Genome-Wide Analysis and Expression Profiling of the Phospholipase D Gene Family in Solanum tuberosum
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials Preparation
2.2. Identification and Phylogenetic Analysis of PLD Gene Family in Potato
2.3. Chromosomal Location Analysis and Gene Duplication
2.4. Gene Structure and Cis-Acting Elements Analysis and Conserved Motif Identification
2.5. Gene Ontology Annotations and Interspecific Collinearity Analysis of PLD Gene in Potato
2.6. Tissue Expression and Stress Treatment Expression Analysis of the Potato PLD Genes
2.7. RNA Isolation and qRT-PCR Analysis
3. Results
3.1. Identification of Members of PLD Gene Family in Potato
3.2. Chromosomal Location and Gene Duplication of PLD Gene Family in Potato
3.3. Gene Structure and Cis-Acting Elements Analysis and Conserved Motif Identification
3.4. Gene Ontology Annotations of StPLD Proteins
3.5. Collinear Analysis of PLD Gene in Potato and Arabidopsis thaliana
3.6. Tissue Expression and Stress Treatment Expression Analysis of the Potato PLD Genes
3.7. Expression Analysis of StPLD Genes in Different Treatments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Primer Name | Sequence (in 5′→3′ Order) | |
---|---|---|
Forward | Reverse | |
StPLDα1 | TTCGGCTTTCCTGATACACC | AAGCACCTACCTCCTCCACT |
StPLDα2 | TTACACCATAAACTTCCCTCAT | AGGCTTGCACCTGATAGG |
StPLDα3 | GCCCAGAGCCTGATTCTA | ATGATAAGGCTGGTAGGC |
StPLDα4 | GAACCTAATTCCGGCTAT | AACCCATGAACCTGACCC |
StPLDα5 | TTTCACTGGTGCTACGAT | ATACATAGCAGGTGAAGG |
StPLDα6 | TTGGAAACCGTGAAGTCG | GGTTGGTAGCCACCCATA |
StPLDβ1 | GTGCTGGTCCTGAGTATTA | CAAGTTTGACTTTGTGCC |
StPLDβ2 | AACTTGGATATTTGGGTGAG | TAGGTCCTAGCAACTACAGC |
StPLDβ3 | TTGGTAACCGTGAGGTCG | CATCGCTATCTCCGTGTC |
StPLDδ1 | AGGTGCTGAACTGATAGGAA | ATCAGCCTCATTACCAACAC |
StPLDδ2 | GGGTCATTCCTAACTCGC | ACACGAAGAGCCGTATCG |
StPLDδ3 | ACGACGGAAACGGCGAACT | AAGCAGTCCATAGGGTGT |
StPLDδ4 | TATCGGCGTTGCTACCGT | TGCCTCGCTGGGAAATAA |
StPLDδ5 | CAGCACCTCAGAATGAACGG | TCATAAGCAGCAGGTCCATC |
StPLDζ1 | AAAGGATTTGTGGACGAG | GATAAGGGAGCAGTAAGC |
StPLDζ2 | TCATCCCACTATTACCTG | CATACGTCCTGAGACCAT |
ef1α | GGAAAAGCTTGCCTATGTGG | CTGCTCCTGGCAGTTTCAA |
Species | Gene Name | Locus ID |
---|---|---|
Arabidopsis | AtPLDα1 | At3g15730 |
AtPLDα2 | At1g52570 | |
AtPLDα3 | At5g25370 | |
AtPLDα4 | At1g55180 | |
AtPLDβ1 | At2g42010 | |
AtPLDβ2 | At4g00240 | |
AtPLDγ1 | At4g11850 | |
AtPLDγ2 | At4g11830 | |
AtPLDγ3 | At4g11840 | |
AtPLDδ | At4g35790 | |
AtPLDζ1 | At3g16785 | |
AtPLDζ2 | At3g05630 | |
Solanum tuberosum | StPLDα1 | Soltu.DM.03G030690 |
StPLDα2 | Soltu.DM.03G036240 | |
StPLDα3 | Soltu.DM.06G023780 | |
StPLDα4 | Soltu.DM.08G015290 | |
StPLDα5 | Soltu.DM.08G015300 | |
StPLDα6 | Soltu.DM.12G028870 | |
StPLDβ1 | Soltu.DM.01G032650 | |
StPLDβ2 | Soltu.DM.08G026790 | |
StPLDβ3 | Soltu.DM.10G006880 | |
StPLDδ1 | Soltu.DM.01G042810 | |
StPLDδ2 | Soltu.DM.02G005480 | |
StPLDδ3 | Soltu.DM.02G023290 | |
StPLDδ4 | Soltu.DM.04G037130 | |
StPLDδ5 | Soltu.DM.10G012190 | |
StPLDζ1 | Soltu.DM.01G020480 | |
StPLDζ2 | Soltu.DM.01G039740 | |
Rice | OsPLDα1 | LOC_Os01g07760 |
OsPLDα2 | LOC_Os05g07880 | |
OsPLDα3 | LOC_Os06g40190 | |
OsPLDα4 | LOC_Os06g40170 | |
OsPLDα5 | LOC_Os06g40180 | |
