Phenotypes of Floral Nectaries in Developmental Mutants of Legumes and What They May Tell about Genetic Control of Nectary Formation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
Genotype | Accession | Orthologous Gene in Arabidopsis | Floral Phenotype of Mutant | Reference |
---|---|---|---|---|
Pisum sativum L. | ||||
bivexillum (biv) | JI3056 | Unknown | Adaxial sepals petaloid, sometimes no petals, stamens free, their number reduced (Figure 1Q) | [15] |
cochleata (coch) | JI2758 (nonsense), Wt11304 (missense) | BLADE-ON-PETIOLE1, 2 | Varying from reduction of stamen number and production of extra flag instead of keel to impairment of staminal and keel fusion (Figure 1S,U) | [16] |
keeled wings (k) | F2 JI2163 × WL1749, F2 ‘Chlorophyll-13’ × WL1238 | PsCYC2 * | Wings similar to keel petals (Figure 1F) | [17] |
stamina pistilloida (stp-1) | JI2163, F2 JI2163 × ‘Cheburashka’ | UNUSUAL FLOWER ORGANS | Outer adaxial stamens converted into carpels, petals with sepaloid sectors (Figure 1M and Figure S1) | [18] |
superpetaloidum (sup) | F2 JI1340 × ‘Cheburashka’ | Unknown | Outer (usually adaxial) stamens petaloid (Figure 1K) | [19] |
stp-1 sup | F2 JI2163 × ‘Cheburashka’ | – | Outer adaxial stamens produce petaloid and carpelloid excrescences (Figure 1O) | – |
unifoliata-tendrilled acacia (unitac) | Az-23 | LEAFY | Keel petals free, adnate to stamens; abaxial stamens fused together (Figure 1H,I) | [20] |
Unknown | cv. Anvend | Unknown | Wings symmetric (Figure 1D) | – |
Wild-type | F2 JI2163 × ‘Cheburashka’, F2 JI2163 × WL1749, F2 ‘Chlorophyll-13’ × WL1238 | – | – | – |
Cajanus cajan (L.) Millsp. | ||||
partial cleistogamy (pct) | ICPB 2203 | Unknown | Wing and keel petals symmetric, keel free, stamens free (Figure 2D) | [21] |
lanceolate (llt) | ICP 5529 | Unknown | Wings almost symmetric, keel petals free and narrow (Figure 2F) | [22] |
Wild-type | ICPL 20325 | – | – | – |
Wisteria spp. | ||||
W. floribunda f. violaceoplena (C.K. Schneid.) Rehder & E.H. Wilson | Ornamental (Turkey) | Unknown | Calyx widely splayed, petals numerous and deformed, stamens petaloid or rarely fertile, carpel deformed (Figure 3B and Figure S2) | [23] |
W. sinensis (Sims) Sweet, wild-type | Living collection of the Tsitsin Main Botanical Garden, Moscow, Russia | – | – | – |
Clitoria ternatea L. | ||||
C. ternatea var. pleniflora Fantz | Ornamental (Thailand) | Unknown | All five petals flag-like (Figure 4E), stamens free | – |
Wild-type | – | – | – | |
Caragana arborescens Lam. | ||||
Wild-type | Ornamental (Russia) | – | – | – |
C. arborescens f. lorbergii Koehne | Living collections of the Tsitsin Main Botanical Garden and the Schroeder Arboretum of the Moscow Timiryazev Agricultural Academy, Moscow, Russia | Unknown | Wings and keel petals slightly narrowed, flag very narrow, keel often unfused, carpel incompletely sealed (Figure S4) | [24] |
Calpurnia aurea (Aiton) Benth. | ||||
Wild-growing | Ethiopia; herbarium specimens (MW): MW0583527, MW0583528 | – | – | – |
