Associations among Maturity, Accumulated Workload, Physiological, and Body Composition Factors in Youth Soccer Players: A Comparison between Playing Positions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Approach to the Problem
2.3. Data Measurement and Variables
2.3.1. Anthropometric Measurements
2.3.2. Training Load Calculation
2.3.3. Sprint Test
2.3.4. Aerobic Fitness Status and Heat Rate Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nikolaidis, P.; Ziv, G.; Lidor, R.; Arnon, M. Inter-Individual Variability in Soccer Players of Different Age Groups Playing Different Positions. J. Hum. Kinet. 2014, 40, 213–225. [Google Scholar] [CrossRef] [Green Version]
- Nobari, H.; Vahabidelshad, R.; Pérez-Gómez, J.; Ardigò, L.P. Variations of Training Workload in Micro- and Meso-Cycles Based on Position in Elite Young Soccer Players: A Competition Season Study. Front. Physiol. 2021, 12, 1–10. [Google Scholar] [CrossRef]
- Castillo, D.; Arcos, A.L.; Martínez-Santos, R. Aerobic Endurance Performance Does Not Determine the Professional Career of Elite Youth Soccer Players. J. Sports Med. Phys. Fitness 2018, 58, 392–398. [Google Scholar] [CrossRef]
- Mujika, I.; Vaeyens, R.; Matthys, S.P.J.; Santisteban, J.; Goiriena, J.; Philippaerts, R. The Relative Age Effect in a Professional Football Club Setting. J. Sport. Sci. 2009, 27, 1153–1158. [Google Scholar] [CrossRef]
- Nobari, H.; Oliveira, R.; Clemente, F.M.; Jorge, P.; Pardos-mainer, E.; Paolo, L. Somatotype, Accumulated Workload, and Fitness Parameters in Elite Youth Players: Associations with Playing Position. Children 2021, 8, 375. [Google Scholar] [CrossRef]
- Eston, R.; Reilly, T. Kinanthropometry and Exercise Physiology Laboratory Manual: Tests, Procedures and Data: Volume Two: Physiology; Routledge: London, UK, 2013. [Google Scholar]
- Vaeyens, R.; Malina, R.M.; Janssens, M.; Van Renterghem, B.; Bourgois, J.; Vrijens, J.; Philippaerts, R.M. A Multidisciplinary Selection Model for Youth Soccer: The Ghent Youth Soccer Project. Br. J. Sports Med. 2006, 40, 928–934. [Google Scholar] [CrossRef] [Green Version]
- Meylan, C.; Cronin, J.; Oliver, J.; Hughes, M. Talent Identification in Soccer: The Role of Maturity Status on Physical, Physiological and Technical Characteristics. Int. J. Sport. Sci. Coach. 2010, 5, 571–592. [Google Scholar] [CrossRef]
- Hill, M.; Scott, S.; McGee, D.; Cumming, S.P. Are Relative Age and Biological Ages Associated with Coaches’ Evaluations of Match Performance in Male Academy Soccer Players? Int. J. Sport. Sci. Coach. 2021, 16, 227–235. [Google Scholar] [CrossRef]
- Buchheit, M.; Mendez-Villanueva, A. Effects of Age, Maturity and Body Dimensions on Match Running Performance in Highly Trained under-15 Soccer Players. J. Sports Sci. 2014, 32, 1271–1278. [Google Scholar] [CrossRef]
- Nobari, H.; Silva, A.F.; Clemente, F.M.; Siahkouhian, M.; García-Gordillo, M.Á.; Adsuar, J.C.; Pérez-Gómez, J. Analysis of Fitness Status Variations of Under-16 Soccer Players Over a Season and Their Relationships With Maturational Status and Training Load. Front. Physiol. 2021, 11, 1840. [Google Scholar] [CrossRef]
