Effects of Reallocating Time Spent in Different Physical Activity Intensities on Sarcopenia Risk in Older Adults: An Isotemporal Substitution Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Anthropometrics
2.3. Assessment of Physical Activity Behaviours
2.4. Assessment of Protein Intake
2.5. Assessment of Indictors of Sarcopenia Risk
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.; Tully, M.; Jacob, L.; Blackburn, N.; Adlakha, D.; Caserotti, P.; Soysal, P.; Veronese, N.; Sánchez, G.F.L.; Vancampfort, D.; et al. The Association Between Sedentary Behavior and Sarcopenia Among Adults Aged ≥65 Years in Low- and Middle-Income Countries. Int. J. Environ. Res. Public Health 2020, 17, 1708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gianoudis, J.; Bailey, C.A.; Daly, R.M. Associations between sedentary behaviour and body composition, muscle function and sarcopenia in community-dwelling older adults. Osteoporos. Int. 2015, 26, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Steffl, M.; Bohannon, R.W.; Sontakova, L.; Tufano, J.J.; Shiells, K.; Holmerova, I. Relationship between sarcopenia and physical activity in older people: A systematic review and meta-analysis. Clin. Interv. Aging 2017, 12, 835–845. [Google Scholar] [CrossRef] [Green Version]
- Alkahtani, S.; Aljuhani, O.; Alhussain, M.; Habib, S.S. Association between physical activity patterns and sarcopenia in Arab men. J. Int. Med. Res. 2020, 48, 300060520918694. [Google Scholar] [CrossRef] [Green Version]
- Mijnarends, D.M.; Koster, A.; Schols, J.M.G.A.; Meijers, J.M.M.; Halfens, R.J.G.; Gudnason, V.; Eiriksdottir, G.; Siggeirsdottir, K.; Sigurdsson, S.; Jónsson, P.V.; et al. Physical activity and incidence of sarcopenia: The population-based AGES—Reykjavik Study. Age Ageing 2016, 45, 614–620. [Google Scholar] [CrossRef] [Green Version]
- Scott, D.; Johansson, J.; Gandham, A.; Ebeling, P.R.; Nordstrom, P.; Nordstrom, A. Associations of accelerometer-determined physical activity and sedentary behavior with sarcopenia and incident falls over 12 months in community-dwelling Swedish older adults. J. Sport Health Sci. 2020, 10, 577–584. [Google Scholar] [CrossRef]
- Aggio, D.A.; Sartini, C.; Papacosta, O.; Lennon, L.T.; Ash, S.; Whincup, P.H.; Wannamethee, S.G.; Jefferis, B.J. Cross-sectional associations of objectively measured physical activity and sedentary time with sarcopenia and sarcopenic obesity in older men. Prev. Med. 2016, 91, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Westbury, L.D.; Dodds, R.M.; Syddall, H.E.; Baczynska, A.M.; Shaw, S.C.; Dennison, E.M.; Roberts, H.C.; Sayer, A.A.; Cooper, C.; Patel, H.P. Associations Between Objectively Measured Physical Activity, Body Composition and Sarcopenia: Findings from the Hertfordshire Sarcopenia Study (HSS). Calcif. Tissue Int. 2018, 103, 237–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lerma, N.L.; Cho, C.C.; Swartz, A.M.; Miller, N.E.; Keenan, K.G.; Strath, S.J. Isotemporal Substitution of Sedentary Behavior and Physical Activity on Function. Med. Sci. Sports Exerc. 2018, 50, 792–800. [Google Scholar] [CrossRef]