3. Results
3.1. Overall Floral Morphology
3.2. Floral Nectaries
3.2.1. Pisum sativum
3.2.2. Cajanus cajan
3.2.3. Wisteria spp.
3.2.4. Clitoria ternatea
3.2.5. Caragana arborescens
3.2.6. Calpurnia aurea
4. Discussion
4.1. BOP-Mediated Regulation of Nectary Development Is Conserved in Pisum
4.2. Flower Dorsalization May Inhibit Development of Floral Nectaries, but Not Necessarily
4.3. Production of Extra Petals Does Not Prevent FN Development
4.4. Can Data from Arabidopsis Be Approximated to Legumes?
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bernardello, G. A systematic survey of floral nectaries. In Nectaries and Nectar; Nicolson, S.W., Nepi, M., Pacini, E., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 19–128. [Google Scholar]
- Baum, S.F.; Eshed, Y.; Bowman, J.L. The Arabidopsis nectary is an ABC-independent floral structure. Development 2001, 128, 4657–4667. [Google Scholar] [CrossRef]
- Slavković, F.; Dogimont, C.; Morin, H.; Boualem, A.; Bendahmane, A. The genetic control of nectary development. Trends Plant Sci. 2021, 26, 260–271. [Google Scholar] [CrossRef]
- Bowman, J.L.; Smyth, D.R. CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zing finger and helix-loop-helix domains. Development 1999, 126, 2387–2396. [Google Scholar] [CrossRef]
- Lee, J.Y.; Baum, S.F.; Oh, S.H.; Jiang, C.Z.; Chen, J.C.; Bowman, J.L. Recruitment of CRABS CLAW to promote nectary development within the eudicot clade. Development 2005, 132, 5021–5032. [Google Scholar] [CrossRef] [Green Version]
- McKim, S.M.; Stenvik, G.E.; Butenko, M.A.; Kristiansen, W.; Cho, S.K.; Hepworth, S.R.; Aalen, R.B.; Haughn, G.W. The BLADE-ON-PETIOLE genes are essential for abscission zone formation in Arabidopsis. Development 2008, 135, 1537–1546. [Google Scholar] [CrossRef] [Green Version]
- Gross, T.; Becker, A. Transcription factor action orchestrates the complex expression pattern of CRABS CLAW in Arabidopsis. Genes 2021, 12, 1663. [Google Scholar] [CrossRef]
- Ferrándiz, C.; Navarro, C.; Gómez, M.D.; Cañas, L.A.; Beltrán, J.P. Flower development in Pisum sativum: From the war of whorls to the battle of common primordia. Dev. Genet. 1999, 25, 280–290. [Google Scholar] [CrossRef]
- Sinjushin, A.A. Evolutionary history of the lefigurguminous flower. Biol. Bull. Rev. 2021, 11, 400–413. [Google Scholar] [CrossRef]
- Razem, F.A.; Davis, A.R. Anatomical and ultrastructural changes of the floral nectary of Pisum sativum L. during flower development. Protoplasma 1999, 206, 57–72. [Google Scholar] [CrossRef]
- Teuber, L.R.; Albertsen, M.C.; Barnes, D.K.; Heichel, G.H. Structure of floral nectaries of alfalfa (Medicago sativa L.) in relation to nectar production. Am. J. Bot. 1980, 67, 433–439. [Google Scholar] [CrossRef]
- Murrell, D.C.; Shuel, R.W.; Tomes, D.T. Nectar production and floral characteristics in birdsfoot trefoil (Lotus corniculatus L.). Can. J. Plant Sci. 1982, 62, 361–371. [Google Scholar] [CrossRef] [Green Version]
- Fourquin, C.; Primo, A.; Martínez-Fernández, I.; Huet-Trujillo, E.; Ferrándiz, C. The CRC orthologue from Pisum sativum shows conserved functions in carpel morphogenesis and vascular development. Ann. Bot. 2014, 114, 1535–1544. [Google Scholar] [CrossRef] [Green Version]
- Corbet, S.A.; Bee, J.; Dasmahapatra, K.; Gale, S.; Gorringe, E.; La Ferla, B.; Moorhouse, T.; Trevail, A.; Van Bergen, Y.; Vorontsova, M. Native or exotic? Double or single? Evaluating plants for pollinator-friendly gardens. Ann. Bot. 2001, 87, 219–232. [Google Scholar] [CrossRef] [Green Version]
