Effects of n-3 Polyunsaturated Fatty Acid-Enriched Hen Egg Consumption on the Inflammatory Biomarkers and Microvascular Function in Patients with Acute and Chronic Coronary Syndrome—A Randomized Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Study Population
2.2. Study Protocol
2.3. Anthropometric and Hemodynamic Measurements
2.4. Serum Free Fatty Acid Profile, Lipid Profile, and Biochemical Markers Analysis
2.5. Assay of Protein Concentration of Pro- and Anti-Inflammatory Cytokines and Chemokines in Serum
2.6. Measurement of Thiobarbituric Acid-Reactive Substances (TBARS) and Ferric-Reducing Ability of Plasma (FRAP)
2.7. Spectrophotometric Antioxidant Enzyme Activities Assay
2.8. Assessment of Microvascular Reactivity in Response to Vascular Occlusion
2.9. Statistical Analysis
3. Results
3.1. Anthropometric and Hemodynamic Parameters
3.2. Biochemical Parameters
3.3. Serum Lipid Profile
3.4. Serum Free Fatty Acid Profile
3.5. Serum Pro- and Anti-Inflammatory Cytokines and Chemokines Protein Concentration
3.6. Biomarkers of Oxidative Stress and Antioxidative Defense
3.7. Postocclusive Reactive Hyperemia (PORH) of Forearm Skin Microcirculation
4. Discussion
4.1. n-3 PUFA-Enriched Hen Eggs and Serum Lipid Profile in CAD Patients
4.2. n-3 PUFA-Enriched Hen Eggs and Serum Pro- and Anti-Inflammatory Cytokines and Chemokines Protein Concentration in CAD Patients
4.3. n-3 PUFA-Enriched Hen Eggs and Oxidative Stress in CAD Patients
4.4. n-3 PUFA-Enriched Hen Eggs and Skin Microvascular Reactivity in CAD Patients
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef]
- Collet, J.-P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021, 42, 1289–1367. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Wilson, P.W.F.; Kannel, W.B. Beyond Established and Novel Risk Factors. Circulation 2008, 117, 3031–3038. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://academic.oup.com/eurheartj/article/41/44/4242/5625728 (accessed on 7 April 2021).
- Widlansky, M.E.; Gokce, N.; Keaney, J.F.; Vita, J.A. The clinical implications of endothelial dysfunction. J. Am. Coll. Cardiol. 2003, 42, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Vanhoutte, P.M.; Shimokawa, H.; Feletou, M.; Tang, E.H.C. Endothelial dysfunction and vascular disease—A 30th anniversary update. Acta Physiol. 2017, 219, 22–96. [Google Scholar] [CrossRef]
- Jay Widmer, R.; Lerman, A. Endothelial dysfunction and cardiovascular disease. Glob. Cardiol. Sci. Pract. 2014, 2014, 43. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Horke, S.; Förstermann, U. Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis 2014, 237, 208–219. [Google Scholar] [CrossRef]
- Medina-Leyte, D.J.; Zepeda-García, O.; Domínguez-Pérez, M.; González-Garrido, A.; Villarreal-Molina, T.; Jacobo-Albavera, L. Endothelial Dysfunction, Inflammation and Coronary Artery Disease: Potential Biomarkers and Promising Therapeutical Approaches. Int. J. Mol. Sci. 2021, 22, 3850. [Google Scholar] [CrossRef]
- Davignon, J. Role of Endothelial Dysfunction in Atherosclerosis. Circulation 2004, 109, III-27–III-32. [Google Scholar] [CrossRef] [Green Version]
- Drenjančević, I.; Jukić, I.; Mihaljević, Z.; Ćosić, A.; Kibel, A. The Metabolites of Arachidonic Acid in Microvascular Function. In Microcirculation Revisited—From Molecules to Clinical Practice; InTech: Rijeka, Croatia, 2016. [Google Scholar]
- Maki; Van Elswyk; McCarthy; Seeley; Veith; Hess; Ingram; Halvorson; Calaguas; Davidson. Lipid Responses in Mildly Hypertriglyceridemic Men and Women to Consumption of Docosahexaenoic Acid-Enriched Eggs. Int. J. Vitam. Nutr. Res. 2003, 73, 357–368. [Google Scholar] [CrossRef]
- Available online: www.heart.org/en/news/2018/05/01/fish-oil-supplements-provide-some-benefit-after-heart-attack-heart-failure (accessed on 7 April 2021).