- Mekary, R.A.; Willett, W.C.; Hu, F.B.; Ding, E.L. Isotemporal substitution paradigm for physical activity epidemiology and weight change. Am. J. Epidemiol. 2009, 170, 519–527. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, A.; Wåhlin-Larsson, B.; Kadi, F. Physical activity and not sedentary time per se influences on clustered metabolic risk in elderly community-dwelling women. PLoS ONE 2017, 12, e0175496. [Google Scholar] [CrossRef]
- Stamatakis, E.; Rogers, K.; Ding, D.; Berrigan, D.; Chau, J.; Hamer, M.; Bauman, A. All-cause mortality effects of replacing sedentary time with physical activity and sleeping using an isotemporal substitution model: A prospective study of 201,129 mid-aged and older adults. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasunaga, A.; Shibata, A.; Ishii, K.; Koohsari, M.J.; Inoue, S.; Sugiyama, T.; Owen, N.; Oka, K. Associations of sedentary behavior and physical activity with older adults’ physical function: An isotemporal substitution approach. BMC Geriatr. 2017, 17, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buman, M.P.; Hekler, E.B.; Haskell, W.L.; Pruitt, L.; Conway, T.L.; Cain, K.L.; Sallis, J.F.; Saelens, B.E.; Frank, L.D.; King, A.C. Objective light-intensity physical activity associations with rated health in older adults. Am. J. Epidemiol. 2010, 172, 1155–1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumuid, D.; Pedišić, Ž.; Stanford, T.E.; Martín-Fernández, J.-A.; Hron, K.; Maher, C.A.; Lewis, L.K.; Olds, T. The compositional isotemporal substitution model: A method for estimating changes in a health outcome for reallocation of time between sleep, physical activity and sedentary behaviour. Stat. Methods Med. Res. 2019, 28, 846–857. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Sánchez, J.L.; Mañas, A.; García-García, F.J.; Ara, I.; Carnicero, J.A.; Walter, S.; Rodríguez-Mañas, L. Sedentary behaviour, physical activity, and sarcopenia among older adults in the TSHA: Isotemporal substitution model. J. Cachexia. Sarcopenia Muscle 2019, 10, 188–198. [Google Scholar] [CrossRef]
- Nagai, K.; Matsuzawa, R.; Wada, Y.; Tsuji, S.; Itoh, M.; Sano, K.; Amano, M.; Tamaki, K.; Kusunoki, H.; Shinmura, K. Impact of Isotemporal Substitution of Sedentary Time With Physical Activity on Sarcopenia in Older Japanese Adults. J. Am. Med. Dir. Assoc. 2021, 22, 876–878. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J.; Ogborn, D.; Krieger, J.W. Effects of Resistance Training Frequency on Measures of Muscle Hypertrophy: A Systematic Review and Meta-Analysis. Sports Med. 2016, 46, 1689–1697. [Google Scholar] [CrossRef]
- Gába, A.; Pelclová, J.; Štefelová, N.; Přidalová, M.; Zając-Gawlak, I.; Tlučáková, L.; Pechová, J.; Svozilová, Z. Prospective study on sedentary behaviour patterns and changes in body composition parameters in older women: A compositional and isotemporal substitution analysis. Clin Nutr. 2021, 40, 2301–2307. [Google Scholar] [CrossRef]
- Damas, F.; Phillips, S.; Vechin, F.C.; Ugrinowitsch, C. A review of resistance training-induced changes in skeletal muscle protein synthesis and their contribution to hypertrophy. Sports Med. 2015, 45, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J.; Grgic, J.; Ogborn, D.; Krieger, J.W. Strength and Hypertrophy Adaptations Between Low- vs. High-Load Resistance Training. J. Strength Cond. Res. 2017, 31, 3508–3523. [Google Scholar] [CrossRef] [PubMed]
