Characterization of Porcine Monocyte-Derived Macrophages Cultured in Serum-Reduced Medium
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Porcine Monocyte-Derived Macrophage Preparation and Culture
2.2. Surface Marker Detection by Flow Cytometry
2.3. Chemiluminescence Assay
2.4. Phagocytic Activity Detection by Flow Cytometry
2.5. Cytokine Gene Expression Determination by Quantitative RT-PCR Analysis
2.6. Statistical Analysis
3. Results
3.1. Morphology and Yield of Porcine Monocyte-Derived Macrophages (MDMs) Generated In Vitro
3.2. Surface Marker Expression
3.3. Respiratory Burst and Phagocytic Activity
3.4. Cytokine Gene Expression Profile
3.5. Principal Component Analysis (PCA)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wynn, T.A.; Chawla, A.; Pollard, J.W. Macrophage Biology in Development, Homeostasis and Disease. Nature 2013, 496, 445–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taciak, B.; Białasek, M.; Braniewska, A.; Sas, Z.; Sawicka, P.; Kiraga, Ł.; Rygiel, T.; Król, M. Evaluation of Phenotypic and Functional Stability of RAW 264.7 Cell Line through Serial Passages. PLoS ONE 2018, 13, e0198943. [Google Scholar] [CrossRef]
- Kyrova, K.; Stepanova, H.; Rychlik, I.; Polansky, O.; Leva, L.; Sekelova, Z.; Faldyna, M.; Volf, J. The Response of Porcine Monocyte Derived Macrophages and Dendritic Cells to Salmonella Typhimurium and Lipopolysaccharide. BMC Vet. Res. 2014, 10, 244. [Google Scholar] [CrossRef] [Green Version]
- Stepanova, H.; Pavlova, B.; Stromerova, N.; Ondrackova, P.; Stejskal, K.; Slana, I.; Zdrahal, Z.; Pavlik, I.; Faldyna, M. Different Immune Response of Pigs to Mycobacterium Avium Subsp. Avium and Mycobacterium Avium Subsp. Hominissuis Infection. Vet. Microbiol. 2012, 159, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Kavanová, L.; Matiašková, K.; Levá, L.; Nedbalcová, K.; Matiašovic, J.; Faldyna, M.; Salát, J. Concurrent Infection of Monocyte-Derived Macrophages with Porcine Reproductive and Respiratory Syndrome Virus and Haemophilus Parasuis: A Role of IFNα in Pathogenesis of Co-Infections. Vet. Microbiol. 2018, 225, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Kavanová, L.; Moutelíková, R.; Prodělalová, J.; Faldyna, M.; Toman, M.; Salát, J. Monocyte Derived Macrophages as an Appropriate Model for Porcine Cytomegalovirus Immunobiology Studies. Vet. Immunol. Immunopathol. 2018, 197, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Kavanová, L.; Matiašková, K.; Levá, L.; Štěpánová, H.; Nedbalcová, K.; Matiašovic, J.; Faldyna, M.; Salát, J. Concurrent Infection with Porcine Reproductive and Respiratory Syndrome Virus and Haemophilus Parasuis in Two Types of Porcine Macrophages: Apoptosis, Production of ROS and Formation of Multinucleated Giant Cells. Vet. Res. 2017, 48, 28. [Google Scholar] [CrossRef] [Green Version]