- Fernández-Galván, L.M.; Jiménez-Reyes, P.; Cuadrado-Peñafiel, V.; Casado, A. Sprint Performance and Mechanical Force-Velocity Profile among Different Maturational Stages in Young Soccer Players. Int. J. Environ. Res. Public Health 2022, 19, 1412. [Google Scholar] [CrossRef]
- Murtagh, C.F.; Brownlee, T.E.; O’Boyle, A.; Morgans, R.; Drust, B.; Erskine, R.M. Importance of Speed and Power in Elite Youth Soccer Depends on Maturation Status. J. Strength Cond. Res. 2018, 32, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Malina, R.M.; Kozieł, S.M.; Králik, M.; Chrzanowska, M.; Suder, A. Prediction of Maturity Offset and Age at Peak Height Velocity in a Longitudinal Series of Boys and Girls. Am. J. Hum. Biol. 2021, 33, e23551. [Google Scholar] [CrossRef]
- Mathisen, G.; Pettersen, S.A. Anthropometric Factors Related to Sprint and Agility Performance in Young Male Soccer Players. Open Access J. Sport. Med. 2015, 6, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Söğüt, M.; Luz, L.G.O.; Kaya, Ö.B.; Altunsoy, K.; Doğan, A.A.; Kirazci, S.; Clemente, F.M.; Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. Age-and Maturity-Related Variations in Morphology, Body Composition, and Motor Fitness among Young Female Tennis Players. Int. J. Environ. Res. Public Health 2019, 16, 2412. [Google Scholar] [CrossRef] [Green Version]
- Bult, H.J.; Barendrecht, M.; Tak, I.J.R. Injury Risk and Injury Burden Are Related to Age Group and Peak Height Velocity Among Talented Male Youth Soccer Players. Orthop. J. Sport. Med. 2018, 6, 2325967118811042. [Google Scholar] [CrossRef]
- Mirwald, R.L.; Baxter-Jones, A.D.; Bailey, D.A.; Beunen, G.P. An Assessment of Maturity from Anthropometric Measurements. Med. Sci. Sport. Exerc. 2002, 34, 689–694. [Google Scholar] [CrossRef]
- Goto, H.; Morris, J.G.; Nevill, M.E. Influence of Biological Maturity on the Match Performance of 8-to 16-Year-Old, Elite, Male, Youth Soccer Players. J. Strength Cond. Res. 2019, 33, 3078–3084. [Google Scholar] [CrossRef] [Green Version]
- Slimani, M.; Znazen, H.; Miarka, B.; Bragazzi, N.L. Maximum Oxygen Uptake of Male Soccer Players According to Their Competitive Level, Playing Position and Age Group: Implication from a Network Meta-Analysis. J. Hum. Kinet. 2019, 66, 233–245. [Google Scholar] [CrossRef] [Green Version]
- Buchheit, M.; Rabbani, A. 30-15 Intermittent Fitness Test vs. Yo-Yo Intermittent Recovery Test Level 1: Relationship and Sensitivity to Training Address for Correspondence. Int. J. Sports Physiol. Perform. 2014, 9, 522–524. [Google Scholar] [CrossRef]
- Bok, D.; Foster, C. Applicability of Field Aerobic Fitness Tests in Soccer: Which One to Choose? J. Funct. Morphol. Kinesiol. 2021, 6, 69. [Google Scholar] [CrossRef]
- Di Salvo, V.; Baron, R.; Tschan, H.; Calderon Montero, F.J.; Bachl, N.; Pigozzi, F. Performance Characteristics According to Playing Position in Elite Soccer. Int. J. Sports Med. 2007, 28, 222–227. [Google Scholar] [CrossRef]