OsPLDα6 | LOC_Os03g27370 | |
OsPLDα7 | LOC_Os08g31060 | |
OsPLDα8 | LOC_Os09g25390 | |
OsPLDβ1 | LOC_Os10g38060 | |
OsPLDβ2 | LOC_Os03g02740 | |
OsPLDδ1 | LOC_Os09g37100 | |
OsPLDδ2 | LOC_Os03g62410 | |
OsPLDδ3 | LOC_Os07g15680 | |
OsPLDκ | LOC_Os02g02790 | |
OsPLDζ1 | LOC_Os05g29050 | |
OsPLDζ2 | LOC_Os01g20860 | |
OsPLDφ | LOC_Os06g44060 |
Gene | Leaves | Roots | Shoots | Callus | Stolons | Tubers | Flowers | Petioles | Petals | Stamens | Carpels | Sepals |
---|---|---|---|---|---|---|---|---|---|---|---|---|
StPLDα1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4.17 | 3.85 | 1.55 | 0 |
StPLDα2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
StPLDα3 | 0.05 | 0.05 | 2.22 | 1.51 | 1.90 | 1.90 | 1.90 | 1.90 | 0 | 0 | 2.22 | 1.74 |
StPLDα4 | 1.15 | 1.15 | 1.36 | 1.26 | 1.31 | 1.31 | 1.31 | 1.31 | 0.87 | 0.32 | 1.01 | 1.86 |
StPLDα5 | 4.36 | 4.36 | 3.27 | 3.92 | 3.63 | 3.63 | 3.63 | 3.63 | 0 | 6.23 | 4.08 | 3.70 |
StPLDα6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
StPLDβ1 | 1.47 | 1.47 | 2.11 | 1.82 | 1.97 | 1.97 | 1.97 | 1.97 | 4.08 | 4.22 | 3.76 | 3.29 |
StPLDβ2 | 0.42 | 0.42 | 0.27 | 0.35 | 0.31 | 0.31 | 0.31 | 0.31 | 3.34 | 0 | 1.51 | 2.48 |
StPLDβ3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.59 | 0 | 0 |
StPLDδ1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.48 | 0 | 0 |
StPLDδ2 | 0 | 0 | 1.22 | 0.73 | 0.99 | 0.99 | 0.99 | 0.99 | 3.17 | 3.50 | 3.48 | 2.30 |
StPLDδ3 | 3.90 | 3.90 | 4.39 | 4.17 | 4.28 | 4.28 | 4.28 | 4.28 | 4.87 | 2.70 | 4.51 | 4.57 |
StPLDδ4 | 0.02 | 0.02 | 0.81 | 0.47 | 0.65 | 0.65 | 0.65 | 0.65 | 2.46 | 4.93 | 0.31 | 0.49 |
StPLDδ5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.02 | 0 | 0 |
StPLDζ1 | 2.01 | 2.01 | 2.77 | 2.44 | 2.61 | 2.61 | 2.61 | 2.61 | 4.01 | 3.35 | 3.47 | 3.81 |
StPLDζ2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.19 |
Gene | Salt | Mannitol | Heat | P. infestans | BABA | BTH | ABA | IAA | GA3 | BAP | Salt | Mannitol |
---|---|---|---|---|---|---|---|---|---|---|---|---|
StPLDα1 | 0 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
StPLDα2 | 0 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
StPLDα3 | 0.71 | −1.36 | −1.10 | −2.65 | −0.65 | −0.86 | −2.19 | 0.02 | 1.03 | −2.19 | −2.65 | −0.65 |
StPLDα4 | 0.83 | 0.81 | 0.94 | −0.32 | −0.55 | 0.86 | −0.09 | −0.25 | −0.34 | −0.74 | −0.32 | −0.55 |
StPLDα5 | 1.73 | 2.98 | 4.16 | −4.98 | −3.54 | −1.16 | 2.53 | 0.11 | −0.83 | 1.34 | −4.98 | −3.54 |
StPLDα6 | 0 | 0.04 | −3.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.42 | 0.30 | 0.00 | 0.00 |
StPLDβ1 | 0.04 | 0.06 | 0.15 | −0.51 | −0.33 | −0.46 | −0.39 | −0.50 | −0.28 | −0.85 | −0.51 | −0.33 |
StPLDβ2 | −2.09 | −0.63 | −1.15 | −0.30 | 1.20 | −1.70 | 1.11 | 0.17 | 0.32 | −1.79 | −0.30 | 1.20 |
StPLDβ3 | 0 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
StPLDδ1 | 0 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
StPLDδ2 | 0.91 | 1.00 | 0.19 | −0.46 | −0.45 | 0.12 | 1.05 | 0.23 | 0.56 | 0.12 | −0.46 | −0.45 |
StPLDδ3 | 0.38 | −0.80 | −0.26 | −0.46 | −0.90 | 0.07 | −1.65 | −0.18 | 0.05 | −1.93 | −0.46 | −0.90 |
StPLDδ4 | 0.43 | 0.28 | −0.08 | −0.89 | −0.96 | −0.68 | 0.22 | −0.09 | −0.08 | 0.52 | −0.89 | −0.96 |