- Peterson, M.D.; Rhea, M.R.; Sen, A.; Gordon, P.M. Resistance exercise for muscular strength in older adults: A meta-analysis. Ageing Res. Rev. 2010, 9, 226–237. [Google Scholar] [CrossRef] [Green Version]
- Veen, J.; Montiel-Rojas, D.; Nilsson, A.; Kadi, F. Engagement in Muscle-Strengthening Activities Lowers Sarcopenia Risk in Older Adults Already Adhering to the Aerobic Physical Activity Guidelines. Int. J. Environ. Res. Public Health 2021, 18, 989. [Google Scholar] [CrossRef] [PubMed]
- Beckwée, D.; Delaere, A.; Aelbrecht, S.; Baert, V.; Beaudart, C.; Bruyere, O.; de Saint-Hubert, M.; Bautmans, I. Exercise Interventions for the Prevention and Treatment of Sarcopenia. A Systematic Umbrella Review. J. Nutr. Health Aging 2019, 23, 494–502. [Google Scholar] [CrossRef]
- Nilsson, A.; Montiel Rojas, D.; Kadi, F. Impact of Meeting Different Guidelines for Protein Intake on Muscle Mass and Physical Function in Physically Active Older Women. Nutrients 2018, 10, 1156. [Google Scholar] [CrossRef] [Green Version]
- Montiel-Rojas, D.; Nilsson, A.; Santoro, A.; Bazzocchi, A.; de Groot, L.C.P.G.M.; Feskens, E.J.M.; Berendsen, A.A.M.; Madej, D.; Kaluza, J.; Pietruszka, B.; et al. Fighting Sarcopenia in Ageing European Adults: The Importance of the Amount and Source of Dietary Proteins. Nutrients 2020, 12, 3601. [Google Scholar] [CrossRef]
- Janssen, I.; Heymsfield, S.B.; Baumgartner, R.N.; Ross, R. Estimation of skeletal muscle mass by bioelectrical impedance analysis. J. Appl. Physiol. 2000, 89, 465–471. [Google Scholar] [CrossRef] [Green Version]
- Troiano, R.P.; Berrigan, D.; Dodd, K.W.; Mâsse, L.C.; Tilert, T.; McDowell, M. Physical activity in the United States measured by accelerometer. Med. Sci. Sports Exerc. 2008, 40, 181–188. [Google Scholar] [CrossRef]
- Wareham, N.J.; Jakes, R.W.; Rennie, K.L.; Mitchell, J.; Hennings, S.; Day, N.E. Validity and repeatability of the EPIC-Norfolk Physical Activity Questionnaire. Int. J. Epidemiol. 2002, 31, 168–174. [Google Scholar] [CrossRef] [Green Version]
- OMS WHO. Guidelines on Physical Activity and Sedentary Behaviour. Available online: https://apps.who.int/iris/bitstream/handle/10665/336656/9789240015128-eng.pdf?sequence=1&isAllowed=y (accessed on 20 November 2021).
- Füzéki, E.; Engeroff, T.; Banzer, W. Health Benefits of Light-Intensity Physical Activity: A Systematic Review of Accelerometer Data of the National Health and Nutrition Examination Survey (NHANES). Sports Med. 2017, 47, 1769–1793. [Google Scholar] [CrossRef]
- Chastin, S.F.M.; De Craemer, M.; De Cocker, K.; Powell, L.; Van Cauwenberg, J.; Dall, P.; Hamer, M.; Stamatakis, E. How does light-intensity physical activity associate with adult cardiometabolic health and mortality? Systematic review with meta-analysis of experimental and observational studies. Br. J. Sports Med. 2019, 53, 370–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, A.V.; Hodge, J.M.; Rees-Punia, E.; Teras, L.R.; Campbell, P.T.; Gapstur, S.M. Relationship Between Muscle-Strengthening Activity and Cause-Specific Mortality in a Large US Cohort. Prev. Chronic Dis. 2020, 17, E78. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Mcllvenna, L.C.; Fyfe, J.J.; Sabol, F.; Bishop, D.J.; Schoenfeld, B.J.; Pedisic, Z. Does Aerobic Training Promote the Same Skeletal Muscle Hypertrophy as Resistance Training? A Systematic Review and Meta-Analysis. Sports Med. 2019, 49, 233–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deer, R.R.; Volpi, E. Protein intake and muscle function in older adults. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 248–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Men | Women | |