- Rozov, S.M.; Gorel, F.L.; Kosterin, O.E.; Berdnikov, V.A. A new homeotic gene, biv, affects flower and inflorescence structures, and displays linkage with d. Pisum Genet. 1997, 29, 24–25. [Google Scholar]
- Couzigou, J.M.; Zhukov, V.; Mondy, S.; Abu el Heba, G.; Cosson, V.; Ellis, T.H.N.; Ambrose, M.; Wen, J.; Tadege, M.; Tikhonovich, I.; et al. NODULE ROOT and COCHLEATA maintain nodule development and are legume orthologs of Arabidopsis BLADE-ON-PETIOLE genes. Plant Cell 2012, 24, 4498–4510. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Luo, Y.; Li, X.; Wang, L.; Xu, S.; Yang, J.; Weng, L.; Sato, S.; Tabata, S.; Ambrose, M.; et al. Genetic control of floral zygomorphy in pea (Pisum sativum L.). Proc. Natl. Acad. Sci. USA 2008, 105, 10414–10419. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.; Hofer, J.; Murfet, I. Stamina pistilloida, the pea ortholog of Fim and UFO, is required for normal development of flowers, inflorescences and leaves. Plant Cell 2001, 13, 31–46. [Google Scholar] [CrossRef] [Green Version]
- Lamprecht, H. Über Blüten- und Komplex-Mutationen bei Pisum. Z. Ind. Abst. Vererb. 1939, 27, 177–185. [Google Scholar]
- Hofer, J.; Turner, L.; Hellens, R.; Ambrose, M.; Matthews, P.; Michael, A.; Ellis, N. UNIFOLIATA regulates leaf and flower morphogenesis in pea. Curr. Biol. 1997, 7, 581–587. [Google Scholar] [CrossRef] [Green Version]
- Saxena, K.B.; Ariyanayagam, R.P.; Reddy, L.J. Genetics of high-selfing trait in pigeonpea. Euphytica 1992, 59, 125–127. [Google Scholar] [CrossRef]
- Yadav, P.; Saxena, K.B.; Hingane, A.; Kumar, C.V.S.; Kandalkar, V.S.; Varshney, R.K.; Saxena, R.K. An “Axiom Cajanus SNP Array” based high density genetic map and QTL mapping for high-selfing flower and seed quality traits in pigeonpea. BMC Genom. 2019, 20, 235. [Google Scholar] [CrossRef] [PubMed]
- Compton, J.A.; Thijsse, G. Further notes on variation within the Japanese species, Wisteria floribunda. Curtis’s Bot. Mag. 2015, 32, 357–373. [Google Scholar] [CrossRef]
- Kuklina, A.G.; Vinogradova, Y.K.; Tkacheva, E.V. About flowering biology of alien species: 3. Caragana arborescens Lam. and C. laeta Kom. Russ. J. Biol. Invasions 2015, 6, 238–251. [Google Scholar] [CrossRef]
- Sinjushin, A.; Ploshinskaya, M.; Maasoumi, A.A.; Mahmoodi, M.; Bagheri, A. Variations in structure among androecia and floral nectaries in the Inverted Repeat-Lacking Clade (Leguminosae: Papilionoideae). Plants 2022, 11, 649. [Google Scholar] [CrossRef]
- PGene. Pisum Gene List. Available online: http://data.jic.ac.uk/pgene/ (accessed on 30 June 2022).
- Trelease, W. The fertilization of our native species of Clitoria and Centrosema. Am. Nat. 1879, 13, 688–692. [Google Scholar] [CrossRef] [Green Version]
- Magne, K.; George, J.; Tornero, A.B.; Broquet, B.; Madueño, F.; Andersen, S.U.; Ratet, P. Lotus japonicus NOOT-BOP-COCH-LIKE1 is essential for nodule, nectary, leaf and flower development. Plant J. 2018, 94, 880–894. [Google Scholar] [CrossRef] [Green Version]
- Couzigou, J.M.; Magne, K.; Mondy, S.; Cosson, V.; Clements, J.; Ratet, P. The legume NOOT-BOP-COCH-LIKE genes are conserved regulators of abscission, a major agronomical trait in cultivated crops. New Phytol. 2016, 209, 228–240. [Google Scholar] [CrossRef] [Green Version]
- Yaxley, J.L.; Jablonski, W.; Reid, J.B. Leaf and flower development in pea (Pisum sativum L.): Mutants cochleata and unifoliata. Ann. Bot. 2001, 88, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Luo, Y.; Cai, Z.; Cao, X.; Hu, X.; Yang, J.; Luo, D. Functional diversity of CYCLOIDEA-like TCP genes in the control of zygomorphic flower development in Lotus japonicus. J. Integr. Plant Biol. 2013, 55, 221–231. [Google Scholar] [CrossRef]