- Christensen, J.H.; Gustenhoff, P.; Korup, E.; Aaroe, J.; Toft, E.; Moller, T.; Rasmussen, K.; Dyerberg, J.; Schmidt, E.B. Effect of fish oil on heart rate variability in survivors of myocardial infarction: A double blind randomised controlled trial. BMJ 1996, 312, 677–678. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, F. Functional Foods: Their Role in Health Promotion and Disease Prevention. J. Food Sci. 2006, 69, R146–R149. [Google Scholar] [CrossRef]
- Jain, A.P.; Aggarwal, K.K.; Zhang, P.-Y. Omega-3 fatty acids and cardiovascular disease. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 441–445. [Google Scholar]
- Tilley, S.L.; Coffman, T.M.; Koller, B.H. Mixed messages: Modulation of inflammation and immune responses by prostaglandins and thromboxanes. J. Clin. Investig. 2001, 108, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Bagga, D.; Wang, L.; Farias-Eisner, R.; Glaspy, J.A.; Reddy, S.T. Differential effects of prostaglandin derived from -6 and -3 polyunsaturated fatty acids on COX-2 expression and IL-6 secretion. Proc. Natl. Acad. Sci. USA 2003, 100, 1751–1756. [Google Scholar] [CrossRef] [Green Version]
- Imig, J.D. Eicosanoid blood vessel regulation in physiological and pathological states. Clin. Sci. 2020, 134, 2707–2727. [Google Scholar] [CrossRef] [PubMed]
- Barquissau, V.; Ghandour, R.A.; Ailhaud, G.; Klingenspor, M.; Langin, D.; Amri, E.-Z.; Pisani, D.F. Control of adipogenesis by oxylipins, GPCRs and PPARs. Biochimie 2017, 136, 3–11. [Google Scholar] [CrossRef]
- Edin, M.L.; Lih, F.B.; Hammock, B.D.; Thomson, S.; Zeldin, D.C.; Bishop-Bailey, D. Vascular Lipidomic Profiling of Potential Endogenous Fatty Acid PPAR Ligands Reveals the Coronary Artery as Major Producer of CYP450-Derived Epoxy Fatty Acids. Cells 2020, 9, 1096. [Google Scholar] [CrossRef]
- Mihalj, M.; Stupin, A.; Kolobarić, N.; Tartaro Bujak, I.; Matić, A.; Kralik, Z.; Jukić, I.; Stupin, M.; Drenjančević, I. Leukocyte Activation and Antioxidative Defense Are Interrelated and Moderately Modified by n-3 Polyunsaturated Fatty Acid-Enriched Eggs Consumption—Double-Blind Controlled Randomized Clinical Study. Nutrients 2020, 12, 3122. [Google Scholar] [CrossRef]
- Stupin, A.; Mihalj, M.; Kolobarić, N.; Šušnjara, P.; Kolar, L.; Mihaljević, Z.; Matić, A.; Stupin, M.; Jukić, I.; Kralik, Z.; et al. Anti-Inflammatory Potential of n-3 Polyunsaturated Fatty Acids Enriched Hen Eggs Consumption in Improving Microvascular Endothelial Function of Healthy Individuals—Clinical Trial. Int. J. Mol. Sci. 2020, 21, 4149. [Google Scholar] [CrossRef]
- Shakoor, H.; Khan, M.I.; Sahar, A.; Khan, M.K.I.; Faiz, F.; Basheer Ahmad, H. Development of omega-3 rich eggs through dietary flaxseed and bio-evaluation in metabolic syndrome. Food Sci. Nutr. 2020, 8, 2619–2626. [Google Scholar] [CrossRef] [PubMed]
- Cosic, A.; Jukic, I.; Stupin, A.; Mihalj, M.; Mihaljevic, Z.; Novak, S.; Vukovic, R.; Drenjancevic, I. Attenuated flow-induced dilatation of middle cerebral arteries is related to increased vascular oxidative stress in rats on a short-term high salt diet. J. Physiol. 2016, 594, 4917–4931. [Google Scholar] [CrossRef] [Green Version]
- Mihaljević, Z.; Matić, A.; Stupin, A.; Rašić, L.; Jukić, I.; Drenjančević, I. Acute Hyperbaric Oxygenation, Contrary to Intermittent Hyperbaric Oxygenation, Adversely Affects Vasorelaxation in Healthy Sprague-Dawley Rats due to Increased Oxidative Stress. Oxid. Med. Cell. Longev. 2018, 2018, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Cavka, A.; Cosic, A.; Jukic, I.; Jelakovic, B.; Lombard, J.H.; Phillips, S.A.; Seric, V.; Mihaljevic, I.; Drenjancevic, I. The role of cyclo-oxygenase-1 in high-salt diet-induced microvascular dysfunction in humans. J. Physiol. 2015, 593, 5313–5324. [Google Scholar] [CrossRef]
- Stupin, M.; Stupin, A.; Rasic, L.; Cosic, A.; Kolar, L.; Seric, V.; Lenasi, H.; Izakovic, K.; Drenjancevic, I. Acute exhaustive rowing exercise reduces skin microvascular dilator function in young adult rowing athletes. Eur. J. Appl. Physiol. 2018, 118, 461–474. [Google Scholar] [CrossRef] [PubMed]
- The International Diabetes Federation (IDF) Consensus Worldwide Definition of the Metabolic Syndrome. Available online: https://www.idf.org/e-library/consensus-statements/60-idfconsensus-worldwide-definitionof-the-metabolic-syndrome (accessed on 14 April 2021).
