Cycle-Inhibiting Factor Is Associated with Burkholderia pseudomallei Invasion in Human Neuronal Cells
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Bacterial Strains, Cell Lines, and Growth Conditions
2.3. Construction of B. pseudomallei Cif-Deleted Mutant and the Complemented Strain
2.4. Invasion and Intracellular Replication Assay
2.5. Investigation of Actin-Tail Formation
2.6. Determination of MNGC Formation
2.7. Statistical Analysis
3. Results
3.1. Optimal B. pseudomallei MOI for Human Neuronal Cell Infection
3.2. Invasion of Human Neuronal Cells by B. pseudomallei Strains
3.3. Intracellular Replication of B. pseudomallei in Human Neuronal Cells
3.4. B. pseudomallei Can Induce Actin-Tail and MNGC Formation in Human Neuronal Cells
3.5. Plaque Formation in Human Neuronal Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Currie, B.J.; Fisher, D.A.; Howard, D.M.; Burrow, J.N.; Selvanayagam, S.; Snelling, P.L.; Anstey, N.M.; Mayo, M.J. The Epidemiology of Melioidosis in Australia and Papua New Guinea. Acta Trop. 2000, 74, 121–127. [Google Scholar] [CrossRef]
- Leelarasamee, A. Melioidosis in Southeast Asia. Acta Trop. 2000, 74, 129–132. [Google Scholar] [CrossRef]
- Limmathurotsakul, D.; Golding, N.; Dance, D.A.; Messina, J.P.; Pigott, D.M.; Moyes, C.L.; Rolim, D.B.; Bertherat, E.; Day, N.P.; Peacock, S.J.; et al. Predicted Global Distribution of Burkholderia pseudomallei and Burden of Melioidosis. Nat. Microbiol. 2016, 1, 15008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.S.; Chen, Y.S.; Lin, H.H.; Liu, P.J.; Ni, W.F.; Hsueh, P.T.; Liang, S.H.; Chen, C.; Chen, Y.L. Airborne Transmission of Melioidosis to Humans from Environmental Aerosols Contaminated with B. pseudomallei. PLoS Negl. Trop. Dis. 2015, 9, e0003834. [Google Scholar] [CrossRef]
- Limmathurotsakul, D.; Wongsuvan, G.; Aanensen, D.; Ngamwilai, S.; Saiprom, N.; Rongkard, P.; Thaipadungpanit, J.; Kanoksil, M.; Chantratita, N.; Day, N.P.; et al. Melioidosis Caused by Burkholderia pseudomallei in Drinking Water, Thailand, 2012. Emerg. Infect. Dis. 2014, 20, 265–268. [Google Scholar] [CrossRef]
- Limmathurotsakul, D.; Kanoksil, M.; Wuthiekanun, V.; Kitphati, R.; deStavola, B.; Day, N.P.; Peacock, S.J. Activities of Daily Living Associated with Acquisition of Melioidosis in Northeast Thailand: A Matched Case-Control Study. PLoS Negl. Trop. Dis. 2013, 7, e2072. [Google Scholar] [CrossRef] [Green Version]
- Larsen, J.C.; Johnson, N.H. Pathogenesis of Burkholderia pseudomallei and Burkholderia mallei. Mil. Med. 2009, 174, 647–651. [Google Scholar] [CrossRef] [Green Version]
- Currie, B.J.; Ward, L.; Cheng, A.C. The Epidemiology and Clinical Spectrum of Melioidosis: 540 Cases from the 20 year Darwin Prospective Study. PLoS Negl. Trop. Dis. 2010, 4, e900. [Google Scholar] [CrossRef] [Green Version]
- Currie, B.J.; Fisher, D.A.; Howard, D.M.; Burrow, J.N. Neurological Melioidosis. Acta Trop. 2000, 74, 145–151. [Google Scholar] [CrossRef]
- Muthusamy, K.A.; Waran, V.; Puthucheary, S.D. Spectra of Central Nervous System Melioidosis. J. Clin. Neurosci. 2007, 14, 1213–1215. [Google Scholar] [CrossRef]