- Fitzpatrick, J.F.; United, N.; Club, F.; Hicks, K.; Hayes, P.R. Dose-Response Relationship Between Training Load and Changes in Aerobic Fitness in Professional Youth Soccer Players. Int. J. Sports Physiol. Perform. 2018, 13, 1365–1370. [Google Scholar] [CrossRef]
- Asadi, A.; Ramirez-Campillo, R.; Arazi, H.; Sáez de Villarreal, E. The Effects of Maturation on Jumping Ability and Sprint Adaptations to Plyometric Training in Youth Soccer Players. J. Sports Sci. 2018, 36, 2405–2411. [Google Scholar] [CrossRef]
- Faude, O.; Koch, T.; Meyer, T. Straight Sprinting Is the Most Frequent Action in Goal Situations in Professional Football. J. Sports Sci. 2012, 30, 625–631. [Google Scholar] [CrossRef]
- Clemente, F.M.; Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. Dose-Response Relationship Between External Load Variables, Body Composition, and Fitness Variables in Professional Soccer Players. Front. Psychol. 2019, 10, 443. [Google Scholar] [CrossRef]
- Clemente, F.M.; Silva, A.F.; Alves, A.R.; Nikolaidis, P.T.; Ramirez-Campillo, R.; Lima, R.; Söğüt, M.; Rosemann, T.; Knechtle, B. Variations of Estimated Maximal Aerobic Speed in Children Soccer Players and Its Associations with the Accumulated Training Load: Comparisons between Non, Low and High Responders. Physiol. Behav. 2020, 224, 113030. [Google Scholar] [CrossRef]
- King, M.; Ball, D.; Weston, M.; McCunn, R.; Gibson, N. Initial Fitness, Maturity Status, and Total Training Explain Small and Inconsistent Proportions of the Variance in Physical Development of Adolescent Footballers across One Season. Res. Sport. Med. 2022, 30, 283–294. [Google Scholar] [CrossRef]
- Francini, L.; Rampinini, E.; Bosio, A.; Connolly, D.; Carlomagno, D.; Castagna, C. Association between Match Activity, Endurance Levels and Maturity in Youth Football Players. Int. J. Sports Med. 2019, 40, 576–584. [Google Scholar] [CrossRef]
- Kumar, N.T.A.; Oliver, J.L.; Lloyd, R.S.; Pedley, J.S.; Radnor, J.M. On Muscle-Tendon and Neuromuscular Adaptations. Sports 2021, 9, 59. [Google Scholar]
- Nobari, H.; Alves, A.R.; Clemente, F.M.; Pérez-Gómez, J.; Clark, C.C.T.; Granacher, U.; Zouhal, H. Associations Between Variations in Accumulated Workload and Physiological Variables in Young Male Soccer Players Over the Course of a Season. Front. Physiol. 2021, 12, 638180. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G* Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Nobari, H.; Tubagi Polito, L.F.; Clemente, F.M.; Pérez-Gómez, J.; Ahmadi, M.; Garcia-Gordillo, M.Á.; Silva, A.F.; Adsuar, J.C. Relationships Between Training Workload Parameters with Variations in Anaerobic Power and Change of Direction Status in Elite Youth Soccer Players. Int. J. Environ. Res. Public Health 2020, 17, 7934. [Google Scholar] [CrossRef]
- Nobari, H.; Gholizadeh, R.; Martins, A.D.; Badicu, G.; Oliveira, R. In-Season Quantification and Relationship of External and Internal Intensity, Sleep Quality, and Psychological or Physical Stressors of Semi-Professional Soccer Players. Biology 2022, 11, 467. [Google Scholar] [CrossRef]