- Jacobson, T.A.; Ito, M.K.; Maki, K.C.; Orringer, C.E.; Bays, H.E.; Jones, P.H.; McKenney, J.M.; Grundy, S.M.; Gill, E.A.; Wild, R.A.; et al. National Lipid Association recommendations for patient-centered management of dyslipidemia: Part 1—Executive summary. J. Clin. Lipidol. 2014, 8, 473–488. [Google Scholar] [CrossRef] [Green Version]
- Kris-Etherton, P.M.; Harris, W.S.; Appel, L.J. Fish Consumption, Fish Oil, Omega-3 Fatty Acids, and Cardiovascular Disease. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 2747–2757. [Google Scholar] [CrossRef] [Green Version]
- Casanova, M.A.; Medeiros, F.; Trindade, M.; Cohen, C.; Oigman, W.; Neves, M.F. Omega-3 fatty acids supplementation improves endothelial function and arterial stiffness in hypertensive patients with hypertriglyceridemia and high cardiovascular risk. J. Am. Soc. Hypertens. 2017, 11, 10–19. [Google Scholar] [CrossRef]
- Leslie, M.A.; Cohen, D.J.A.; Liddle, D.M.; Robinson, L.E.; Ma, D.W.L. A review of the effect of omega-3 polyunsaturated fatty acids on blood triacylglycerol levels in normolipidemic and borderline hyperlipidemic individuals. Lipids Health Dis. 2015, 14, 53. [Google Scholar] [CrossRef] [Green Version]
- Fearon, W.F.; Fearon, D.T. Inflammation and cardiovascular disease: Role of the interleukin-1 receptor antagonist. Circulation 2008, 117, 2577–2579. [Google Scholar] [CrossRef] [Green Version]
- Ridker, P.M.; Rifai, N.; Stampfer, M.J.; Hennekens, C.H. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 2000, 101, 1767–1772. [Google Scholar] [CrossRef] [Green Version]
- Luc, G.; Bard, J.-M.; Juhan-Vague, I.; Ferrieres, J.; Evans, A.; Amouyel, P.; Arveiler, D.; Fruchart, J.-C.; Ducimetiere, P.; PRIME Study Group. C-reactive protein, interleukin-6, and fibrinogen as predictors of coronary heart disease: The PRIME Study. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 1255–1261. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Shao, L.; Teng, L.; Hu, B.; Luo, Y.; Yu, X.; Zhang, D.; Zhang, H. Effects of n-3 Polyunsaturated Fatty Acid Therapy on Plasma Inflammatory Markers and N-Terminal Pro-brain Natriuretic Peptide in Elderly Patients with Chronic Heart Failure. J. Int. Med. Res. 2009, 37, 1831–1841. [Google Scholar] [CrossRef]
- Browning, L.M.; Krebs, J.D.; Moore, C.S.; Mishra, G.D.; O’Connell, M.A.; Jebb, S.A. The impact of long chain n-3 polyunsaturated fatty acid supplementation on inflammation, insulin sensitivity and CVD risk in a group of overweight women with an inflammatory phenotype. Diabetes Obes. Metab. 2007, 9, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Ascer, E.; Bertolami, M.C.; Venturinelli, M.L.; Buccheri, V.; Souza, J.; Nicolau, J.C.; Ramires, J.A.F.; Serrano, C.V. Atorvastatin reduces proinflammatory markers in hypercholesterolemic patients. Atherosclerosis 2004, 177, 161–166. [Google Scholar] [CrossRef]
- Dhalla, N.S.; Temsah, R.M.; Netticadan, T. Role of oxidative stress in cardiovascular diseases. J. Hypertens. 2000, 18, 655–673. [Google Scholar] [CrossRef]
- Heshmati, J.; Morvaridzadeh, M.; Maroufizadeh, S.; Akbari, A.; Yavari, M.; Amirinejad, A.; Maleki-Hajiagha, A.; Sepidarkish, M. Omega-3 fatty acids supplementation and oxidative stress parameters: A systematic review and meta-analysis of clinical trials. Pharmacol. Res. 2019, 149, 104462. [Google Scholar] [CrossRef] [PubMed]