- Wongwandee, M.; Linasmita, P. Central Nervous System Melioidosis: A Systematic Review of Individual Participant Data of Case Reports and Case Series. PLoS Negl. Trop. Dis. 2019, 13, e0007320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Punyagupta, S. Review of 686 Cases and Presentation of a New Clinical Classification. In Melioidosis; Punyagupta, S., Sirisanthana, T., Stapatayavong, B., Eds.; Bangkok Medical Publisher: Bangkok, Thailand, 1989. [Google Scholar]
- Hesstvedt, L.; Reikvam, D.H.; Dunlop, O. Neurological Melioidosis in Norway Presenting with a Cerebral Abscess. IDCases 2015, 2, 16–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, C.C.; Chen, S.Y.; Chen, T.Y.; Chen, S.T. Central Nervous System Melioidosis Mimics Malignancy: A Case Report and Literature Review. World Neurosurg. 2016, 89, 732.e19–732.e23. [Google Scholar] [CrossRef] [PubMed]
- Chadwick, D.R.; Ang, B.; Sitoh, Y.Y.; Lee, C.C. Cerebral Melioidosis in Singapore: A Review of Five Cases. Trans. R. Soc. Trop. Med. Hyg. 2002, 96, 72–76. [Google Scholar] [CrossRef]
- Jones, A.L.; Beveridge, T.J.; Woods, D.E. Intracellular Survival of Burkholderia pseudomallei. Infect. Immun. 1996, 64, 782–790. [Google Scholar] [CrossRef] [Green Version]
- Duangurai, T.; Indrawattana, N.; Pumirat, P. Burkholderia pseudomallei Adaptation for Survival in Stressful Conditions. BioMed Res. Int. 2018, 2018, 3039106. [Google Scholar] [CrossRef] [Green Version]
- Wiersinga, W.J.; van der Poll, T.; White, N.J.; Day, N.P.; Peacock, S.J. Melioidosis: Insights into the Pathogenicity of Burkholderia pseudomallei. Nat. Rev. Microbiol. 2006, 4, 272–282. [Google Scholar] [CrossRef]
- Kespichayawattana, W.; Rattanachetkul, S.; Wanun, T.; Utaisincharoen, P.; Sirisinha, S. Burkholderia pseudomallei Induces Cell Fusion and Actin-Associated Membrane Protrusion: A Possible Mechanism for Cell-to-Cell Spreading. Infect. Immun. 2000, 68, 5377–5384. [Google Scholar] [CrossRef] [Green Version]
- Gan, Y.H. Interaction between Burkholderia pseudomallei and the Host Immune Response: Sleeping with the Enemy? J. Infect. Dis. 2005, 192, 1845–1850. [Google Scholar] [CrossRef] [Green Version]
- Wong, K.T.; Puthucheary, S.D.; Vadivelu, J. The Histopathology of Human Melioidosis. Histopathology 1995, 26, 51–55. [Google Scholar] [CrossRef]
- Hueck, C.J. Type III Protein Secretion Systems in Bacterial Pathogens of Animals and Plants. Microbiol. Mol. Biol. Rev. 1998, 62, 379–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vander Broek, C.W.; Stevens, J.M. Type III Secretion in the Melioidosis Pathogen Burkholderia pseudomallei. Front. Cell. Infect. Microbiol. 2017, 7, 255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marches, O.; Ledger, T.N.; Boury, M.; Ohara, M.; Tu, X.; Goffaux, F.; Mainil, J.; Rosenshine, I.; Sugai, M.; De Rycke, J.; et al. Enteropathogenic and Enterohaemorrhagic Escherichia coli Deliver a Novel Effector Called Cif, Which Blocks Cell Cycle G2/M Transition. Mol. Microbiol. 2003, 50, 1553–1567. [Google Scholar] [CrossRef] [PubMed]