- Norton, K.; Olds, T. Anthropometrica: A Textbook of Body Measurement for Sports and Health Courses; UNSW Press: Sydney, NSW, Australia, 1996. [Google Scholar]
- Arazi, H.; Mirzaei, B.; Nobari, H. Anthropometric Profile, Body Composition and Somatotyping of National Iranian Cross-Country Runners. Turkish J. Sport Exerc. 2015, 17, 35. [Google Scholar] [CrossRef]
- Nobari, H.; Aquino, R.; Clemente, F.M.; Khalafi, M.; Adsuar, J.C.; Pérez-Gómez, J. Description of Acute and Chronic Load, Training Monotony and Strain over a Season and Its Relationships with Well-Being Status: A Study in Elite under-16 Soccer Players. Physiol. Behav. 2020, 225, 113117. [Google Scholar] [CrossRef]
- Jackson, A.S.; Pollock, M.L. Generalized Equations for Predicting Body Density of Men. Br. J. Nutr. 1978, 40, 497–504. [Google Scholar] [CrossRef] [Green Version]
- Foster, C.; Florhaug, J.A.; Franklin, J.; Gottschall, L.; Hrovatin, L.A.; Parker, S.; Doleshal, P.; Dodge, C. A New Approach to Monitoring Exercise Training. J. Strength Cond. Res. 2001, 15, 109–115. [Google Scholar] [CrossRef]
- Foster, C.; Hector, L.L.; Welsh, R.; Schrager, M.; Green, M.A.; Snyder, A.C. Effects of Specific versus Cross-Training on Running Performance. Eur. J. Appl. Physiol. Occup. Physiol. 1995, 70, 367–372. [Google Scholar] [CrossRef]
- Malone, J.J.; Di Michele, R.; Morgans, R.; Burgess, D.; Morton, J.P.; Drust, B. Seasonal Training-Load Quantification in Elite English Premier League Soccer Players. Int. J. Sports Physiol. Perform. 2015, 10, 489–497. [Google Scholar] [CrossRef] [Green Version]
- Mirkov, D.; Nedeljkovic, A.; Kukolj, M.; Ugarkovic, D.; Jaric, S. Evaluation of the Reliability of Soccer-Specific Field Tests. J. Strength Cond. Res. 2008, 22, 1046–1050. [Google Scholar] [CrossRef]
- Buchheit, M. The 30-15 Intermittent Fitness Test: 10 Year Review. Myorobie J. 2010, 1, 278. [Google Scholar]
- Nobari, H.; Cholewa, J.M.; Castillo-Rodríguez, A.; Kargarfard, M.; Pérez-Gómez, J. Effects of Chronic Betaine Supplementation on Performance in Professional Young Soccer Players during a Competitive Season: A Double Blind, Randomized, Placebo-Controlled Trial. J. Int. Soc. Sports Nutr. 2021, 18, 1–12. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, K.D.; Glass, G.V.; Hopkins, B.R. Basic Statistics for the Behavioral Sciences; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1987. [Google Scholar]
- Eskandarifard, E.; Nobari, H.; Clemente, F.M.; Silva, R.; Clark, C.C.T.; Sarmento, H.; Figueiredo, A.J. The Influence of Maturation, Fitness, and Hormonal Indices on Minutes Played in Elite Youth Soccer Players: A Cross-Sectional Study. BMC Sports Sci. Med. Rehabil. 2022, 14, 89. [Google Scholar] [CrossRef]
- Bangsbo, J.; Iaia, F.M.; Krustrup, P. Metabolic Response and Fatigue in Soccer. Int. J. Sports Physiol. Perform. 2007, 2, 111–127. [Google Scholar] [CrossRef] [Green Version]
- Malina, R.; Coelho-E-Silva, M.J.; Figueiredo, A.J. Growth and Maturity Status of Youth Players. In Science and Soccer: Developing Elite Performers; Routledge: Abingdon-on-Thames, UK, 2013; pp. 295–314. [Google Scholar]