StPLDδ5 | 0 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
StPLDζ1 | 0.79 | 0.53 | −0.06 | −0.79 | −0.36 | −0.68 | −0.06 | −0.29 | 0.09 | −0.37 | −0.79 | −0.36 |
StPLDζ2 | 0 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
References
- Tang, K.; Dong, C.J.; Liu, J.Y. Genome-Wide Comparative Analysis of the Phospholipase D Gene Families among Allotetraploid Cotton and Its Diploid Progenitors. PLoS ONE 2016, 11, e156281. [Google Scholar] [CrossRef] [PubMed]
- Dyer, J.H.; Zheng, S.; Wang, X. Structural heterogeneity of phospholipase D in 10 dicots. Biochem. Biophys. Res. Commun. 1996, 221, 31–36. [Google Scholar] [CrossRef]
- Chen, L.; Cao, B.; Han, N.; Tao, Y.; Zhou, S.F. Phospholipase D family and its expression in response to abiotic stress in maize. Plant Growth Regul. 2017, 81, 197–207. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, H.; Zhang, Q.; Li, M.; Wang, X. Phospholipase Dα1 and Phosphatidic Acid Regulate NADPH Oxidase Activity and Production of Reactive Oxygen Species in ABA-Mediated Stomatal Closure in Arabidopsis. Plant Cell 2009, 21, 2357–2377. [Google Scholar] [CrossRef] [Green Version]
- Maoyin, L.; Chunbo, Q.; Ruth, W.; Xuemin, W. Double Knockouts of Phospholipases Dζ1 and Dζ2 in Arabidopsis Affect Root Elongation during Phosphate-Limited Growth But Do Not Affect Root Hair Patterning. Plant Physiol. 2006, 140, 761–770. [Google Scholar]
- Bargmann, B.; Laxalt, A.M.; Ter, R.B.; Bas, V.S.; Emmanuelle, M.; Christa, T.; Haring, M.A.; Dorothea, B.; Teun, M. Multiple PLDs Required for High Salinity and Water Deficit Tolerance in Plants. Plant Cell Physiol. 2008, 50, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Mane, S.P.; Vasquez-Robinet, C.; Sioson, A.A.; Heath, L.S.; Grene, R. Early PLDα-mediated events in response to progressive drought stress in Arabidopsis: A transcriptome analysis. J. Exp. Bot. 2007, 58, 241–252. [Google Scholar] [CrossRef] [Green Version]
- Welti, R.; Li, W.Q.; Li, M.Y.; Sang, Y.M. Profiling Membrane Lipids in Plant Stress Responses. Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis. J. Biol. Chem. 2002, 277, 31994–32002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanahan, D.J.; Chaikoff, I.L. A new phospholipide-splitting enzyme specific for the ester linkage between the nitrogenous base and the phosphoric acid grouping. J. Biol. Chem. 1947, 169, 699–705. [Google Scholar] [CrossRef]
- Wang, X.M.; Lw, X.U.; Zheng, L. Cloning and expression of phosphatidylcholine-hydrolyzing phospholipase D from Ricinus communis L. J. Biol. Chem. 1994, 269, 20312–20317. [Google Scholar] [CrossRef]
- Eliá, M.; Potocky, M.; Ková, F.C.; Ársky, V. Molecular diversity of phospholipase D in angiosperms. BMC Genom. 2002, 3, 2. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Fang, L.; Xue, H.W. Genome-wide analysis of the phospholipase D family in Oryza sativa and functional characterization of PLDβ1 in seed germination. Cell Res. 2007, 17, 881–894. [Google Scholar] [CrossRef]
- Qi, L.; Zhang, C.; Yang, Y.; Hu, X. Genome-wide and molecular evolution analyses of the phospholipase D gene family in Poplar and Grape. BMC Plant Biol. 2010, 10, 117. [Google Scholar]