- Samba-Louaka, A.; Nougayrede, J.P.; Watrin, C.; Oswald, E.; Taieb, F. The Enteropathogenic Escherichia coli Effector Cif Induces Delayed Apoptosis in Epithelial Cells. Infect. Immun. 2009, 77, 5471–5477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, Q.; Cui, J.; Zhu, Y.; Wang, G.; Hu, L.; Long, C.; Cao, R.; Liu, X.; Huang, N.; Chen, S.; et al. A Bacterial Type III Effector Family Uses the Papain-Like Hydrolytic Activity to Arrest the Host Cell Cycle. Proc. Natl. Acad. Sci. USA 2009, 106, 3716–3721. [Google Scholar] [CrossRef] [Green Version]
- Jubelin, G.; Chavez, C.V.; Taieb, F.; Banfield, M.J.; Samba-Louaka, A.; Nobe, R.; Nougayrede, J.P.; Zumbihl, R.; Givaudan, A.; Escoubas, J.M.; et al. Cycle Inhibiting Factors (Cifs) are a Growing Family of Functional Cyclomodulins Present in Invertebrate and Mammal Bacterial Pathogens. PLoS ONE 2009, 4, e4855. [Google Scholar] [CrossRef] [Green Version]
- Crow, A.; Race, P.R.; Jubelin, G.; Varela Chavez, C.; Escoubas, J.M.; Oswald, E.; Banfield, M.J. Crystal Structures of Cif from Bacterial Pathogens Photorhabdus luminescens and Burkholderia pseudomallei. PLoS ONE 2009, 4, e5582. [Google Scholar] [CrossRef] [Green Version]
- Pumirat, P.; Broek, C.V.; Juntawieng, N.; Muangsombut, V.; Kiratisin, P.; Pattanapanyasat, K.; Stevens, J.M.; Stevens, M.P.; Korbsrisate, S. Analysis of the Prevalence, Secretion and Function of a Cell Cycle-Inhibiting Factor in the Melioidosis Pathogen Burkholderia pseudomallei. PLoS ONE 2014, 9, e96298. [Google Scholar] [CrossRef] [Green Version]
- Felgner, P.L.; Kayala, M.A.; Vigil, A.; Burk, C.; Nakajima-Sasaki, R.; Pablo, J.; Molina, D.M.; Hirst, S.; Chew, J.S.; Wang, D.; et al. A Burkholderia pseudomallei Protein Microarray Reveals Serodiagnostic and Cross-Reactive Antigens. Proc. Natl. Acad. Sci. USA 2009, 106, 13499–13504. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.; Yao, Q.; Li, S.; Ding, X.; Lu, Q.; Mao, H.; Liu, L.; Zheng, N.; Chen, S.; Shao, F. Glutamine Deamidation and Dysfunction of Ubiquitin/Nedd8 Induced by a Bacterial Effector Family. Science 2010, 329, 1215–1218. [Google Scholar] [CrossRef] [Green Version]
- Morikawa, H.; Kim, M.; Mimuro, H.; Punginelli, C.; Koyama, T.; Nagai, S.; Miyawaki, A.; Iwai, K.; Sasakawa, C. The Bacterial Effector Cif Interferes with SCF Ubiquitin Ligase Function by Inhibiting Deneddylation of Cullin1. Biochem. Biophys. Res. Commun. 2010, 401, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Boh, B.K.; Ng, M.Y.; Leck, Y.C.; Shaw, B.; Long, J.; Sun, G.W.; Gan, Y.H.; Searle, M.S.; Layfield, R.; Hagen, T. Inhibition of Cullin Ring Ligases by Cycle Inhibiting Factor: Evidence for Interference with Nedd8-Induced Conformational Control. J. Mol. Biol. 2011, 413, 430–437. [Google Scholar] [CrossRef]
- Ng, M.Y.; Wang, M.; Casey, P.J.; Gan, Y.H.; Hagen, T. Activation of MAPK/ERK Signaling by Burkholderia pseudomallei Cycle Inhibiting Factor (Cif). PLoS ONE 2017, 12, e0171464. [Google Scholar] [CrossRef] [PubMed]
- Ng, M.Y.; Gan, Y.H.; Hagen, T. Characterisation of Cellular Effects of Burkholderia pseudomallei Cycle Inhibiting Factor (Cif). Biol. Open 2018, 7, bio028225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pumirat, P.; Vanaporn, M.; Boonyuen, U.; Indrawattana, N.; Rungruengkitkun, A.; Chantratita, N. Effects of Sodium Chloride on Heat Resistance, Oxidative Susceptibility, Motility, Biofilm and Plaque Formation of Burkholderia pseudomallei. Microbiologyopen 2017, 6, e00493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luplertlop, N.; Suwanmanee, S.; Muangkaew, W.; Ampawong, S.; Kitisin, T.; Poovorawan, Y. The Impact of Zika Virus Infection on Human Neuroblastoma (SH-SY5Y) Cell Line. J. Vector Borne Dis. 2017, 54, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Lopez, C.M.; Rholl, D.A.; Trunck, L.A.; Schweizer, H.P. Versatile Dual-Technology System for Markerless Allele Replacement in Burkholderia pseudomallei. Appl. Environ. Microbiol. 