- Vicenova, M.; Nechvatalova, K.; Chlebova, K.; Kucerova, Z.; Leva, L.; Stepanova, H.; Faldyna, M. Evaluation of in Vitro and in Vivo Anti-Inflammatory Activity of Biologically Active Phospholipids with Anti-Neoplastic Potential in Porcine Model. BMC Complement. Altern. Med. 2014, 14, 339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zemankova, N.; Chlebova, K.; Matiasovic, J.; Prodelalova, J.; Gebauer, J.; Faldyna, M. Bovine Lactoferrin Free of Lipopolysaccharide Can Induce a Proinflammatory Response of Macrophages. BMC Vet. Res. 2016, 12, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, J.; Scheenstra, M.R.; van Dijk, A.; Veldhuizen, E.J.A.; Haagsman, H.P. A New and Efficient Culture Method for Porcine Bone Marrow-Derived M1- and M2-Polarized Macrophages. Vet. Immunol. Immunopathol. 2018, 200, 7–15. [Google Scholar] [CrossRef]
- Chamorro, S.; Revilla, C.; Álvarez, B.; Alonso, F.; Ezquerra, Á.; Domínguez, J. Phenotypic and Functional Heterogeneity of Porcine Blood Monocytes and Its Relation with Maturation. Immunology 2005, 114, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Franzoni, G.; Bonelli, P.; Graham, S.P.; Anfossi, A.G.; Dei Giudici, S.; Pilo, G.; Pittau, M.; Nicolussi, P.; Oggiano, A. Comparative Phenotypic and Functional Analyses of the Effects of Autologous Plasma and Recombinant Human Macrophage-Colony Stimulating Factor (M-CSF) on Porcine Monocyte to Macrophage Differentiation. Vet. Immunol. Immunopathol. 2017, 187, 80–88. [Google Scholar] [CrossRef] [PubMed]
- van der Valk, J.; Bieback, K.; Buta, C.; Cochrane, B.; Dirks, W.G.; Fu, J.; Hickman, J.J.; Hohensee, C.; Kolar, R.; Liebsch, M.; et al. Fetal Bovine Serum (FBS): Past–Present–Future. ALTEX 2018, 35, 99–118. [Google Scholar] [CrossRef] [Green Version]
- Ham, R.G. Clonal Growth of Mammalian Cells In A Chemically Defined, Synthetic Medium. Proc. Natl. Acad. Sci. USA 1965, 53, 288–293. [Google Scholar] [CrossRef] [Green Version]
- Gstraunthaler, G. Alternatives to the Use of Fetal Bovine Serum: Serum-Free Cell Culture. ALTEX Altern. Anim. Exp. 2003, 20, 275–281. [Google Scholar] [CrossRef]
- Pavlova, B.; Volf, J.; Ondrackova, P.; Matiasovic, J.; Stepanova, H.; Crhanova, M.; Karasova, D.; Faldyna, M.; Rychlik, I. SPI-1-Encoded Type III Secretion System of Salmonella Enterica Is Required for the Suppression of Porcine Alveolar Macrophage Cytokine Expression. Vet. Res. 2011, 42, 16. [Google Scholar] [CrossRef] [Green Version]
- Kyrova, K.; Stepanova, H.; Rychlik, I.; Faldyna, M.; Volf, J. SPI-1 Encoded Genes of Salmonella Typhimurium Influence Differential Polarization of Porcine Alveolar Macrophages in Vitro. BMC Vet. Res. 2012, 8, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volf, J.; Boyen, F.; Faldyna, M.; Pavlova, B.; Navratilova, J.; Rychlik, I. Cytokine Response of Porcine Cell Lines to Salmonella Enterica Serovar Typhimurium and Its HilA and SsrA Mutants. Zoonoses Public Health 2007, 54, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.L.; Jensen, J.L.; Ørntoft, T.F. Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Oida, T.; Weiner, H.L. Depletion of TGF-β from Fetal Bovine Serum. J. Immunol. Methods 2010, 362, 195–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mills, C.D.; Kincaid, K.; Alt, J.M.; Heilman, M.J.; Hill, A.M. M-1/M-2 Macrophages and the Th1/Th2 Paradigm. J. Immunol. 2000, 164, 6166–6173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daigneault, M.; Preston, J.A.; Marriott, H.M.; Whyte, M.K.B.; Dockrell, D.H. The Identification of Markers of Macrophage Differentiation in PMA-Stimulated THP-1 Cells and Monocyte-Derived Macrophages. PLoS ONE 2010, 5, e8668. [Google Scholar] [CrossRef]