- De Lorgeril, M.; Salen, P.; Martin, J.-L.; Mamelle, N.; Monjaud, I.; Touboul, P.; Delaye, J. Effect of a mediterranean type of diet on the rate of cardiovascular complications in patients with coronary artery disease insights into the cardioprotective effect of certain nutriments. J. Am. Coll. Cardiol. 1996, 28, 1103–1108. [Google Scholar] [CrossRef]
- Roustit, M.; Cracowski, J.-L. Non-invasive Assessment of Skin Microvascular Function in Humans: An Insight into Methods. Microcirculation 2012, 19, 47–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellmann, M.; Roustit, M.; Cracowski, J.-L. Skin microvascular endothelial function as a biomarker in cardiovascular diseases? Pharmacol. Rep. 2015, 67, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Okumura, T.; Fujioka, Y.; Morimoto, S.; Tsuboi, S.; Masai, M.; Tsujino, T.; Ohyanagi, M.; Iwasaki, T. Eicosapentaenoic Acid Improves Endothelial Function in Hypertriglyceridemic Subjects Despite Increased Lipid Oxidizability. Am. J. Med. Sci. 2002, 324, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Yamakawa, K.; Shimabukuro, M.; Higa, N.; Asahi, T.; Ohba, K.; Arasaki, O.; Higa, M.; Oshiro, Y.; Yoshida, H.; Higa, T.; et al. Eicosapentaenoic Acid Supplementation Changes Fatty Acid Composition and Corrects Endothelial Dysfunction in Hyperlipidemic Patients. Cardiol. Res. Pract. 2012, 2012, 1–9. [Google Scholar] [CrossRef]
- Mori, T.A.; Watts, G.F.; Burke, V.; Hilme, E.; Puddey, I.B.; Beilin, L.J. Differential Effects of Eicosapentaenoic Acid and Docosahexaenoic Acid on Vascular Reactivity of the Forearm Microcirculation in Hyperlipidemic, Overweight Men. Circulation 2000, 102, 1264–1269. [Google Scholar] [CrossRef] [PubMed]
- McVeigh, G.E.; Brennan, G.M.; Johnston, G.D.; McDermott, B.J.; McGrath, L.T.; Henry, W.R.; Andrews, J.W.; Hayes, J.R. Dietary fish oil augments nitric oxide production or release in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1993, 36, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Din, J.N.; Archer, R.M.; Harding, S.A.; Sarma, J.; Lyall, K.; Flapan, A.D.; Newby, D.E. Effect of ω-3 fatty acid supplementation on endothelial function, endogenous fibrinolysis and platelet activation in male cigarette smokers. Heart 2013, 99, 168–174. [Google Scholar] [CrossRef]
Type of Drug | Acute CAD Patients (Ac-CAD) | Chronic CAD Patients (Ch-CAD) |
---|---|---|
Number of Patients Taking the Therapy | ||
Acetylsalicylic acid | 20 | 16 |
Beta blocker | 14 | 18 |
ACEi or ARB | 19 | 19 |
Statins | 20 | 20 |
Fenofibrate | 0 | 2 |
Ezetimibe | 0 | 4 |
Nitrate | 2 | 3 |
Clopidogrel or ticagrelor | 20 | 1 |
Trimetazidine | 6 | 6 |
Warfarin or NOAC | 0 | 4 |
Parameter | Control | n-3 PUFAs | Between-Group Effect (After) Adjusted for Baseline | ||||
---|---|---|---|---|---|---|---|
Before | After | p Value a | Before | After | p Value a | p Value b | |
Total study population (CAD) | |||||||
BMI (kg/m2) | 30.5 ± 3.3 | 30.5 ± 3.1 | 0.699 | 31.1 ± 6.5 | 31.2 ± 6.6 | 0.736 | 0.057 |
WHR | 0.94 ± 0.12 | 0.94 ± 0.12 | 0.283 | 0.94 ± 0.08 | 0.94 ± 0.12 | 0.175 | 0.363 |
SBP (mmHg) | 119 ± 13 | 126 ± 14 | 0.054 | 125 ± 16 | 132 ± 16 | 0.080 | 0.840 |
DBP (mmHg) | 79 ± 11 | 83 ± 8 | 0.168 | 83 ± 12 | 86 ± 12 | 0.541 | 0.801 |
MAP (mmHg) | 93 ± 11 | 97 ± 8 | 0.090 | 97 ± 13 | 101 ± 13 | 0.180 | 0.631 |
HR (bpm) | 77 ± 14 | 71 ± 15 | 0.010 | 65 ± 11 c | 68 ± 8 | 0.157 | 0.088 |
Acute CAD patients (Ac-CAD) | |||||||
BMI (kg/m2) | 31.2 ± 2.7 | 31.4 ± 2.6 | 0.347 | 31.8 ± 6.9 | 31.9 ± 7.3 | 0.503 | 0.122 |