- Malina, R.M.; Bouchard, C.; Bar-Or, O. Growth, Maturation and Physical Activity, 2nd ed.; Human Kinetics: Champaign, IL, USA, 2004. [Google Scholar]
- Beato, M.; de Keijzer, K.L. The Inter-Unit and Inter-Model Reliability of GNSS STATSports Apex and Viper Units in Measuring Peak Speed over 5, 10, 15, 20 and 30 Meters. Biol. Sport 2019, 36, 317–321. [Google Scholar] [CrossRef]
- Malý, T.; Zahálka, F.; Hráský, P.; Mala, L.; Ižovská, J.; Bujnovský, D.; Dragijský, M.; Mihal, J. Age-Related Differences in Linear Sprint and Power Characteristics in Youth Elite Soccer Players. J. Phys. Educ. Sport 2015, 15, 857–863. [Google Scholar] [CrossRef]
- Sleivert, G.; Taingahue, M. The Relationship between Maximal Jump-Squat Power and Sprint Acceleration in Athletes. Eur. J. Appl. Physiol. 2004, 91, 46–52. [Google Scholar] [CrossRef]
- Mero, A.; Jaakkola, L.; Komi, P. V Relationships between Muscle Fibre Characteristics and Physical Performance Capacity in Trained Athletic Boys. J. Sports Sci. 1991, 9, 161–171. [Google Scholar] [CrossRef]
- González-Fernández, F.T.; Adalid-Leivad, J.J.; Baena-Moralese, S.; Falces-Prieto, M. Resistencia Intermitente y Rendimiento En El Yo-Yo Test En Jóvenes Jugadores Defútbol y Aplicación de La Percepción Subjetiva Del Esfuerzo En El Control Delentrenamiento. Rev. Andaluza Med. Deport. 2020, 13, 205–209. [Google Scholar] [CrossRef]
- Dimitrova, D.; Mladenov, L.; Nikolova, A. Aerobic Capacity of Judo Players Scaled for Differences in Body Size. J. Appl. Sport. Sci. 2019, 2, 22–36. [Google Scholar] [CrossRef]
- Maciejczyk, M.; Wiȩcek, M.; Szymura, J.; Szyguła, Z.; Wiecha, S.; Cempla, J. The Influence of Increased Body Fat or Lean Body Mass on Aerobic Performance. PLoS ONE 2014, 9, e95797. [Google Scholar] [CrossRef]
- Welsman, J.; Armstrong, N. Interpreting Aerobic Fitness in Youth: The Fallacy of Ratio Scaling. Pediatr. Exerc. Sci. 2019, 31, 184–190. [Google Scholar] [CrossRef] [Green Version]
- Malina, R.M.; Rogol, A.D.; Cumming, S.P.; Coelho e Silva, M.J.; Figueiredo, A.J. Biological Maturation of Youth Athletes: Assessment and Implications. Br. J. Sports Med. 2015, 49, 852–859. [Google Scholar] [CrossRef] [Green Version]
- Lovell, R.; Fransen, J.; Ryan, R.; Massard, T.; Cross, R.; Eggers, T.; Duffield, R. Biological Maturation and Match Running Performance: A National Football (Soccer) Federation Perspective. J. Sci. Med. Sport 2019, 22, 1139–1145. [Google Scholar] [CrossRef]
- Philippaerts, R.M.; Vaeyens, R.; Janssens, M.; Van Renterghem, B.; Matthys, D.; Craen, R.; Bourgois, J.; Vrijens, J.; Beunen, G.; Malina, R.M. The Relationship between Peak Height Velocity and Physical Performance in Youth Soccer Players. J. Sports Sci. 2006, 24, 221–230. [Google Scholar] [CrossRef]
- Sarmento, H.; Anguera, M.T.; Pereira, A.; Araújo, D. Talent Identification and Development in Male Football: A Systematic Review. Sport. Med. 2018, 48, 907–931. [Google Scholar] [CrossRef]