- Sagar, S.; Deepika; Biswas, D.K.; Chandrasekar, R.; Singh, A. Genome-wide identification, structure analysis and expression profiling of phospholipases D under hormone and abiotic stress treatment in chickpea (Cicer arietinum). Int. J. Biol. Macromol. 2021, 169, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Roshan, N.M.; Ashouri, M.; Sadeghi, S.M. Identification, evolution, expression analysis of phospholipase D (PLD) gene family in tea (Camellia sinensis). Physiol. Mol. Biol. Plants 2021, 27, 1219–1232. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Pandey, A.; Baranwal, V.; Kapoor, S.; Pandey, G.K. Comprehensive Expression Analysis of Rice Armadillo Gene Family during Abiotic Stress and Development. Plant Signal. Behav. 2012, 7, 847–855. [Google Scholar] [CrossRef] [Green Version]
- Ju, H.C.; Han, J.S. Phospholipase D and Its Essential Role in Cancer. Mol. Cells 2017, 40, 805–813. [Google Scholar]
- Kolesnikov, Y.S.; Nokhrina, K.P.; Kretynin, S.V.; Volotovski, I.D.; Kravets, V.S. Molecular structure of phospholipase D and regulatory mechanisms of its activity in plant and animal cells. Biochemistry 2012, 77, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Zhou, D.; Zhang, Q.; Zhang, W. Genomic analysis of phospholipase D family and characterization of GmPLDαs in soybean (Glycine max). J. Plant Res. 2012, 125, 569–578. [Google Scholar] [CrossRef]
- Leeuwen, W.V.; Krész, L.; Gre, L.B.; Munnik, T. Learning the lipid language of plant signalling. Trends Plant Sci. 2004, 9, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Fadlalla, T.; Tang, S.; Li, L.; Guo, L. Genome-Wide Analysis of Phospholipase D Gene Family and Profiling of Phospholipids under Abiotic Stresses in Brassica napus. Plant Cell Physiol. 2019, 60, 1556–1566. [Google Scholar] [CrossRef]
- Qin, C.; Wang, X. The Arabidopsis Phospholipase D Family. Characterization of a Calcium-Independent and Phosphatidylcholine-Selective PLDζ1 with Distinct Regulatory Domains. Plant Physiol. 2002, 128, 1057–1068. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Hong, Y.; Wang, X. Phospholipase D—and phosphatidic acid-mediated signaling in plants. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2009, 1791, 927–935. [Google Scholar] [CrossRef]
- Wang, X. Regulatory Functions of Phospholipase D and Phosphatidic Acid in Plant Growth, Development, and Stress Responses. Plant Physiol. 2005, 139, 566–573. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Zhang, W.; Wang, X. Phospholipase D and phosphatidic acid signalling in plant response to drought and salinity. Plant Cell Environ. 2010, 33, 627–635. [Google Scholar] [CrossRef]
- Yang, C.; Wang, D.; Zhang, C.; Ye, M.; Chen, Q. Comprehensive Analysis and Expression Profiling of PIN, AUX/LAX, and ABCB Auxin Transporter Gene Families in Solanum tuberosum under Phytohormone Stimuli and Abiotic Stresses. Biology 2020, 10, 127. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, M.; Liu, H.; Zhang, C.; Wang, D.; Liu, X.; Chen, Q. Functional Analysis of StPHT1;7, a Solanum tuberosum L. Phosphate Transporter Gene, in Growth and Drought Tolerance. Plants 2020, 9, 1384. [Google Scholar] [CrossRef]
