OSov: An Interactive Web Server to Evaluate Prognostic Biomarkers for Ovarian Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection of RNA Expression Profiles and Related Clinical Information of Ovarian Cancer
2.2. Construction of Prognostic Online Web Server for Ovarian Cancer
2.3. Collection and Validation of Previously Published Prognostic Biomarkers of Ovarian Cancer in OSov
2.4. Evaluation Potential Prognostic Biomarkers
2.5. Statistical Analysis
3. Results
3.1. Summary of Ovarian Cancer Cohorts in OSov
3.2. Usage of OSov and Evaluation of Previously Published Ovarian Cancer Prognostic Biomarkers in OSov
3.3. Excavating Potential Prognostic Biomarkers for Ovarian Cancer
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shih, I.-M.; Kurman, R.J. Ovarian tumorigenesis: A proposed model based on morphological and molecular genetic analysis. Am. J. Pathol. 2004, 164, 1511–1518. [Google Scholar] [CrossRef]
- Matsuo, K.; Machida, H.; Matsuzaki, S.; Grubbs, B.H.; Klar, M.; Roman, L.D.; Sood, A.K.; Gershenson, D.M.; Wright, J.D. Evolving population-based statistics for rare epithelial ovarian cancers. Gynecol. Oncol. 2020, 157, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, P. Morphologic, Immunophenotypic, and Molecular Features of Epithelial Ovarian Cancer. Oncology 2016, 30, 166–176. [Google Scholar] [PubMed]
- Gyorffy, B.; Lánczky, A.; Szállási, Z. Implementing an online tool for genome-wide validation of survival-associated biomarkers in ovarian-cancer using microarray data from 1287 patients. Endocr. Relat. Cancer 2012, 19, 197–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menon, U.; Skates, S.J.; Lewis, S.; Rosenthal, A.N.; Rufford, B.; Sibley, K.; MacDonald, N.; Dawnay, A.; Jeyarajah, A.; Bast, R.C.; et al. Prospective Study Using the Risk of Ovarian Cancer Algorithm to Screen for Ovarian Cancer. J. Clin. Oncol. 2005, 23, 7919–7926. [Google Scholar] [CrossRef]
- Webb, P.M.; Jordan, S.J. Epidemiology of epithelial ovarian cancer. Best Pract. Res. Clin. Obs. Gynaecol. 2017, 41, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Duska, L.R.; Tew, W.P.; Moore, K.N. Epithelial Ovarian Cancer in Older Women: Defining the Best Management Approach. Am. Soc. Clin. Oncol. Educ. Book 2015, e311–e321. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, J.; Mei, S.; Economos, K.; Lee, Y.C.; Kanis, M.J. Clinicopathologic features, incidence, and survival trends of gynecologic neuroendocrine tumors: A SEER database analysis. Am. J. Obs. Gynecol. 2019, 221, 53.e51–53.e56. [Google Scholar] [CrossRef]
- Chobanian, N.; Dietrich, C.S., 3rd. Ovarian cancer. Surg. Clin. N. Am. 2008, 88, 285–299. [Google Scholar] [CrossRef]
- Crijns, A.P.; Fehrmann, R.S.; de Jong, S.; Gerbens, F.; Meersma, G.J.; Klip, H.G.; Hollema, H.; Hofstra, R.M.; te Meerman, G.J.; de Vries, E.G.; et al. Survival-related profile, pathways, and transcription factors in ovarian cancer. PLoS Med. 2009, 6, e24. [Google Scholar] [CrossRef] [Green Version]
- Denkert, C.; Budczies, J.; Darb-Esfahani, S.; Gyorffy, B.; Sehouli, J.; Konsgen, D.; Zeillinger, R.; Weichert, W.; Noske, A.; Buckendahl, A.C.; et al. A prognostic gene expression index in ovarian cancer—Validation across different independent data sets. J. Pathol. 2009, 218, 273–280. [Google Scholar] [CrossRef]