- Figueiredo, A.J.; Coelho-E-Silva, M.J.; Sarmento, H.; Moya, J.; Malina, R.M. Adolescent Characteristics of Youth Soccer Players: Do They Vary with Playing Status in Young Adulthood? Res. Sport. Med. 2020, 28, 72–83. [Google Scholar] [CrossRef]
- Banica, T.; Vandewalle, S.; Zmierczak, H.G.; Goemaere, S.; De Buyser, S.; Fiers, T.; Kaufman, J.; Schepper, J.D.; Lapauw, B. The Relationship between Circulating Hormone Levels, Bone Turnover Markers and Skeletal Development in Healthy Boys Differs According to Maturation Stage. Bone 2022, 158, 116368. [Google Scholar] [CrossRef]
- Masocha, V.; Katanha, A. Anthropometry and Somatotype Characteristics of Male Provincial Youth League Soccer Players in Zimbabwe According to Playing Positions. Int. J. Sci. Res. 2014, 3, 554–557. [Google Scholar] [CrossRef]
- Bujnovsky, D.; Maly, T.; Ford, K.R.; Sugimoto, D.; Kunzmann, E.; Hank, M.; Zahalka, F. Physical Fitness Characteristics of High-Level Youth Football Players: Influence of Playing Position. Sports 2019, 7, 46. [Google Scholar] [CrossRef]
Variables | Mean ± SD |
---|---|
Height (cm) | 165.8 ± 11.6 |
Body mass (kg) | 50.7 ± 7.5 |
Age (years) | 13.2 ± 0.1 |
VO2max (mL.kg−1.min−1) | 44.2 ± 2.8 |
BF (%) | 20.7 ± 4.9 |
BMI (kg/m2) | 15.2 ± 1.6 |
HRmax (bpm) | 202.7 ± 10.7 |
RPE (A.U.) | 4.0 ± 0.1 |
s-RPE (A.U.) | 301.2 ± 73.02 |
All-training duration (min) | 7354 ± 1453 |
Average-training duration (min) | 75.81 ± 14.98 |
AW (A.U.) | 1285 ± 68.1 |
Variables | CD (Mean ± SD) | CM (Mean ± SD) | WD (Mean ± SD) | WM (Mean ± SD) | ST (Mean ± SD) | p (ES) | Pairwise Comparisons (p) | ES |
---|---|---|---|---|---|---|---|---|
Age (years) | 13.33 ± 0.17 | 13.13 ± 0.34 | 13.28 ± 0.15 | 13.26 ± 0.13 | 13.30 ± 0.20 | 0.885 (0.96) | CD vs. CM: 0.514 CD vs. WD: 0.742 CD vs. WM: 0.650 CD vs. ST: 0.971 CM vs. WD: 0.657 CM vs. WM: 0.650 CM vs. ST: 0.542 WD vs. WM: >0.999 WD vs. ST: >0.999 WM vs. ST: 0.821 | CD vs. CM: 0.74 medium CD vs. WD: 0.31 small CD vs. WM: 0.17 trivial CD vs. ST: 0.16 trivial CM vs. WD: 0.57 small CM vs. WM: 0.53 small CM vs. ST: 0.58 small WD vs. WM: 0.14 trivial WD vs. ST: 0.11 trivial WM vs. ST: 0.25 small |
Weight (kg) | 55.75 ± 5.56 | 45.00 ± 7.70 | 51.25 ± 5.18 | 45.40 ± 3.84 | 59.67 ± 5.50 | 0.032 (0.43) | CD vs. CM: 0.142 CD vs. WD: 0.342 CD vs. WM: 0.039 CD vs. ST: 0.457 CM vs. WD: 0.342 CM vs. WM: 0.851 CM vs. ST: 0.057 WD vs. WM: 0.079 WD vs. ST: 0.228 WM vs. ST: 0.035 | CD vs. CM: 1.60 large CD vs. WD: 0.83 medium CD vs. WM: 2.22 very large CD vs. ST: 0.70 medium CM vs. WD: 0.95 medium CM vs. WM: 0.06 trivial CM vs. ST: 2.12 very large WD vs. WM: 1.30 large WD vs. S: 1.58 large WM vs. ST: 3.19 very large |
Height (cm) | 175.5 ± 3.69 | 156.0 ± 5.59 | 168.5 ± 12.12 | 156.0 ± 6.04 | 178.7 ± 7.09 | 0.016 (2.16) | CD vs. CM: 0.028 CD vs. WD: 0.400 CD vs. WM: 0.015 CD vs. ST: 0.457 CM vs. WD: 0.228 CM vs. WM: >0.999 CM vs. ST: 0.057 WD vs. WM: 0.190 WD vs. ST: 0.228 WM vs. ST: 0.035 | CD vs. CM: 4.11 very large CD vs. WD: 0.78 medium CD vs. WM: 3.77 very large CD vs. ST: 0.60 medium CM vs. WD: 1.32 large CM vs. WM: 0.00 trivial CM vs. ST: 3.63 very large WD vs. WM: 1.36 large WD vs. ST: 0.98 moderate WM vs. ST: 3.54 very large |