---|---|---|
n | 88 | 147 |
Age, y | 67 ± 1 | 67 ± 2 |
Body Composition | ||
Height, cm | 178.6 ± 6.5 | 164.5 ± 5.6 * |
Weight, kg | 80.8 ± 10.7 | 64.8 ± 10.2 * |
WC, cm | 94.1 ± 9.5 | 80.0 ± 9.2 * |
Physical Activity | ||
SED, min | 516 ± 72 | 492 ± 68 * |
LPA, min | 274 ± 70 | 296 ± 66 * |
MVPA, min | 40 ± 21 | 43 ± 25 |
Sarcopenia Risk | ||
SMI, % BW | 34.5 ± 3.2 | 26.5 ± 3.5 * |
HG, kg | 44.0 ± 7.1 | 27.7 ± 5.3 * |
5-STS, s | 10.2 ± 2.0 | 10.4 ± 2.5 |
SRS | SMI | 5-STS | HG | |
---|---|---|---|---|
SED | 0.034 [0.019 to 0.050] * | −0.044 [−0.065 to −0.023] * | −0.025 [−0.047 to −0.004] * | −0.034 [−0.055 to −0.013] * |
LPA | −0.019 [−0.035 to −0.002] * | 0.027 [0.006 to 0.048] * | 0.015 [−0.007 to 0.036] | 0.014 [−0.008 to 0.035] |
MVPA | −0.101 [−0.140 to −0.062] * | 0.110 [0.056 to 0.159] * | 0.068 [0.015 to 0.122] * | 0.127 [0.075 to 0.178] * |
SRS | SMI | 5-STS | HG | ||
---|---|---|---|---|---|
Replace 10 min SED with | LPA | ||||
model 1 | −0.019 [−0.033 to −0.006] * | 0.023 [0.006 to 0.040] * | 0.018 [−0.004 to 0.039] | 0.017 [−0.003 to 0.037] | |
model 2 | −0.020 [−0.033 to −0.006] * | 0.023 [0.006 to 0.040] * | - | - | |
MVPA | |||||
model 1 | −0.082 [−0.117 to −0.047] * | 0.072 [0.029 to 0.115] * | 0.065 [0.010 to 0.121] * | 0.109 [0.058 to 0.160] * | |
model 2 | −0.086 [−0.120 to −0.051] * | 0.075 [0.031 to 0.118] * | 0.072 [0.017 to 0.127] * | 0.111 [0.060 to 0.162] * | |
Replace 10 min LPA with | MPVA | ||||
model 1 | −0.063 [−0.098 to −0.028] * | 0.049 [0.006 to 0.092] * | 0.048 [−0.007 to 0.102] | 0.092 [0.042 to 0.142] * | |
model 2 | −0.066 [−0.101 to −0.032] * | 0.051 [0.008 to 0.094] * | - | 0.093 [0.043 to 0.144] * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veen, J.; Montiel-Rojas, D.; Kadi, F.; Nilsson, A. Effects of Reallocating Time Spent in Different Physical Activity Intensities on Sarcopenia Risk in Older Adults: An Isotemporal Substitution Analysis. Biology 2022, 11, 111. https://doi.org/10.3390/biology11010111
Veen J, Montiel-Rojas D, Kadi F, Nilsson A. Effects of Reallocating Time Spent in Different Physical Activity Intensities on Sarcopenia Risk in Older Adults: An Isotemporal Substitution Analysis. Biology. 2022; 11(1):111. https://doi.org/10.3390/biology11010111
Chicago/Turabian StyleVeen, Jort, Diego Montiel-Rojas, Fawzi Kadi, and Andreas Nilsson. 2022. "Effects of Reallocating Time Spent in Different Physical Activity Intensities on Sarcopenia Risk in Older Adults: An Isotemporal Substitution Analysis" Biology 11, no. 1: 111. https://doi.org/10.3390/biology11010111
APA StyleVeen, J., Montiel-Rojas, D., Kadi, F., & Nilsson, A. (2022). Effects of Reallocating Time Spent in Different Physical Activity Intensities on Sarcopenia Risk in Older Adults: An Isotemporal Substitution Analysis. Biology, 11(1), 111. https://doi.org/10.3390/biology11010111