- Yoshihara, K.; Tajima, A.; Yahata, T.; Kodama, S.; Fujiwara, H.; Suzuki, M.; Onishi, Y.; Hatae, M.; Sueyoshi, K.; Fujiwara, H.; et al. Gene expression profile for predicting survival in advanced-stage serous ovarian cancer across two independent datasets. PLoS ONE 2010, 5, e9615. [Google Scholar] [CrossRef] [PubMed]
- Mok, S.C.; Bonome, T.; Vathipadiekal, V.; Bell, A.; Johnson, M.E.; Wong, K.K.; Park, D.C.; Hao, K.; Yip, D.K.; Donninger, H.; et al. A gene signature predictive for outcome in advanced ovarian cancer identifies a survival factor: Microfibril-associated glycoprotein 2. Cancer. Cell 2009, 16, 521–532. [Google Scholar] [CrossRef] [Green Version]
- Konstantinopoulos, P.A.; Cannistra, S.A.; Fountzilas, H.; Culhane, A.; Pillay, K.; Rueda, B.; Cramer, D.; Seiden, M.; Birrer, M.; Coukos, G.; et al. Integrated analysis of multiple microarray datasets identifies a reproducible survival predictor in ovarian cancer. PLoS ONE 2011, 6, e18202. [Google Scholar] [CrossRef] [Green Version]
- Konstantinopoulos, P.A.; Spentzos, D.; Karlan, B.Y.; Taniguchi, T.; Fountzilas, E.; Francoeur, N.; Levine, D.A.; Cannistra, S.A. Gene expression profile of BRCAness that correlates with responsiveness to chemotherapy and with outcome in patients with epithelial ovarian cancer. J. Clin. Oncol. 2010, 28, 3555–3561. [Google Scholar] [CrossRef] [Green Version]
- Marchion, D.C.; Cottrill, H.M.; Xiong, Y.; Chen, N.; Bicaku, E.; Fulp, W.J.; Bansal, N.; Chon, H.S.; Stickles, X.B.; Kamath, S.G.; et al. BAD phosphorylation determines ovarian cancer chemosensitivity and patient survival. Clin. Cancer Res. 2011, 17, 6356–6366. [Google Scholar] [CrossRef] [Green Version]
- Gentric, G.; Kieffer, Y.; Mieulet, V.; Goundiam, O.; Bonneau, C.; Nemati, F.; Hurbain, I.; Raposo, G.; Popova, T.; Stern, M.H.; et al. PML-Regulated Mitochondrial Metabolism Enhances Chemosensitivity in Human Ovarian Cancers. Cell. Metab. 2019, 29, 156–173.e110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mateescu, B.; Batista, L.; Cardon, M.; Gruosso, T.; de Feraudy, Y.; Mariani, O.; Nicolas, A.; Meyniel, J.P.; Cottu, P.; Sastre-Garau, X.; et al. miR-141 and miR-200a act on ovarian tumorigenesis by controlling oxidative stress response. Nat. Med. 2011, 17, 1627–1635. [Google Scholar] [CrossRef]
- Bonome, T.; Levine, D.A.; Shih, J.; Randonovich, M.; Pise-Masison, C.A.; Bogomolniy, F.; Ozbun, L.; Brady, J.; Barrett, J.C.; Boyd, J.; et al. A gene signature predicting for survival in suboptimally debulked patients with ovarian cancer. Cancer Res. 2008, 68, 5478–5486. [Google Scholar] [CrossRef] [Green Version]
- Vathipadiekal, V.; Wang, V.; Wei, W.; Waldron, L.; Drapkin, R.; Gillette, M.; Skates, S.; Birrer, M. Creation of a Human Secretome: A Novel Composite Library of Human Secreted Proteins: Validation Using Ovarian Cancer Gene Expression Data and a Virtual Secretome Array. Clin. Cancer Res. 2015, 21, 4960–4969. [Google Scholar] [CrossRef] [Green Version]