WHR | 0.93 ± 0.15 | 0.93 ± 0.15 | 0.363 | 0.97 ± 0.08 | 0.96 ± 0.10 | 0.378 | 0.057 |
SBP (mmHg) | 118 ± 10 | 129 ± 15 | 0.115 | 127 ± 17 | 137 ± 14 | 0.063 | 0.541 |
DBP (mmHg) | 83 ± 10 | 87 ± 7 | 0.296 | 83 ± 12 | 88 ± 12 | 0.331 | 0.407 |
MAP (mmHg) | 95 ± 9 | 101 ± 9 | 0.188 | 98 ± 13 | 104 ± 12 | 0.187 | 0.279 |
HR (bpm) | 79 ± 11 | 73 ± 13 | 0.054 | 71 ± 11 | 72 ± 7 | 0.657 | 0.054 |
Chronic CAD patients (Ch-CAD) | |||||||
BMI (kg/m2) | 29.7 ± 3.7 | 29.7 ± 3.4 | 0.809 | 30.5 ± 6.4 | 30.4 ± 6.2 | 0.633 | 0.163 |
WHR | 0.95 ± 0.10 | 0.94 ± 0.09 | 0.619 | 0.90 ± 0.06 | 0.89 ± 0.05 | 0.327 | 0.276 |
SBP (mmHg) | 118 ± 15 | 124 ± 12 | 0.241 | 127 ± 11 | 128 ± 16 | 0.859 | 0.657 |
DBP (mmHg) | 76 ± 11 | 78 ± 7 | 0.242 | 86 ± 7 c | 84 ± 12 | 0.429 | 0.051 |
MAP (mmHg) | 90 ± 12 | 94 ± 6 | 0.230 | 100 ± 7 c | 99 ± 13 | 0.744 | 0.067 |
HR (bpm) | 75 ± 17 | 70 ± 17 | 0.132 | 61 ± 8 c | 64 ± 8 | 0.185 | 0.643 |
Parameter | Control | n-3 PUFAs | Between-Group Effect (After) Adjusted for Baseline | ||||
---|---|---|---|---|---|---|---|
Before | After | p Value a | Before | After | p Value a | p Value b | |
Total study population (CAD) | |||||||
Erythrocytes (×10−12/L) | 4.9 ± 0.3 | 4.8 ± 0.5 | 0.987 | 4.8 ± 0.7 | 4.6 ± 0.6 | 0.020 | 0.190 |
Hemoglobin (g/L) | 150 ± 12 | 149 ± 14 | 0.659 | 146 ± 11 | 140 ± 11 | 0.008 | 0.114 |
Hematocrit (%) | 42.6 ± 3.5 | 42.3 ± 4.3 | 0.677 | 41.8 ± 3.1 | 40.1 ± 2.9 | 0.011 | 0.083 |
Leukocytes (×10−9/L) | 9.3 ± 2.9 | 8.7 ± 2.1 | 0.136 | 8.8 ± 2.4 | 8.3 ± 2.0 | 0.156 | 0.870 |
Thrombocytes (×10−9/L) | 263 ± 65 | 243 ± 56 | 0.055 | 240 ± 49 | 221 ± 44 | 0.084 | 0.321 |
vWf | 1.4 ± 0.5 | 1.3 ± 0.6 | 0.229 | 1.6 ± 0.6 | 1.5 ± 0.7 | 0.317 | 0.343 |
Urea (mmol/L) | 6.8 ± 1.9 | 6.7 ± 2.5 | 0.866 | 7.3 ± 3.7 | 7.2 ± 4.4 | 0.708 | 0.030 |
Creatinine (µmol/L) | 80 [69–92] | 76 [65–83] | 0.002 | 92 ± 56 | 89 ± 59 | 0.102 | 0.001 |
Urates (µmol/L) | 374 ± 112 | 331 ± 95 | 0.005 | 379 [295–434] | 379 [288–425] | 0.165 | 0.797 |
Sodium (mmol/L) | 138 ± 3 | 139 ± 3 | 0.340 | 139 ± 2 | 138 ± 2.2 | 0.086 | 0.180 |
Potassium (mmol/L) | 4.4 ± 0.3 | 4.5 ± 0.4 | 0.605 | 4.3 ± 0.3 | 4.2 ± 0.3 | 0.218 | 0.623 |
Calcium (mmol/L) | 2.48 [2.40–2.58] | 2.46 [2.37–2.53] | 0.225 | 2.47 [2.35–2.54] | 2.42 [2.38–2.49] | 0.105 | 0.002 |
Iron (µmol/L) | 14.9 ± 4.6 | 13.3 ± 3.5 | 0.161 | 13.6 ± 4.1 | 14.5 ± 3.1 | 0.457 | 0.131 |
Transferrin (g/L) | 2.49 [2.41–2.80] | 2.57 [2.35–2.75] | 0.832 | 2.38 ± 0.38 | 2.30 ± 0.35 | 0.081 | 0.024 |
Glucose (mmol/L) | 6.4 [5.6–8.6] | 6.1 [5.6–7.9] | 0.245 | 6.5 [5.6–7.8] | 6.0 [5.5–7.7] | 0.712 | 0.851 |
hsCRP (mg/L) | 3.8 [1.1–8.0] | 1.8 [0.8–6.9] | 0.622 | 2.1 [1.1–18.6] | 2.4 [0.9–3.7] | 0.096 | <0.001 |
Acute CAD patients (Ac-CAD) | |||||||
Erythrocytes (×10−12/L) | 4.9 ± 0.3 | 5.1 ± 0.5 | 0.148 | 5.0 ± 0.9 | 4.9 ± 0.8 | 0.215 | 0.320 |
Hemoglobin (g/L) | 154 ± 9 | 155 ± 11 | 0.478 | 150 ± 7 | 145 ± 8 | 0.132 | 0.121 |
Hematocrit (%) | 43.4 ± 3.7 | 44.1 ± 4.2 | 0.412 | 43.0 ± 2.8 | 41.1 ± 2.3 | 0.124 | 0.072 |
Leukocytes (×10−9/L) | 9.6 [8.3–11.8] | 8.4 [7.3–10.1] | 0.074 | 9.5 ± 2.5 | 9.2 ± 1.9 | 0.632 | 0.505 |
Thrombocytes (×10−9/L) | 268 ± 81 | 241 ± 60 | 0.118 | 253 ± 59 | 230 ± 52 | 0.299 | 0.467 |
vWf | 1.6 ± 0.6 | 1.4 ± 0.7 | 0.064 | 1.6 ± 0.5 | 1.5 ± 0.8 | 0.798 | 0.896 |
Urea (mmol/L) | 6.8 ± 2.2 | 6.0 ± 1.1 | 0.261 | 7.3 ± 2.7 | 6.5 ± 2.7 | 0.228 | 0.038 |
Creatinine (µmol/L) | 88.0 [71.8–92.3] | 77.5 [67.5–83.5] | 0.027 | 88.8 ± 30.3 | 82.3 ± 35.8 | 0.084 | 0.002 |