- Wang, L.; Guo, K.; Yu, L.; Tu, Y.; Peng, L. Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Biol. 2010, 10, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.; Wang, D.; Zhang, C.; Kong, N.; Ma, H.; Chen, Q. Comparative Analysis of the PIN Auxin Transporter Gene Family in Different Plant Species: A Focus on Structural and Expression Profiling of PINs in Solanum tuberosum. Int. J. Mol. Sci. 2019, 20, 3270. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Cao, M.; Chen, X.; Ye, M.; Zhao, P.; Nan, Y.; Li, W.; Zhang, C.; Kong, L.; Kong, N. Genome-Wide Analysis of the Lateral Organ Boundaries Domain (LBD) Gene Family in Solanum tuberosum. Int. J. Mol. Sci. 2019, 20, 5360. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Zhang, G.; Murphy, A.; Koeyer, D.D.; Tai, H.; Bizimungu, B.; Si, H.; Li, X.Q. Differences between the Bud End and Stem End of Potatoes in Dry Matter Content, Starch Granule Size, and Carbohydrate Metabolic Gene Expression at the Growing and Sprouting Stages. J. Agric. Food Chem. 2016, 64, 1176–1184. [Google Scholar] [CrossRef]
- Du, D.; Cheng, T.; Pan, H. Genome-wide identification, molecular evolution and expression analyses of the phospholipase D gene family in three Rosaceae species. Sci. Hortic. 2013, 153, 13–21. [Google Scholar] [CrossRef]
- Todeschini, A.L.; Georges, A.; Veitia, R.A. Transcription factors: Specific DNA binding and specific gene regulation. Trends Genet. 2014, 30, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.; Dong, C.; Liu, J. Genome-wide analysis and expression profiling of the phospholipase D gene family in Gossypium arboreum. Sci. China-Life Sci. 2016, 59, 130–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, W.; Pappan, K.; Wang, X. Molecular heterogeneity of phospholipase D (PLD). Cloning of PLDgamma and regulation of plant PLDgamma, -beta, and -alpha by polyphosphoinositides and calcium. J. Biol. Chem. 1997, 272, 28267–28273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, X.; Liu, J.; Li, Y.U.; Yuan, B.; Wang, X.; Zhang, X. Genome-wide Identification and Expression Analysis of APX Gene Family in Taraxacum kok-saghyz. Acta Bot.-Boreali-Occident. Sin. 2019, 39, 1935–1942. [Google Scholar]
- Liu, W.; Tang, X.; Zhu, X.; Qi, X.; Zhang, N.; Si, H. Genome-wide identification and expression analysis of the E2 gene family in potato. Mol. Biol. Rep. 2019, 46, 777–791. [Google Scholar] [CrossRef] [PubMed]
- Mcdermott, M.; Wakelam, M.; Morris, A.J. Phospholipase D. Biochem. Cell Biol. 2004, 82, 225–253. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, X. Arabidopsis Phospholipase Dα1 Interacts with the Heterotrimeric G-protein α-Subunit through a Motif Analogous to the DRY Motif in G-protein-coupled Receptors. J. Biol. Chem. 2004, 279, 1794–1800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, A.; Marowa, P.; Kong, Y. Genome-wide identification of the expansin gene family in tobacco (Nicotiana tabacum). Mol. Genet. Genomics 2016, 291, 1891–1907. [Google Scholar] [CrossRef]