- Ferriss, J.S.; Kim, Y.; Duska, L.; Birrer, M.; Levine, D.A.; Moskaluk, C.; Theodorescu, D.; Lee, J.K. Multi-gene expression predictors of single drug responses to adjuvant chemotherapy in ovarian carcinoma: Predicting platinum resistance. PLoS ONE 2012, 7, e30550. [Google Scholar] [CrossRef] [Green Version]
- Spentzos, D.; Levine, D.A.; Kolia, S.; Otu, H.; Boyd, J.; Libermann, T.A.; Cannistra, S.A. Unique gene expression profile based on pathologic response in epithelial ovarian cancer. J. Clin. Oncol. 2005, 23, 7911–7918. [Google Scholar] [CrossRef] [PubMed]
- Bild, A.H.; Yao, G.; Chang, J.T.; Wang, Q.; Potti, A.; Chasse, D.; Joshi, M.B.; Harpole, D.; Lancaster, J.M.; Berchuck, A.; et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 2006, 439, 353–357. [Google Scholar] [CrossRef]
- Yoshihara, K.; Tsunoda, T.; Shigemizu, D.; Fujiwara, H.; Hatae, M.; Fujiwara, H.; Masuzaki, H.; Katabuchi, H.; Kawakami, Y.; Okamoto, A.; et al. High-risk ovarian cancer based on 126-gene expression signature is uniquely characterized by downregulation of antigen presentation pathway. Clin. Cancer Res. 2012, 18, 1374–1385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pils, D.; Hager, G.; Tong, D.; Aust, S.; Heinze, G.; Kohl, M.; Schuster, E.; Wolf, A.; Sehouli, J.; Braicu, I.; et al. Validating the impact of a molecular subtype in ovarian cancer on outcomes: A study of the OVCAD Consortium. Cancer Sci. 2012, 103, 1334–1341. [Google Scholar] [CrossRef]
- Karlan, B.Y.; Dering, J.; Walsh, C.; Orsulic, S.; Lester, J.; Anderson, L.A.; Ginther, C.L.; Fejzo, M.; Slamon, D. POSTN/TGFBI-associated stromal signature predicts poor prognosis in serous epithelial ovarian cancer. Gynecol. Oncol. 2014, 132, 334–342. [Google Scholar] [CrossRef]
- Konecny, G.E.; Wang, C.; Hamidi, H.; Winterhoff, B.; Kalli, K.R.; Dering, J.; Ginther, C.; Chen, H.W.; Dowdy, S.; Cliby, W.; et al. Prognostic and therapeutic relevance of molecular subtypes in high-grade serous ovarian cancer. J. Natl. Cancer Inst. 2014, 106. [Google Scholar] [CrossRef] [PubMed]
- Lisowska, K.M.; Olbryt, M.; Dudaladava, V.; Pamula-Pilat, J.; Kujawa, K.; Grzybowska, E.; Jarzab, M.; Student, S.; Rzepecka, I.K.; Jarzab, B.; et al. Gene expression analysis in ovarian cancer—Faults and hints from DNA microarray study. Front. Oncol. 2014, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Lisowska, K.M.; Olbryt, M.; Student, S.; Kujawa, K.A.; Cortez, A.J.; Simek, K.; Dansonka-Mieszkowska, A.; Rzepecka, I.K.; Tudrej, P.; Kupryjanczyk, J. Unsupervised analysis reveals two molecular subgroups of serous ovarian cancer with distinct gene expression profiles and survival. J. Cancer Res. Clin. Oncol. 2016, 142, 1239–1252. [Google Scholar] [CrossRef] [Green Version]
