectal cancer susceptibility. Biosci. Rep. 2019, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alegria-Lertxundi, I.; Aguirre, C.; Bujanda, L.; Fernández, F.J.; Polo, F.; Ordovás, J.M.; Etxezarraga, M.C.; Zabalza, I.; Larzabal, M.; Portillo, I.; et al. Single nucleotide polymorphisms associated with susceptibility for development of colorectal cancer: Case-control study in a Basque population. PLoS ONE 2019, 14, e0225779. [Google Scholar] [CrossRef]
CRC (N = 465) | Control (N = 1548) | |
---|---|---|
Female N (%) | 176 (38) | 969 (63) |
Male N (%) | 289 (62) | 579 (37) |
Age (mean ± SD) | 66 ± 11 | 55 ± 11 |
Age (median) | 66 | 58 |
Age (min.–max.) | 20–91 | 19–95 |
Tumor localization (%) | ||
rectum | 173 (37.2) | |
sigmoid | 79 (17.0) | |
sigmoid-rectum | 72 (15.5) | |
caecum | 55 (11.8) | |
ascendant | 39 (8.4) | |
other | 47 (10.1) | |
Tumor size (%) | ||
0 | 4 (0.9) | |
1 | 40 (8.6) | |
2 | 85 (18.3) | |
3 | 277 (59.6) | |
4 | 56 (12.0) | |
Tis | 3 (0.6) | |
Node status (%) | ||
0 | 245 (52.7) | |
1 | 126 (27.1) | |
2 | 78 (16.8) | |
3 | 9 (1.9) | |
Nx | 7 (1.5) | |
Grade (%) | ||
1 | 27 (5.8) | |
2 | 284 (61.1) | |
3 | 44 (9.5) | |
Gx | 110 (23.6) | |
Metastasis (%) | 49 (10.5) |
Allele Frequency (%) | Genotype Frequency (%) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
dbSNP ID a | Region | MA | MAF b | Control | CRC | OR (95% CI) | padj-Value | Genotype | Control | CRC | OR (95% CI) | padj-Value | |||
rs17575184 | 1p31.1 NEGR1 intron | A | 0.088 | 232 (10.8) | 60 (6.5) | 0.57 (0.42–0.76) | 3.54 × 10−4 | AA AG GG | 11 (1.0) 210 (19.6) 852 (79.4) | 1 (0.2) 58 (12.5) 406 (87.3) | 0.22 (0.01–1.12) 0.58 (0.42–0.79) - | 7.91 × 10−4 | |||
rs10935945 | 3q25.2 LINC02006 intron | T | 0.399 | 906 (42.2) | 478 (51.5) | 1.46 (1.25–1.70) | 1.26 × 10−5 | TT TC CC | 195 (18.2) 516 (48.0) 363 (33.8) | 117 (25.2) 244 (52.6) 103 (22.2) | 2.11 (1.54–2.90) 1.66 (1.28–2.18) - | 1.29 × 10−5 | |||
rs10838094 | 11p15.4 OR51B5 intron | A | 0.378 | 445 (41.4) | 422 (45.5) | 1.18 (0.99–1.41) | 8.03 × 10−2 | AA AG GG | 97 (18.1) 251 (46.7) 189 (35.2) | 92 (19.8) 238 (51.3) 134 (28.9) | 1.34 (0.93–1.92) 1.34 (1.01–1.78) - | 8.12 × 10−2 | |||
rs12424924 | 12p12.1 PYROXD1 intron | A | 0.194 | 223 (20.5) | 165 (17.9) | 0.85 (0.68–1.06) | 0.147 | AA AG GG | 25 (4.6) 173 (31.8) 346 (63.6) | 16 (3.5) 133 (28.9) 311 (67.6) | 0.71 (0.37–1.36) 0.86 (0.65–1.12) - | 0.152 | |||
rs11060839 | 12q24.33 PIWIL1 intron | A | 0.169 | 332 (15.6) | 194 (21.1) | 1.45 (1.19–1.76) | 3.92 × 10−4 | AA AG GG | 27 (2.5) 278 (26.1) 760 (71.4) | 21 (4.6) 152 (33.0) 287 (62.4) | 2.06 (1.13–3.71) 1.45 (1.14–1.84) - | 5.70 × 10−4 | |||
rs9927668 | 16p13.2 intergenic - | C | 0.290 | 840 (39.1) | 285 (30.9) | 0.70 (0.59–0.82) | 5.04 × 10−5 | CC CT TT | 179 (16.7) 482 (44.9) 412 (38.4) | 46 (10.0) 193 (41.9) 222 (48.2) | 0.48 (0.33–0.68) 0.74 (0.59–0.94) - | 8.25 × 10−5 | |||
rs12935896 | 17q23.2 BCAS3 intron | C | 0.400 | 545 (25.4) | 194 (20.9) | 0.77 (0.64–0.93) | 8.85 × 10−3 | CC CT TT | 68 (6.4) 409 (38.2) 594 (55.5) | 21 (4.5) 152 (32.7) 292 (62.8) | 0.63 (0.37–1.03) 0.76 (0.60–0.95) - | 8.87 × 10−3 |
dbSNP ID a | AIC b | AIC Change (%) | R2 c | R2 Change (%) |
---|---|---|---|---|
rs9927668 | 1309.45 | 0.028 | ||
rs10935945 | 1294.45 | 15.0 (1.15) | 0.054 | 0.026 (92) |
rs17575184 | 1285.31 | 9.14 (0.74) | 0.071 | 0.017 (33) |
rs12935896 | 1279.74 | 5.57 (0.43) | 0.084 | 0.013 (18) |
rs11060839 | 1274.75 | 4.99 (0.39) | 0.095 | 0.012 (14) |
rs10838094 | 1274.26 | 0.49 (0.04) | 0.101 | 0.006 (6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hennig, E.E.; Kluska, A.; Piątkowska, M.; Kulecka, M.; Bałabas, A.; Zeber-Lubecka, N.; Goryca, K.; Ambrożkiewicz, F.; Karczmarski, J.; Olesiński, T.; et al. GWAS Links New Variant in Long Non-Coding RNA LINC02006 with Colorectal Cancer Susceptibility. Biology 2021, 10, 465. https://doi.org/10.3390/biology10060465
Hennig EE, Kluska A, Piątkowska M, Kulecka M, Bałabas A, Zeber-Lubecka N, Goryca K, Ambrożkiewicz F, Karczmarski J, Olesiński T, et al. GWAS Links New Variant in Long Non-Coding RNA LINC02006 with Colorectal Cancer Susceptibility. Biology. 2021; 10(6):465. https://doi.org/10.3390/biology10060465
Chicago/Turabian StyleHennig, Ewa E., Anna Kluska, Magdalena Piątkowska, Maria Kulecka, Aneta Bałabas, Natalia Zeber-Lubecka, Krzysztof Goryca, Filip Ambrożkiewicz, Jakub Karczmarski, Tomasz Olesiński, and et al. 2021. "GWAS Links New Variant in Long Non-Coding RNA LINC02006 with Colorectal Cancer Susceptibility" Biology 10, no. 6: 465. https://doi.org/10.3390/biology10060465
APA StyleHennig, E. E., Kluska, A., Piątkowska, M., Kulecka, M., Bałabas, A., Zeber-Lubecka, N., Goryca, K., Ambrożkiewicz, F., Karczmarski, J., Olesiński, T., Zyskowski, Ł., & Ostrowski, J. (2021). GWAS Links New Variant in Long Non-Coding RNA LINC02006 with Colorectal Cancer Susceptibility. Biology, 10(6), 465. https://doi.org/10.3390/biology10060465