- Li, W.; Cui, X.; Meng, Z.; Huang, X.; Xie, Q.; Wu, H.; Jin, H.; Zhang, D.; Liang, W. Transcriptional Regulation of Arabidopsis MIR168a and ARGONAUTE1 Homeostasis in Abscisic Acid and Abiotic Stress Responses. Plant Physiol. 2012, 158, 1279–1292. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Youzhi, M.A.; Huijun, X.U.; Cheng, X.; Chen, M.; Zhaoshi, X.U.; Liancheng, L.I.; Xingguo, Y.E.; Lipu, D.U.; Hao, X. Improvement of wheat drought and salt tolerance by expression of a stress-inducible transcription factorGmDREB of soybean (Glycine max). Chin. Sci. Bull. 2005, 50, 2714–2723. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, G.; Liu, L.; Hou, X. Genome-wide Identification of PLD Gene Family in Chinese Cabbage and Its Response to High Temperature Stress. Acta Bot.-Boreali-Occident. Sin. 2019, 39, 1361–1370. [Google Scholar]
- Yang, N.; Yue, X.L.; Chen, X.L.; Wu, G.F.; Zhang, T.G.; An, L.Z. Molecular cloning and partial characterization of a novel phospholipase D gene from Chorispora bungeana. Plant Cell Tissue Organ Cult. 2012, 108, 201–212. [Google Scholar] [CrossRef]
- Liu, B.; Lin, Y.; Wang, W.; Gao, J.; Fang, C.; Wang, S.; Ying, X.; Lin, T.; Jia, Y. Molecular cloning and characterization of phospholipase D from Jatropha curcas. Mol. Biol. Rep. 2010, 37, 939–946. [Google Scholar] [CrossRef]
- Li, W.; Li, M.; Zhang, W.; Welti, R.; Wang, X. The plasma membrane-bound phospholipase D delta enhances freezing tolerance in Arabidopsis thaliana. Nat. Biotechnol. 2004, 22, 427–433. [Google Scholar] [CrossRef]
- Uraji, M.; Katagiri, T.; Okuma, E.; Ye, W.; Hossain, M.A.; Masuda, C.; Miura, A.; Nakamura, Y.; Mori, I.C.; Murata, S.Y. Cooperative Function of PLDδ and PLDα1 in Abscisic Acid-Induced Stomatal Closure in Arabidopsis. Plant Physiol. 2012, 159, 450–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Distéfano, A.M.; Scuffi, D.; García-Mata, C.; Lamattina, L.; Laxalt, A.M. Phospholipase Dδ is involved in nitric oxide-induced stomatal closure. Planta 2012, 236, 1899–1907. [Google Scholar] [CrossRef]
- Siegel, R.S.; Xue, S.; Murata, Y.; Yang, Y.; Nishimura, N.; Wang, A.; Schroeder, J.I. Calcium elevation-dependent and attenuated resting calcium-dependent abscisic acid induction of stomatal closure and abscisic acid-induced enhancement of calcium sensitivities of S-type anion and inward-rectifying K+ channels in Arabidopsis guard cells. Plant J. 2009, 59, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Vadovič, P.; Šamajová, O.; Takáč, T.; Novák, D.; Zapletalová, V.; Colcombet, J.; Šamaj, J. Biochemical and Genetic Interactions of Phospholipase D Alpha 1 and Mitogen-Activated Protein Kinase 3 Affect Arabidopsis Stress Response. Front. Plant Sci. 2019, 10, 275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, L.; Nie, J.; Cao, C.; Jin, Y.; Min, Y.; Wang, F.; Ji, L.; Yun, X.; Liang, Y.; Zhang, W. Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol. 2010, 188, 762–773. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Lin, F.; Mao, T.; Nie, J.; Yan, M.; Yuan, M.; Zhang, W. Phosphatidic Acid Regulates Microtubule Organization by Interacting with MAP65-1 in Response to Salt Stress in Arabidopsis. Plant Cell 2012, 24, 4555–4576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene 1 | Gene ID 1 | Chromosome Location (bp) 1 | ORF Length (bp) 1 | No. of Extrons | Protein 2 | Gene Subfamily | ||
---|---|---|---|---|---|---|---|---|