- Winterhoff, B.; Hamidi, H.; Wang, C.; Kalli, K.R.; Fridley, B.L.; Dering, J.; Chen, H.W.; Cliby, W.A.; Wang, H.J.; Dowdy, S.; et al. Molecular classification of high grade endometrioid and clear cell ovarian cancer using TCGA gene expression signatures. Gynecol. Oncol. 2016, 141, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Marchini, S.; Mariani, P.; Chiorino, G.; Marrazzo, E.; Bonomi, R.; Fruscio, R.; Clivio, L.; Garbi, A.; Torri, V.; Cinquini, M.; et al. Analysis of gene expression in early-stage ovarian cancer. Clin. Cancer Res. 2008, 14, 7850–7860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tothill, R.W.; Tinker, A.V.; George, J.; Brown, R.; Fox, S.B.; Lade, S.; Johnson, D.S.; Trivett, M.K.; Etemadmoghadam, D.; Locandro, B.; et al. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin. Cancer Res. 2008, 14, 5198–5208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011, 474, 609–615. [Google Scholar] [CrossRef]
- Wang, Q.; Xie, L.; Dang, Y.; Sun, X.; Xie, T.; Guo, J.; Han, Y.; Yan, Z.; Zhu, W.; Wang, Y.; et al. OSlms: A Web Server to Evaluate the Prognostic Value of Genes in Leiomyosarcoma. Front. Oncol. 2019, 9, 190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, G.; Wang, Q.; Yang, M.; Yuan, Q.; Dang, Y.; Sun, X.; An, Y.; Dong, H.; Xie, L.; Zhu, W.; et al. OSblca: A Web Server for Investigating Prognostic Biomarkers of Bladder Cancer Patients. Front. Oncol. 2019, 9, 466. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Wang, Q.; Sun, X.; Ban, B.; Lu, Z.; Dang, Y.; Xie, L.; Zhang, L.; Li, Y.; Zhu, W.; et al. OSbrca: A Web Server for Breast Cancer Prognostic Biomarker Investigation with Massive Data from Tens of Cohorts. Front. Oncol. 2019, 9, 1349. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Wang, Q.; Nan, F.; Ge, L.; Dang, Y. OSacc: Gene Expression-Based Survival Analysis Web Tool for Adrenocortical Carcinoma. Cancer Manag. Res. 2019, 11, 9145–9152. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.; Wang, Q.; Dang, Y.; Ge, L.; Sun, X.; Li, N.; Han, Y.; Yan, Z.; Zhang, L.; Li, Y.; et al. OSkirc: A web tool for identifying prognostic biomarkers in kidney renal clear cell carcinoma. Future Oncol. 2019, 15, 3103–3110. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, L.; Yan, Z.; Xie, L. OScc: An online survival analysis web server to evaluate the prognostic value of biomarkers in cervical cancer. Mol. Carcinog. 2019, 15, 3693–3699. [Google Scholar] [CrossRef] [PubMed]
- Iasonos, A.; Schrag, D.; Raj, G.V.; Panageas, K.S. How to build and interpret a nomogram for cancer prognosis. J. Clin. Oncol. 2008, 26, 1364–1370. [Google Scholar] [CrossRef]
- An, Y.; Wang, Q.; Zhang, G.; Sun, F.; Zhang, L.; Li, H.; Li, Y.; Peng, Y.; Zhu, W.; Ji, S.; et al. OSlihc: An Online Prognostic Biomarker Analysis Tool for Hepatocellular Carcinoma. Front. Pharm. 2020, 11, 875. [Google Scholar] [CrossRef] [PubMed]
- Mariani, M.; Zannoni, G.F.; Sioletic, S.; Sieber, S.; Martino, C.; Martinelli, E.; Coco, C.; Scambia, G.; Shahabi, S.; Ferlini, C. Gender influences the class III and V beta-tubulin ability to predict poor outcome in colorectal cancer. Clin. Cancer Res. 2012, 18, 2964–2975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.W.; Tao, L.Y.; Yang, J.Y.; Jiang, Y.S.; Fu, X.L.; Liu, W.; Huo, Y.M.; Li, J.; Zhang, J.F.; Hua, R.; et al. SFRP4 is a prognostic marker and correlated with Treg cell infiltration in pancreatic ductal adenocarcinoma. Am. J. Cancer Res. 2019, 9, 363–377. [Google Scholar] [PubMed]