Urates (µmol/L) | 419 ± 71 † | 355 ± 85 | 0.016 | 408 [363–440] | 399 [360–432] | 0.375 | 0.697 |
Sodium (mmol/L) | 138 ± 3 | 140 ± 3 | 0.257 | 139 ± 2 | 138 ± 3 | 0.193 | 0.733 |
Potassium (mmol/L) | 4.4 ± 0.3 | 4.4 ± 0.4 | 0.882 | 4.3 ± 0.4 | 4.2 ± 0.5 | 0.621 | 0.967 |
Calcium (mmol/l) | 2.7 ± 0.7 | 2.7 ± 0.8 | 0.410 | 2.4 ± 0.1 | 2.4 ± 1.0 | 0.198 | 0.008 |
Iron (µmol/L) | 14.0 ± 4.0 | 12.6 ± 3.0 | 0.380 | 12.3 ± 4.9 | 14.6 ± 3.4 | 0.307 | 0.993 |
Transferrin (g/L) | 2.5 [2.3–2.8] | 2.5 [2.4–2.7] | 0.910 | 2.3 ± 0.3 | 2.2 ± 0.3 | 0.189 | 0.951 |
Glucose (mmol/L) | 6.7 ± 1.6 | 6.2 ± 1.0 | 0.125 | 6.8 ± 1.0 | 6.6 ± 1.9 | 0.857 | 0.339 |
hsCRP (mg/L) | 5.4 [1.1–12.1] | 1.8 [1.0–3.9] | 0.432 | 13.7 [1.5–30.9] | 3.7 [1.8–12.3] | 0.055 | <0.001 |
Chronic CAD patients (Ch-CAD) | |||||||
Erythrocytes (×10−12/L) | 4.8 ± 0.4 | 4.7 ± 0.5 | 0.164 | 4.6 ± 0.5 | 4.4 ± 0.4 | 0.054 | 0.162 |
Hemoglobin (g/L) | 146 ± 13 | 144 ± 15 | 0.177 | 142 ± 12 | 137 ± 13 | 0.035 | 0.458 |
Hematocrit (%) | 41.9 ± 3.3 | 40.9 ± 4.1 | 0.217 | 40.9 ± 3.1 | 39.3 ± 3.2 | 0.05 | 0.537 |
Leukocytes (×10−9/L) | 8.6 ± 2.9 | 8.5 ± 1.7 | 0.928 | 8.2 ± 2.3 | 7.5 ± 1.7 | 0.163 | 0.913 |
Thrombocytes (×10−9/L) | 260 ± 52 | 244 ± 57 | 0.193 | 229 ± 39 | 214 ± 36 | 0.054 | 0.510 |
vWf | 1.3 ± 0.4 | 1.3 ± 0.5 | 0.794 | 1.6 ± 0.7 | 1.5 ± 0.5 | 0.251 | 0.629 |
Urea (mmol/L) | 6.8 ± 1.8 | 7.4 ± 3.2 | 0.455 | 6.2 [5.2–7.5] | 6.5 [5.4–7.7] | 0.426 | 0.733 |
Creatinine (µmol/L) | 73.5 [63.8–92.8] | 75.0 [55.5–81.8] | 0.027 | 95 ± 75 | 95 ± 77 | 0.815 | 0.031 |
Urates (µmol/L) | 330 ± 130 | 310 ± 104 | 0.161 | 340 ± 81 | 329 ± 79 | 0.403 | 0.606 |
Sodium (mmol/L) | 138 ± 3 | 139 ± 2 | 0.876 | 139 ± 2 | 139 ± 2 | 0.297 | 0.106 |
Potassium (mmol/L) | 4.4 ± 0.2 | 4.6 ± 0.4 | 0.415 | 4.4 ± 0.3 | 4.2 ± 0.2 | 0.127 | 0.343 |
Calcium (mmol/L) | 2.47 [2.41–2.56] | 2.46 [2.39–2.52] | 0.496 | 2.46 [2.34–2.54] | 2.44 [2.37–2.49] | 0.275 | 0.935 |
Iron (µmol/L) | 15.7 ± 5.1 | 14.1 ± 4.0 | 0.309 | 14.9 ± 2.8 | 14.5 ± 2.9 | 0.739 | 0.568 |
Transferrin (g/L) | 2.5 [2.4–2.8] | 2.7 [2.3–2.8] | 0.820 | 2.5 ± 0.4 | 2.4 ± 0.4 | 0.295 | 0.055 |
Glucose (mmol/L) | 6.7 [5.8 - 8.4] | 6.9 [5.6–8.9] | 0.846 | 6.5 ± 1.5 | 6.6 ± 1.4 | 0.812 | 0.167 |
hsCRP (mg/L) | 3.3 [1.0–5.5] | 2.8 [0.5–7.9] | 0.922 | 1.7 ± 1.1 | 1.6 ± 1.0 | 0.779 | 0.577 |
Parameter | Control | n-3 PUFAs | Between-Group Effect (After) Adjusted for Baseline | ||||
---|---|---|---|---|---|---|---|
Before | After | p Value a | Before | After | p Value a | p Value b | |
Total study population (CAD) | |||||||
Cholesterol (mmol/L) | 4.2 ± 1.1 | 3.8 ± 0.9 | 0.118 | 4.6 ± 0.8 | 4.1 ± 0.8 † | 0.022 | 0.613 |
Triglycerides (mmol/L) | 1.8 ± 0.9 | 1.5 ± 0.6 | 0.045 | 1.6 [1.1–2.5] | 1.4 [1.0–1.8] | 0.349 | 0.455 |
HDL cholesterol (mmol/L) | 1.0 ± 0.3 | 1.0 ± 0.3 | 0.786 | 1.1 [1.0–1.4] | 1.1 [0.8–1.4] | 0.275 | 0.613 |
LDL cholesterol (mmol/L) | 2.6 ± 0.9 | 2.3 ± 0.6 | 0.120 | 2.8 ± 0.7 | 2.4 ± 0.6 | 0.011 | 0.335 |
Acute CAD patients (Ac-CAD) | |||||||
Cholesterol (mmol/L) | 4.6 ± 1.1 | 3.7 ± 0.6 | 0.037 | 4.9 ± 0.9 | 3.9 ± 0.6 | <0.001 | 0.169 |
Triglycerides (mmol/L) | 2.1 ± 0.9 | 1.5 ± 0.5 | 0.048 | 2.0 [1.4–2.7] | 1.6 [1.1–2.5] | 0.557 | 0.306 |
HDL cholesterol (mmol/L) | 0.9 ± 0.2 | 0.9 ± 0.2 | 0.875 | 0.9 ± 0.1 | 0.9 ± 0.2 | 0.491 | 0.440 |
LDL cholesterol (mmol/L) | 2.8 [2.4–3.7] | 2.2 [2.0–2.6] | 0.129 | 3.1 ± 0.8 | 2.3 ± 0.4 | 0.002 | 0.138 |
Chronic CAD patients (Ch-CAD) | |||||||