- McCullough, K.C.; Basta, S.; Knötig, S.; Gerber, H.; Schaffner, R.; Kim, Y.B.; Saalmüller, A.; Summerfield, A. Intermediate Stages in Monocyte-Macrophage Differentiation Modulate Phenotype and Susceptibility to Virus Infection. Immunology 1999, 98, 203–212. [Google Scholar] [CrossRef]
- Kapetanovic, R.; Fairbairn, L.; Beraldi, D.; Sester, D.P.; Archibald, A.L.; Tuggle, C.K.; Hume, D.A. Pig Bone Marrow-Derived Macrophages Resemble Human Macrophages in Their Response to Bacterial Lipopolysaccharide. J. Immunol. 2012, 188, 3382–3394. [Google Scholar] [CrossRef] [Green Version]
- Brunner, D.; Frank, J.; Appl, H.; Schöffl, H.; Pfaller, W.; Gstraunthaler, G. Serum-Free Cell Culture: The Serum-Free Media Interactive Online Database. ALTEX Altern. Anim. Exp. 2010, 27, 53–62. [Google Scholar] [CrossRef]
- Rey-Giraud, F.; Hafner, M.; Ries, C.H. In Vitro Generation of Monocyte-Derived Macrophages under Serum-Free Conditions Improves Their Tumor Promoting Functions. PLoS ONE 2012, 7, e42656. [Google Scholar] [CrossRef] [Green Version]
- Eske, K.; Breitbach, K.; Köhler, J.; Wongprompitak, P.; Steinmetz, I. Generation of Murine Bone Marrow Derived Macrophages in a Standardised Serum-Free Cell Culture System. J. Immunol. Methods 2009, 342, 13–19. [Google Scholar] [CrossRef]
- Flesch, I.; Ferber, E. Growth Requirements of Murine Bone Marrow Macrophages in Serum-Free Cell Culture. Immunobiology 1986, 171, 14–26. [Google Scholar] [CrossRef]
- Calvert, J.G.; Slade, D.E.; Shields, S.L.; Jolie, R.; Mannan, R.M.; Ankenbauer, R.G.; Welch, S.-K.W. CD163 Expression Confers Susceptibility to Porcine Reproductive and Respiratory Syndrome Viruses. J. Virol. 2007, 81, 7371–7379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patton, J.B.; Rowland, R.R.; Yoo, D.; Chang, K.O. Modulation of CD163 Receptor Expression and Replication of Porcine Reproductive and Respiratory Syndrome Virus in Porcine Macrophages. Virus Res. 2009, 140, 161–171. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Štěpánová, H.; Kavanová, L.; Levá, L.; Vícenová, M.; Šťastný, K.; Faldyna, M. Characterization of Porcine Monocyte-Derived Macrophages Cultured in Serum-Reduced Medium. Biology 2022, 11, 1457. https://doi.org/10.3390/biology11101457
Štěpánová H, Kavanová L, Levá L, Vícenová M, Šťastný K, Faldyna M. Characterization of Porcine Monocyte-Derived Macrophages Cultured in Serum-Reduced Medium. Biology. 2022; 11(10):1457. https://doi.org/10.3390/biology11101457
Chicago/Turabian StyleŠtěpánová, Hana, Lenka Kavanová, Lenka Levá, Monika Vícenová, Kamil Šťastný, and Martin Faldyna. 2022. "Characterization of Porcine Monocyte-Derived Macrophages Cultured in Serum-Reduced Medium" Biology 11, no. 10: 1457. https://doi.org/10.3390/biology11101457
APA StyleŠtěpánová, H., Kavanová, L., Levá, L., Vícenová, M., Šťastný, K., & Faldyna, M. (2022). Characterization of Porcine Monocyte-Derived Macrophages Cultured in Serum-Reduced Medium. Biology, 11(10), 1457. https://doi.org/10.3390/biology11101457