2009, 75, 6496–6503. [Google Scholar] [CrossRef] [Green Version]
- Chantratita, N.; Tandhavanant, S.; Wikraiphat, C.; Trunck, L.A.; Rholl, D.A.; Thanwisai, A.; Saiprom, N.; Limmathurotsakul, D.; Korbsrisate, S.; Day, N.P.; et al. Proteomic Analysis of Colony Morphology Variants of Burkholderia pseudomallei Defines a Role for the Arginine Deiminase System in Bacterial Survival. J. Proteom. 2012, 75, 1031–1042. [Google Scholar] [CrossRef] [Green Version]
- Kaewpan, A.; Duangurai, T.; Rungruengkitkun, A.; Muangkaew, W.; Kanjanapruthipong, T.; Jitprasutwit, N.; Ampawong, S.; Sukphopetch, P.; Chantratita, N.; Pumirat, P. Burkholderia pseudomallei Pathogenesis in Human Skin Fibroblasts: A Bsa Type III Secretion System Is Involved in the Invasion, Multinucleated Giant Cell Formation, and Cellular Damage. PLoS ONE 2022, 17, e0261961. [Google Scholar] [CrossRef]
- French, C.T.; Toesca, I.J.; Wu, T.H.; Teslaa, T.; Beaty, S.M.; Wong, W.; Liu, M.; Schroder, I.; Chiou, P.Y.; Teitell, M.A.; et al. Dissection of the Burkholderia Intracellular Life Cycle Using a Photothermal Nanoblade. Proc. Natl. Acad. Sci. USA 2011, 108, 12095–12100. [Google Scholar] [CrossRef] [Green Version]
- Currie, B.J.; Fisher, D.A.; Howard, D.M.; Burrow, J.N.; Lo, D.; Selva-Nayagam, S.; Anstey, N.M.; Huffam, S.E.; Snelling, P.L.; Marks, P.J.; et al. Endemic Melioidosis in Tropical Northern Australia: A 10-Year Prospective Study and Review of the Literature. Clin. Infect. Dis. 2000, 31, 981–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- St John, J.A.; Ekberg, J.A.; Dando, S.J.; Meedeniya, A.C.; Horton, R.E.; Batzloff, M.; Owen, S.J.; Holt, S.; Peak, I.R.; Ulett, G.C.; et al. Burkholderia pseudomallei Penetrates the Brain Via Destruction of the Olfactory and Trigeminal Nerves: Implications for the Pathogenesis of Neurological Melioidosis. mBio 2014, 5, e00025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- St John, J.A.; Walkden, H.; Nazareth, L.; Beagley, K.W.; Ulett, G.C.; Batzloff, M.R.; Beacham, I.R.; Ekberg, J.A. Burkholderia pseudomallei Rapidly Infects the Brain Stem and Spinal Cord Via the Trigeminal Nerve after Intranasal Inoculation. Infect. Immun. 2016, 84, 2681–2688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myers, T.A.; Kaushal, D.; Philipp, M.T. Microglia are Mediators of Borrelia burgdorferi-Induced Apoptosis in SH-SY5Y Neuronal Cells. PLoS Pathog. 2009, 5, e1000659. [Google Scholar] [CrossRef] [Green Version]
- Walkden, H.; Delbaz, A.; Nazareth, L.; Batzloff, M.; Shelper, T.; Beacham, I.R.; Chacko, A.; Shah, M.; Beagley, K.W.; Tello Velasquez, J.; et al. Burkholderia pseudomallei Invades the Olfactory Nerve and Bulb after Epithelial Injury in Mice and Causes the Formation of Multinucleated Giant Glial Cells in Vitro. PLoS Negl. Trop. Dis. 2020, 14, e0008017. [Google Scholar] [CrossRef] [Green Version]