Cholesterol (mmol/L) | 3.9 ± 1.1 | 4.0 ± 1.1 | 0.471 | 4.2 ± 0.6 | 4.4 ± 0.9 | 0.415 | 0.217 |
Triglycerides (mmol/L) | 1.6 ± 0.8 | 1.4 ± 0.7 | 0.510 | 1.3 [0.9–2.0] | 1.2 [1.0–1.7] | 1.000 | 0.428 |
HDL cholesterol (mmol/L) | 1.1 ± 0.3 | 1.1 ± 0.3 | 0.688 | 1.3 [1.1–1.4] | 1.3 [1.1–1.6] | 0.240 | 0.557 |
LDL cholesterol (mmol/L) | 2.3 ± 0.7 | 2.4 ± 0.7 | 0.521 | 2.5 ± 0.6 | 2.4 ± 0.7 | 0.641 | 0.821 |
Parameter | Control Group | n-3 PUFAs Group | Between-Group Effect (After) Adjusted for Baseline | |||||
---|---|---|---|---|---|---|---|---|
Before | After | p Value b | Before | After | p Value b | p Value c | ||
SFA (μmol/L) | ||||||||
C14:0 Myristic acid | 31.2 ± 10.5 | 26.9 | NA | 29.0 ± 3.3 | 28.0 ± 1.0 | 0.982 | NA | |
C16:0 Palmitic Acid | 369 ± 156 | 250 ± 43 | 0.268 | 348 ± 49 | 262 ± 59 | 0.003 | 0.058 | |
C18:0 Stearic acid | 111 ± 52 | 75 ± 7 | 0.281 | 95 ± 11 | 91 ± 13 | 0.421 | 0.087 | |
PUFA (μmol/L) | ||||||||
n-7 | C16:1[cis-9] Palmitoleic acid | 39.4 ± 19.2 | 26.1 ± 11.1 | 0.305 | 48.7 ± 13.4 | 33.4 ± 11.8 | <0.001 | 0.173 |
n-9 | C18:1[cis-9] Oleic acid | 381 ± 279 | 225 ± 44 | 0.374 | 250 ± 75 | 194 ± 55 | 0.012 | 0.045 |
n-6 | C18:2[cis-9,12] Linoleic acid | 416 ± 252 | 297 ± 30 | 0.388 | 371 ± 83 | 309 ± 91 | 0.191 | 0.251 |
C18:3[cis-6,9,12] gamma-Linolenic acid | 11.6 ± 1.9 | 11.6 ± 2.5 | 0.944 | 13.4 ± 1.4 | 11.7 ± 0.2 | 0.195 | 0.417 | |
C20:3[cis-8,11,14] Dihomo-gamma-linolenic acid | 24.1 ± 10.1 | 15.0 ± 1.6 | 0.165 | 29.9 ± 7.8 | 21.2 ± 3.3 | 0.034 | 0.059 | |
C20:4[cis-5,8,11,14] Arachidonic acid | 138 ± 17 | 123 ± 11 | 0.333 | 168 ± 44 | 118 ± 17 | 0.050 | 0.066 | |
n-3 | C18:3[cis-9,12,15] alpha-Linolenic acid | 35.9 | <LOQ | NA | <LOQ | 15.3 | NA | NA |
C20:4[cis-5,8,11,14] Eicosa-5,8,11,14,17-pentaenoic acid | <LOQ | <LOQ | NA | 11.7 ± 3.0 | 14.4 ± 3.0 | 0.002 | NA | |
C22:6[cis-4,7,10,13,16,19] cis-4,7,10,13,16,19-Docosahexaenoic acid | 24.9 ± 16.2 | 19.9 ± 3.9 | 0.537 | 22.2 ± 5.3 | 29.7 ± 9.6 | 0.148 | 0.324 | |
n6/n3 PUFAs | 5.8 | 6.3 | 8.3 | 5.5 |
Parameter (pg/mL) | Control | n-3 PUFAs | Between-Group Effect (After) Adjusted for Baseline | ||||
---|---|---|---|---|---|---|---|
Before | After | p Value a | Before | After | p Value a | p Value b | |
Total study population (CAD) | |||||||
IL-1a | 0.35 [0.30–0.40] | 0.35 [0.30–0.40] | 0.025 | 0.35 [0.30–0.40] | 0.30 [0.20–0.45] | 0.047 | 0.411 |
TNF-α | 2.1 [1.9–2.6] | 1.9 [1.2–3.0] | 0.804 | 1.76 ± 0.74 | 1.85 ± 0.85 | 0.729 | 0.241 |
IL-6 | 2.5 [2.0–3.0] | 2.5 [2.5–3.0] | 1.000 | 3.0 [2.5–3.0] | 2.5 [2.5–3.0] | 0.188 | 0.829 |
IL-10 | 1.9 [1.2–2.5] | 1.9 [1.2–3.0] | 0.638 | 1.68 ± 1.13 | 2.11 ± 1.48 | 0.183 | 0.367 |
MCP-1 | 0.29 [0.06–0.53] | 0.41 [0–0.88] | 0.174 | 0.29 [0–0.76] | 0.41 [0–1.46] | 0.399 | 0.374 |
Acute CAD patients (Ac-CAD) | |||||||
IL-1a | 0.35 ± 0.07 | 0.38 ± 0.07 | 0.111 | 0.41 ± 0.10 | 0.28 ± 0.22 | 0.122 | 0.966 |
TNF-α | 1.80 ± 1.00 | 1.51 ± 1.07 | 0.490 | 1.98 ± 0.86 | 1.69 ± 1.07 | 0.544 | 0.700 |
IL-6 | 2.48 ± 1.09 | 2.57 ± 0.59 | 0.835 | 3.00 [2.75–4.00] | 3.00 [2.50–3.00] | 0.047 | 0.132 |
IL-10 | 5.20 ± 11.20 | 5.59 ± 11.10 | 0.332 | 2.09 ± 1.30 | 2.28 ± 1.36 | 0.543 | 0.576 |
MCP-1 | 0.33 ± 0.36 | 0.57 ± 0.44 | 0.285 | 0.60 ± 0.81 | 0.73 ± 1.13 | 0.585 | 0.052 |
Chronic CAD patients (Ch-CAD) | |||||||
IL-1a | 0.37 ± 0.10 | 0.41 ± 0.13 | 0.111 | 0.33 ± 0.13 | 0.29 ± 0.13 | 0.121 | 0.291 |
TNF-α | 2.08 ± 1.05 | 2.59 ± 2.10 | 0.476 | 1.56 ± 0.60 | 2.00 ± 0.61 | 0.176 | 0.418 |