- Cui, J.; Yu, Y.; Lu, G.-F.; Liu, C.; Liu, X.; Xu, Y.-X.; Zheng, P.-Y. Overexpression of ARK5 is associated with poor prognosis in hepatocellular carcinoma. Tumor. Biol. 2013, 34, 1913–1918. [Google Scholar] [CrossRef]
- Yao, L.-W.; Wu, L.-L.; Zhang, L.-H.; Zhou, W.; Wu, L.; He, K.; Ren, J.-C.; Deng, Y.-C.; Yang, D.-M.; Wang, J.; et al. MFAP2 is overexpressed in gastric cancer and promotes motility via the MFAP2/integrin α5β1/FAK/ERK pathway. Oncogenesis 2020, 9, 17. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, M.; Zhou, L.; Zhang, Y.; Liu, W.; Qin, W.; He, R.; Lu, Y.; Wang, Y.; Chen, X.Z.; et al. Prognostic significance of PLIN1 expression in human breast cancer. Oncotarget 2016, 7, 54488–54502. [Google Scholar] [CrossRef] [Green Version]
- Tachibana, M.; Tonomoto, Y.; Hyakudomi, R.; Hyakudomi, M.; Hattori, S.; Ueda, S.; Kinugasa, S.; Yoshimura, H. Expression and prognostic significance of EFNB2 and EphB4 genes in patients with oesophageal squamous cell carcinoma. Dig. Liver Dis. 2007, 39, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Torre, L.A.; Trabert, B.; DeSantis, C.E.; Miller, K.D.; Samimi, G.; Runowicz, C.D.; Gaudet, M.M.; Jemal, A.; Siegel, R.L. Ovarian cancer statistics, 2018. CA Cancer. J. Clin. 2018, 68, 284–296. [Google Scholar] [CrossRef] [PubMed]
- Yancik, R. Ovarian cancer. Age contrasts in incidence, histology, disease stage at diagnosis, and mortality. Cancer 1993, 71, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Sha, L.; Hou, N.; Zhang, M.; Ma, Q.; Shi, C. High α B-crystallin and p53 co-expression is associated with poor prognosis in ovarian cancer. Biosci. Rep. 2019, 39, BSR20182407. [Google Scholar] [CrossRef] [Green Version]
- Isaksson, H.S.; Sorbe, B.; Nilsson, T.K. Whole genome expression profiling of blood cells in ovarian cancer patients -prognostic impact of the CYP1B1, MTSS1, NCALD, and NOP14. Oncotarget 2014, 5, 4040–4049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwadate, R.; Inoue, J.; Tsuda, H.; Takano, M.; Furuya, K.; Hirasawa, A.; Aoki, D.; Inazawa, J. High Expression of SQSTM1/p62 Protein Is Associated with Poor Prognosis in Epithelial Ovarian Cancer. Acta Histochem. Cytochem. 2014, 47, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017, 45, W98–W102. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Zhang, G.; Zhang, L.; Wang, Q.; Li, H.; Han, Y.; Xie, L.; Yan, Z.; Li, Y.; An, Y.; et al. Comprehensive Review of Web Servers and Bioinformatics Tools for Cancer Prognosis Analysis. Front. Oncol. 2020, 10, 68. [Google Scholar] [CrossRef] [PubMed]
- Kandukuri, S.R.; Rao, J. FIGO 2013 staging system for ovarian cancer: What is new in comparison to the 1988 staging system? Curr. Opin. Obs. Gynecol. 2015, 27, 48–52. [Google Scholar] [CrossRef]
- Jervis, S.; Song, H.; Lee, A.; Dicks, E.; Tyrer, J.; Harrington, P.; Easton, D.F.; Jacobs, I.J.; Pharoah, P.P.; Antoniou, A.C. Ovarian cancer familial relative risks by tumour subtypes and by known ovarian cancer genetic susceptibility variants. J. Med. Genet. 2014, 51, 108–113. [Google Scholar] [CrossRef]
- Bao, M.; Zhang, L.; Hu, Y. Novel gene signatures for prognosis prediction in ovarian cancer. J. Cell. Mol. Med. 2020, 24, 9972–9984. [Google Scholar] [CrossRef]