- Citerne, H.L.; Pennington, R.T.; Cronk, Q.C. An apparent reversal in floral symmetry in the legume Cadia is a homeotic transformation. Proc. Natl. Acad. Sci. USA 2006, 103, 12017–12020. [Google Scholar] [CrossRef] [Green Version]
- Cronk, Q.; Ojeda, I. Bird-pollinated flowers in an evolutionary and molecular context. J. Exp. Bot. 2008, 59, 715–727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tucker, S.C. Floral ontogeny in Sophoreae (Leguminosae: Papilionoideae). III. Radial symmetry and random petal aestivation in Cadia purpurea. Am. J. Bot. 2002, 89, 748–757. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, D.; de Queiroz, L.P.; Pennington, R.T.; de Lima, H.C.; Fonty, E.; Wojciechowski, M.F.; Lavin, M. Revisiting the phylogeny of papilionoid legumes: New insights from comprehensively sampled early-branching lineages. Am. J. Bot. 2012, 99, 1991–2013. [Google Scholar] [CrossRef] [PubMed]
- Jabbour, F.; Nadot, S.; Espinosa, F.; Damerval, C. Ranunculacean flower terata: Records, a classification, and some clues about floral developmental genetics and evolution. Flora 2015, 217, 64–74. [Google Scholar] [CrossRef]
- Ancibor, E. Los nectaries florales en Leguminosas-Mimosóideas. Darwiniana 1969, 15, 128–142. [Google Scholar]
- Prenner, G. Floral ontogeny in Lespedeza thunbergii (Leguminosae: Papilionoideae: Desmodieae): Variations from the unidirectional mode of organ formation. J. Plant Res. 2004, 117, 297–302. [Google Scholar] [CrossRef]
- Bowman, J.L.; Smyth, D.R.; Meyerowitz, E.M. Genes directing flower development in Arabidopsis. Plant Cell 1989, 1, 37–52. [Google Scholar] [PubMed] [Green Version]
- Morel, P.; Heijmans, K.; Ament, K.; Chopy, M.; Trehin, C.; Chambrier, P.; Bento, S.R.; Bimbo, A.; Vandenbussche, M. The floral C-lineage genes trigger nectary development in Petunia and Arabidopsis. Plant Cell 2018, 30, 2020–2037. [Google Scholar] [CrossRef] [Green Version]
- Naghiloo, S.; Dadpour, M.R. Floral ontogeny in Wisteria sinensis (Fabaceae: Faboideae: Milletieae) and its systematic implications. Aust. Syst. Bot. 2010, 23, 393–400. [Google Scholar] [CrossRef]
- The Angiosperm Phylogeny Group; Chase, M.W.; Christenhusz, M.J.M.; Fay, M.F.; Byng, J.W.; Judd, W.S.; Soltis, D.E.; Mabberley, D.J.; Sennikov, A.N.; Soltis, P.S.; et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 2016, 181, 1–20. [Google Scholar]
- Zhuang, L.L.; Ambrose, M.; Rameau, C.; Weng, L.; Yang, J.; Hu, X.H.; Luo, D.; Li, X. LATHYROIDES, encoding a WUSCHEL-related homeobox1 transcription factor, controls organ lateral growth, and regulates tendril and dorsal petal identities in garden pea (Pisum sativum L.). Mol. Plant 2012, 5, 1333–1345. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinjushin, A. Phenotypes of Floral Nectaries in Developmental Mutants of Legumes and What They May Tell about Genetic Control of Nectary Formation. Biology 2022, 11, 1530. https://doi.org/10.3390/biology11101530
Sinjushin A. Phenotypes of Floral Nectaries in Developmental Mutants of Legumes and What They May Tell about Genetic Control of Nectary Formation. Biology. 2022; 11(10):1530. https://doi.org/10.3390/biology11101530
Chicago/Turabian StyleSinjushin, Andrey. 2022. "Phenotypes of Floral Nectaries in Developmental Mutants of Legumes and What They May Tell about Genetic Control of Nectary Formation" Biology 11, no. 10: 1530. https://doi.org/10.3390/biology11101530
APA StyleSinjushin, A. (2022). Phenotypes of Floral Nectaries in Developmental Mutants of Legumes and What They May Tell about Genetic Control of Nectary Formation. Biology, 11(10), 1530. https://doi.org/10.3390/biology11101530