IL-6 | 2.47 ± 1.04 | 2.72 ± 1.40 | 0.727 | 2.75 [0.90–3.00] | 2.50 [1.88–2.50] | 0.844 | 0.707 |
IL-10 | 1.9 [0.6–2.2] | 1.9 [0.0–2.5] | 1.000 | 1.31 ± 0.87 | 1.97 ± 1.65 | 0.256 | 0.291 |
MCP-1 | 0.18 [0.06–0.82] | 0.18 [0.09–0.559] | 0.547 | 0.43 ± 0.52 | 0.92 ± 0.85 | 0.083 | 0.298 |
Parameter (pg/mL) | Control | n-3 PUFAs | Between-Group Effect (After) Adjusted for Baseline | ||||
---|---|---|---|---|---|---|---|
Before | After | p Value a | Before | After | p Value a | p Value b | |
Total study population(CAD) | |||||||
TBARS (uM MDA) | 0.370 [0.215–3.035] | 0.425 [0.288–3.464] | 0.353 | 0.334 [0.279–0.790] | 0.352 [0.297–0.626] | 0.890 | 0.191 |
FRAP (mM/L Trolox) | 0.548 [0.446–0.683] | 0.530 [0.401–0.634] | 0.071 | 0.570 ± 0.127 | 0.535 ± 0.168 | 0.365 | 0.682 |
GPx (U/mg protein) | 0.022 ± 0.011 | 0.007 ± 0.006 | 0.002 | 0.022 ± 0.011 | 0.008 ± 0.005 | <0.001 | 0.724 |
Acute CAD patients (Ac-CAD) | |||||||
TBARS (uM MDA) | 2.603 ± 2.171 | 2.558 ± 1.609 | 0.963 | 0.790 [0.370–2.615] | 0.626 [0.370–3.062] | 1.000 | 0.167 |
FRAP (mM/L Trolox) | 0.628 ± 0.103 | 0.554 ± 0.083 | 0.034 | 0.608 ± 0.135 | 0.594 ± 0.157 | 0.842 | 0.366 |
GPx (U/mg protein) | 0.029 ± 0.004 | 0.006 ± 0.003 | <0.001 | 0.029 [0.028–0.032] | 0.006 [0.004–0.012] | 0.016 | 0.351 |
Chronic CAD patients (Ch-CAD) | |||||||
TBARS (uM MDA) | 0.222 ± 0.128 | 0.268 ± 0.130 | 0.436 | 0.291 ± 0.118 | 0.277 ± 0.091 | 0.399 | 0.280 |
FRAP (mM/L Trolox) | 0.465 ± 0.139 | 0.490 ± 0.171 | 0.727 | 0.536 ± 0.116 | 0.482 ± 0.166 | 0.185 | 0.258 |
GPx (U/mg protein) | 0.008 ± 0.004 | 0.009 ± 0.003 | 0.858 | 0.014 ± 0.004 c | 0.009 ± 0.006 | 0.030 | 0.561 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ćurić, Ž.B.; Masle, A.M.; Kibel, A.; Selthofer-Relatić, K.; Stupin, A.; Mihaljević, Z.; Jukić, I.; Stupin, M.; Matić, A.; Kozina, N.; et al. Effects of n-3 Polyunsaturated Fatty Acid-Enriched Hen Egg Consumption on the Inflammatory Biomarkers and Microvascular Function in Patients with Acute and Chronic Coronary Syndrome—A Randomized Study. Biology 2021, 10, 774. https://doi.org/10.3390/biology10080774
Ćurić ŽB, Masle AM, Kibel A, Selthofer-Relatić K, Stupin A, Mihaljević Z, Jukić I, Stupin M, Matić A, Kozina N, et al. Effects of n-3 Polyunsaturated Fatty Acid-Enriched Hen Egg Consumption on the Inflammatory Biomarkers and Microvascular Function in Patients with Acute and Chronic Coronary Syndrome—A Randomized Study. Biology. 2021; 10(8):774. https://doi.org/10.3390/biology10080774
Chicago/Turabian StyleĆurić, Željka Breškić, Ana Marija Masle, Aleksandar Kibel, Kristina Selthofer-Relatić, Ana Stupin, Zrinka Mihaljević, Ivana Jukić, Marko Stupin, Anita Matić, Nataša Kozina, and et al. 2021. "Effects of n-3 Polyunsaturated Fatty Acid-Enriched Hen Egg Consumption on the Inflammatory Biomarkers and Microvascular Function in Patients with Acute and Chronic Coronary Syndrome—A Randomized Study" Biology 10, no. 8: 774. https://doi.org/10.3390/biology10080774
APA StyleĆurić, Ž. B., Masle, A. M., Kibel, A., Selthofer-Relatić, K., Stupin, A., Mihaljević, Z., Jukić, I., Stupin, M., Matić, A., Kozina, N., Šušnjara, P., Juranić, B., Kolobarić, N., Šerić, V., & Drenjančević, I. (2021). Effects of n-3 Polyunsaturated Fatty Acid-Enriched Hen Egg Consumption on the Inflammatory Biomarkers and Microvascular Function in Patients with Acute and Chronic Coronary Syndrome—A Randomized Study. Biology, 10(8), 774. https://doi.org/10.3390/biology10080774