Length (aa) | MW (Da) | pI | ||||||
StPLDα1 | Soltu.DM.03G030690 | chr03:55077171..55080788(+) | 2526 bp | 4 | 841 | 96,517.87 | 5.40 | C2 |
StPLDα2 | Soltu.DM.03G036240 | chr03:59268234...59271821(+) | 2268 bp | 4 | 755 | 86,957.41 | 8.45 | C2 |
StPLDα3 | Soltu.DM.06G023780 | chr06:50043190...50048016(+) | 2430 bp | 3 | 809 | 92,232.31 | 5.42 | C2 |
StPLDα4 | Soltu.DM.08G015290 | chr08:42699245...42705076(+) | 3057 bp | 7 | 1018 | 11,6148.05 | 6.14 | C2 |
StPLDα5 | Soltu.DM.08G015300 | chr08:42713576...42719569(+) | 2424 bp | 3 | 807 | 91,963.58 | 5.71 | C2 |
StPLDα6 | Soltu.DM.12G028870 | chr12:58460700...58465340(+) | 2391 bp | 3 | 796 | 90,670.03 | 6.00 | C2 |
StPLDβ1 | Soltu.DM.01G032650 | chr01:72447542...72435483(−) | 3312 bp | 10 | 1103 | 122,968.20 | 6.62 | C2 |
StPLDβ2 | Soltu.DM.08G026790 | chr08:56273785...56279647(+) | 2622 bp | 11 | 873 | 98,464.98 | 7.66 | C2 |
StPLDβ3 | Soltu.DM.10G006880 | chr10:7384934...7390130(+) | 3306 bp | 10 | 1101 | 123,360.69 | 6.72 | C2 |
StPLDδ1 | Soltu.DM.01G042810 | chr01:81140965...81135745(−) | 2571 bp | 10 | 856 | 95,751.91 | 6.27 | C2 |
StPLDδ2 | Soltu.DM.02G005480 | chr02:18854673...18843653(−) | 2571 bp | 10 | 856 | 98,063.45 | 6.39 | C2 |
StPLDδ3 | Soltu.DM.02G023290 | chr02:36855596...36847884(−) | 2601 bp | 10 | 866 | 98,679.36 | 6.51 | C2 |
StPLDδ4 | Soltu.DM.04G037130 | chr04:68165888...68173456(+) | 2436 bp | 10 | 811 | 92,287.16 | 7.40 | C2 |
StPLDδ5 | Soltu.DM.10G012190 | chr10:34475195...34465438(−) | 2511 bp | 10 | 836 | 93,725.06 | 8.52 | C2 |
StPLDζ1 | Soltu.DM.01G020480 | chr01:56213337...56190748(−) | 3327 bp | 20 | 1108 | 126,223.72 | 6.39 | PH-PX |
StPLDζ2 | Soltu.DM.01G039740 | chr01:78401722...78418660(+) | 2658 bp | 20 | 885 | 101,538.59 | 6.00 | PH-PX |
Motif | Length | Amino Acid Sequence |
---|---|---|
Motif1 | 23 | KFRRFMIYVHSKGMIVDDEYVIIGSANINQRSLDGSRDTEIAMGAYQPHH |
Motif2 | 29 | MEJALKIASKIRAGERFAVYIVVPMWPEGLPESASVQEILFWQRRTMQMM |
Motif3 | 33 | VSGKNLIIDRSIHDAYIKAIRRAQHFIYIENQYFJGSSYSW |
Motif4 | 21 | PREPWHDJHCRIEGPAAYDVLYNFEQRWRKAGKW |
Motif5 | 29 | QEPPRGQIYGYRMSLWAEHLGMLEDCFQHPESLECVRRVNEIAEKNWKQY |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Zhang, C.; Zhang, M.; Yang, C.; Bao, Y.; Wang, D.; Chen, Q.; Chen, Y. Genome-Wide Analysis and Expression Profiling of the Phospholipase D Gene Family in Solanum tuberosum. Biology 2021, 10, 741. https://doi.org/10.3390/biology10080741
Li L, Zhang C, Zhang M, Yang C, Bao Y, Wang D, Chen Q, Chen Y. Genome-Wide Analysis and Expression Profiling of the Phospholipase D Gene Family in Solanum tuberosum. Biology. 2021; 10(8):741. https://doi.org/10.3390/biology10080741
Chicago/Turabian StyleLi, Long, Chao Zhang, Mancang Zhang, Chenghui Yang, Yanru Bao, Dongdong Wang, Qin Chen, and Yue Chen. 2021. "Genome-Wide Analysis and Expression Profiling of the Phospholipase D Gene Family in Solanum tuberosum" Biology 10, no. 8: 741. https://doi.org/10.3390/biology10080741
APA StyleLi, L., Zhang, C., Zhang, M., Yang, C., Bao, Y., Wang, D., Chen, Q., & Chen, Y. (2021). Genome-Wide Analysis and Expression Profiling of the Phospholipase D Gene Family in Solanum tuberosum. Biology, 10(8), 741. https://doi.org/10.3390/biology10080741