Items | Serous Cancer (n = 2537) | Clear Cells Cancer (n = 71) | Mucinous Cancer (n = 31) | Endometrioid Cancer (n = 136) | NA * (n = 463) |
---|---|---|---|---|---|
Age, yr a | 59 (21–89) | 63 (41–88) | 50 (33–87) | 58 (21–86) | 59 (35–83) |
Stage | |||||
I | 81 | 36 | 24 | 51 | 3 |
II | 70 | 8 | - | 17 | 8 |
III | 1571 | 22 | 7 | 56 | 40 |
IV | 313 | 5 | - | 10 | 7 |
NA | 502 | - | - | 2 | 405 |
Grade | |||||
1 | 110 | - | 8 | 9 | 5 |
2 | 427 | 9 | 10 | 52 | 1 |
3 | 1360 | 54 | 5 | 68 | 40 |
4 | 98 | 3 | - | 4 | 3 |
NA | 542 | 5 | 8 | 3 | 414 |
OS, mo b | 41 (1–243) | 56 (2–200) | 75 (3–210) | 68 (1–211) | 43 (1–189) |
PFS, mo | 28 (1–243) | 28 (1–243) | 68 (2–147) | 48 (2–117) | 26 (2–111) |
DFS, mo | 25 (1–115) | 25 (1–115) | - | 23 (2–43) | - |
DSS, mo | 40 (1–183) | 40 (1–183) | - | - | 47 (1–164) |
DFI, mo | 28 (1–183) | 28 (1–183) | - | - | - |
PFI, mo | 22 (1–183) | 22 (1–183) | - | - | - |
Cohorts | Platform | Histology | Survival | n | Reference |
---|---|---|---|---|---|
GSE13876 | GPL7759 | SC | OS | 415 | [10] |
GSE14764 | GPL96 | SC/EC/CC/UN # | OS | 80 | [11] |
GSE17260 | GPL6480 | SC | OS/PFS | 109 | [12] |
GSE18520 | GPL570 | SC | OS | 53 | [13] |
GSE19161 | GPL9717 | UN # | OS | 61 | [14] |
GSE19829 | GPL8300 | UN # | OS/DFS | 42/35 | [15] |
GSE23554 | GPL96 | SC | OS | 28 | [16] |
GSE26193 | GPL570 | SC/EC/MC/CC/Other * | OS/PFS | 107 | [17,18] |
GSE26712 | GPL96 | UN # | DSS | 186 | [19,20] |
GSE30161 | GPL570 | UN # | OS/PFS | 58/54 | [21] |
GSE31245 | GPL8300 | UN # | OS | 58 | [22] |
GSE3149 | GPL96 | UN # | OS | 141 | [23] |
GSE32062 | GPL6480 | SC | OS/PFS | 260 | [24] |
GSE32063 | GPL6480 | SC | OS/PFS | 40 | [24] |
GSE49997 | GPL2986 | SC/UN # | OS/PFS | 194 | [25] |
GSE51088 | GPL7264 | SC/EC/CC/MC/Other * | OS | 139 | [26] |
GSE53963 | GPL6480 | SC | OS | 174 | [27] |
GSE63885 | GPL570 | EC/SC/UN # | OS | 75 | [28,29] |
GSE73614 | GPL6480 | EC/SC/CC | OS | 107 | [30] |
GSE8841 | GPL5689 | SC/EC/CC/MC/UN # | OS/PFS | 83 | [31] |
GSE9891 | GPL570 | SC/EC | OS/PFS | 236/141 | [32] |
TCGA | DCC | SC | OS/DSS/DFI/PFI | 582/545/286/582 | [33] |
Total | 3238 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Z.; Wang, Q.; Zhao, S.; Xie, L.; Zhang, L.; Han, Y.; Zhang, B.; Li, H.; Guo, X. OSov: An Interactive Web Server to Evaluate Prognostic Biomarkers for Ovarian Cancer. Biology 2022, 11, 23. https://doi.org/10.3390/biology11010023
Yan Z, Wang Q, Zhao S, Xie L, Zhang L, Han Y, Zhang B, Li H, Guo X. OSov: An Interactive Web Server to Evaluate Prognostic Biomarkers for Ovarian Cancer. Biology. 2022; 11(1):23. https://doi.org/10.3390/biology11010023
Chicago/Turabian StyleYan, Zhongyi, Qiang Wang, Susu Zhao, Longxiang Xie, Lu Zhang, Yali Han, Baokun Zhang, Huimin Li, and Xiangqian Guo. 2022. "OSov: An Interactive Web Server to Evaluate Prognostic Biomarkers for Ovarian Cancer" Biology 11, no. 1: 23. https://doi.org/10.3390/biology11010023
APA StyleYan, Z., Wang, Q., Zhao, S., Xie, L., Zhang, L., Han, Y., Zhang, B., Li, H., & Guo, X. (2022). OSov: An Interactive Web Server to Evaluate Prognostic Biomarkers for Ovarian Cancer. Biology, 11(1), 23. https://doi.org/10.3390/biology11010023