- Phewkliang, A.; Wongratanacheewin, S.; Chareonsudjai, S. Role of Burkholderia pseudomallei in the Invasion, Replication and Induction of Apoptosis in Human Epithelial Cell Lines. Southeast Asian J. Trop. Med. Public Health 2010, 41, 1164–1176. [Google Scholar]
- Stevens, M.P.; Friebel, A.; Taylor, L.A.; Wood, M.W.; Brown, P.J.; Hardt, W.D.; Galyov, E.E. A Burkholderia pseudomallei Type III Secreted Protein, BopE, Facilitates Bacterial Invasion of Epithelial Cells and Exhibits Guanine Nucleotide Exchange Factor Activity. J. Bacteriol. 2003, 185, 4992–4996. [Google Scholar] [CrossRef] [Green Version]
- Muangsombut, V.; Suparak, S.; Pumirat, P.; Damnin, S.; Vattanaviboon, P.; Thongboonkerd, V.; Korbsrisate, S. Inactivation of Burkholderia pseudomallei bsaQ Results in Decreased Invasion Efficiency and Delayed Escape of Bacteria from Endocytic Vesicles. Arch. Microbiol. 2008, 190, 623–631. [Google Scholar] [CrossRef]
- Du, J.; Reeves, A.Z.; Klein, J.A.; Twedt, D.J.; Knodler, L.A.; Lesser, C.F. The Type III Secretion System Apparatus Determines the Intracellular Niche of Bacterial Pathogens. Proc. Natl. Acad. Sci. USA 2016, 113, 4794–4799. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Otsubo, R.; Morikawa, H.; Nishide, A.; Takagi, K.; Sasakawa, C.; Mizushima, T. Bacterial Effectors and Their Functions in the Ubiquitin-Proteasome System: Insight from the Modes of Substrate Recognition. Cells 2014, 3, 848–864. [Google Scholar] [CrossRef] [Green Version]
- Harley, V.S.; Dance, D.A.; Drasar, B.S.; Tovey, G. Effects of Burkholderia pseudomallei and Other Burkholderia Species on Eukaryotic Cells in Tissue Culture. Microbios 1998, 96, 71–93. [Google Scholar] [PubMed]
- Allwood, E.M.; Devenish, R.J.; Prescott, M.; Adler, B.; Boyce, J.D. Strategies for Intracellular Survival of Burkholderia pseudomallei. Front. Microbiol. 2011, 2, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevens, M.P.; Wood, M.W.; Taylor, L.A.; Monaghan, P.; Hawes, P.; Jones, P.W.; Wallis, T.S.; Galyov, E.E. An Inv/Mxi-Spa-like Type III Protein Secretion System in Burkholderia pseudomallei Modulates Intracellular Behaviour of the Pathogen. Mol. Microbiol. 2002, 46, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Horton, R.E.; Grant, G.D.; Matthews, B.; Batzloff, M.; Owen, S.J.; Kyan, S.; Flegg, C.P.; Clark, A.M.; Ulett, G.C.; Morrison, N.; et al. Quorum Sensing Negatively Regulates Multinucleate cell Formation During Intracellular Growth of Burkholderia pseudomallei in Macrophage-Like Cells. PLoS ONE 2013, 8, e63394. [Google Scholar] [CrossRef] [Green Version]
- Gora, H.; Hasan, T.; Smith, S.; Wilson, I.; Mayo, M.; Woerle, C.; Webb, J.R.; Currie, B.J.; Hanson, J.; Meumann, E.M. Melioidosis of the Central Nervous System; Impact of the BimAbm Allele on Patient Presentation and Outcome. Clin. Infect. Dis. 2022, ciac111. [Google Scholar] [CrossRef]
- Sarovich, D.S.; Price, E.P.; Webb, J.R.; Ward, L.M.; Voutsinos, M.Y.; Tuanyok, A.; Mayo, M.; Kaestli, M.; Currie, B.J. Variable Virulence Factors in Burkholderia pseudomallei (Melioidosis) Associated with Human Disease. PLoS ONE 2014, 9, e91682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, J.L.; Fane, A.; Sarovich, D.S.; Price, E.P.; Rush, C.M.; Govan, B.L.; Parker, E.; Mayo, M.; Currie, B.J.; Ketheesan, N. Increased Neurotropic Threat from Burkholderia pseudomallei Strains with a B. mallei-like Variation in the BimA Motility Gene, Australia. Emerg. Infect. Dis. 2017, 23, 740–749. [Google Scholar] [CrossRef] [PubMed]
- Tuanyok, A.; Stone, J.K.; Mayo, M.; Kaestli, M.; Gruendike, J.; Georgia, S.; Warrington, S.; Mullins, T.; Allender, C.J.; Wagner, D.M.; et al. The Genetic and Molecular Basis of O-Antigenic Diversity in Burkholderia pseudomallei Lipopolysaccharide. PLoS Negl. Trop. Dis. 2012, 6, e1453. [Google Scholar] [CrossRef] [Green Version]
- Welkos, S.L.; Klimko, C.P.; Kern, S.J.; Bearss, J.J.; Bozue, J.A.; Bernhards, R.C.; Trevino, S.R.; Waag, D.M.; Amemiya, K.; Worsham, P.L.; et al. Characterization of Burkholderia pseudomallei Strains Using a Murine Intraperitoneal Infection Model and in Vitro Macrophage Assays. PLoS ONE 2015, 10, e0124667. [Google Scholar] [CrossRef] [Green Version]
Primer Name | Sequence (5′-3′) | Purpose | Size (bp) | Source |
---|---|---|---|---|
BPSS1385 F1 | CATGTGCGATCATGCAATTT | Upstream BPSS1385 | 304 | This study |
BPSS1385 R1 | GCGGGCTACTTGGGAGTT | Upstream BPSS1385 | ||
BPSS1385 F2 | AACTCCCAAGTAGCCCGCTAGCGAAACCACGAAGAGGT | Downstream BPSS1385 | 283 | |
BPSS1385 R2 | CTACGGCCACGACCAAGAT | Downstream BPSS1385 | ||
BPSS1385 F | AGAGGCTGCTAATCCACCC | Full length BPSS1385 | 1053 | |
BPSS1385 R | ACATCTGCTGCGGTCTCAC | Full length BPSS1385 | ||
OriT-F | TCCGCTGCATAACCCTGCTTC | Validation of the presence of pEXKm5 plasmid backbone | 236 | [39] |
OriT-R | CAGCCTCGCAGAGCAGGATTC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rungruengkitkun, A.; Jitprasutwit, N.; Muangkaew, W.; Suttikornchai, C.; Tandhavanant, S.; Indrawattana, N.; Ampawong, S.; Sukphopetch, P.; Chantratita, N.; Pumirat, P. Cycle-Inhibiting Factor Is Associated with Burkholderia pseudomallei Invasion in Human Neuronal Cells. Biology 2022, 11, 1439. https://doi.org/10.3390/biology11101439
Rungruengkitkun A, Jitprasutwit N, Muangkaew W, Suttikornchai C, Tandhavanant S, Indrawattana N, Ampawong S, Sukphopetch P, Chantratita N, Pumirat P. Cycle-Inhibiting Factor Is Associated with Burkholderia pseudomallei Invasion in Human Neuronal Cells. Biology. 2022; 11(10):1439. https://doi.org/10.3390/biology11101439
Chicago/Turabian StyleRungruengkitkun, Amporn, Niramol Jitprasutwit, Watcharamat Muangkaew, Chantira Suttikornchai, Sarunporn Tandhavanant, Nitaya Indrawattana, Sumate Ampawong, Passanesh Sukphopetch, Narisara Chantratita, and Pornpan Pumirat. 2022. "Cycle-Inhibiting Factor Is Associated with Burkholderia pseudomallei Invasion in Human Neuronal Cells" Biology 11, no. 10: 1439. https://doi.org/10.3390/biology11101439
APA StyleRungruengkitkun, A., Jitprasutwit, N., Muangkaew, W., Suttikornchai, C., Tandhavanant, S., Indrawattana, N., Ampawong, S., Sukphopetch, P., Chantratita, N., & Pumirat, P. (2022). Cycle-Inhibiting Factor Is Associated with Burkholderia pseudomallei Invasion in Human Neuronal Cells. Biology, 11(10), 1439. https://doi.org/10.3390/biology11101439