Seated height (cm) | 91.25 ± 5.73 | 86.50 ± 6.45 | 91.00 ± 6.48 | 81.00 ± 2.23 | 92.33 ± 2.51 | 0.039 (1.64) | CD vs. CM: 0.342 CD vs. WD: 0.971 CD vs. WM: 0.023 CD vs. ST: 0.942 CM vs. WD: 0.400 CM vs. WM: 0.031 CM vs. ST: 0.257 WD vs. WM: 0.023 WD vs. ST: >0.999 WM vs. ST: 0.017 | CD vs. CM: 0.77 medium CD vs. WD: 0.04 trivial CD vs. WM: 2.48 very large CD vs. ST: 0.22 small CM vs. WD: 0.69 medium CM vs. WM: 1.20 medium CM vs. ST: 1.11 medium WD vs. WM: 2.19 very large WD vs. ST: 0.25 small WM vs. ST: 4.85 very large |
PHV (age) | 13.45 ± 0.73 | 13.40 ± 0.65 | 13.10 ± 0.36 | 13.04 ± 0.39 | 13.42 ± 0.55 | 0.763 (0.81) | CD vs. CM: >0.999 CD vs. WD: 0.885 CD vs. WM: 0.603 CD vs. ST: 0.857 CM vs. WD: 0.685 CM vs. WM: 0.412 CM vs. ST: 0.857 WD vs. WM: 0.904 WD vs. ST: 0.628 WM vs. ST: 0.250 | CD vs. CM: 0.07 trivial CD vs. WD: 0.60 medium CD vs. WM: 0.73 medium CD vs. ST: 0.04 trivial CM vs. WD: 0.57 small CM vs. WM: 0.69 medium CM vs. ST: 0.03 trivial WD vs. WM: 0.15 trivial WD vs. ST: 0.71 medium WM vs. ST: 0.84 medium |
Maturity (years) | −0.13 ± 0.57 | −0.26 ± 0.82 | 0.18 ± 0.31 | 0.20 ± 0.38 | −0.13 ± 0.76 | 0.898 (0.98) | CD vs. CM: >0.999 CD vs. WD: 0.742 CD vs. WM: 0.730 CD vs. ST: >0.999 CM vs. WD: 0.685 CM vs. WM: 0.412 CM vs. ST: 0.857 WD vs. WM: 0.730 WD vs. ST: 0.628 WM vs. ST: 0.785 | CD vs. CM: 0.18 trivial CD vs. WD: 0.67 medium CD vs. WM: 0.70 medium CD vs. ST: 0.00 trivial CM vs. WD: 0.71 medium CM vs. WM: 0.75 medium CM vs. ST: 0.16 trivial WD vs. WM: 0.05 trivial WD vs. ST: 0.57 small WM vs. ST: 0.61 medium |
Weight/height ratio | 31.93 ± 1.40 | 27.70 ± 2.55 | 23.60 ± 16.06 | 31.16 ± 3.74 | 30.73 ± 0.90 | 0.315 (0.45) | CD vs. CM: 0.028 CD vs. WD: 0.485 CD vs. WM: >0.999 CD vs. ST: 0.400 CM vs. WD: 0.685 CM vs. WM: 0.285 CM vs. ST: 0.114 WD vs. WM: 0.904 WD vs. ST: 0.685 WM vs. ST: 0.785 | CD vs. CM: 2.05 very large CD vs. WD: 0.73 medium CD vs. WM: 0.25 small CD vs. ST: 0.98 medium CM vs. WD: 0.35 small CM vs. WM: 1.05 medium CM vs. ST: 1.47 large WD vs. WM: 0.69 moderate WD vs. ST: 0.57 small WM vs. ST: 0.13 trivial |
Height/weight ratio | 44.65 ± 0.61 | 45.28 ± 1.57 | 34.05 ± 22.81 | 44.98 ± 2.96 | 43.20 ± 0.88 | 0.449 (0.29) | CD vs. CM: 0.285 CD vs. WD: 0.485 CD vs. WM: 0.674 CD vs. ST: 0.171 CM vs. WD: 0.685 CM vs. WM: >0.999 CM vs. ST: 0.114 WD vs. WM: 0.611 WD vs. ST: 0.714 WM vs. ST: 0.392 | CD vs. CM: 0.52 small CD vs. WD: 0.65 medium CD vs. WM: 0.14 trivial CD vs. ST: 1.98 large CM vs. WD: 0.69 medium CM vs. WM: 0.12 trivial CM vs. ST: 1.55 large WD vs. WM: 0.72 medium WD vs. ST: 0.51 small WM vs. ST: 0.72 medium |
Triceps (mm) | 9.87 ± 2.39 | 11.38 ± 3.35 | 9.00 ± 2.16 | 13.30 ± 4.29 | 10.83 ± 3.25 | 0.688 (0.72) | CD vs. CM: >0.999 CD vs. WD: >0.999 CD vs. WM: 0.166 CD vs. ST: 0.571 CM vs. WD: 0.628 CM vs. WM: 0.976 CM vs. ST: 0.628 WD vs. WM: 0.254 WD vs. ST: 0.771 WM vs. ST: 0.392 | CD vs. CM: 0.51 small CD vs. WD: 0.38 small CD vs. WM: 0.95 medium CD vs. ST: 0.34 small CM vs. WD: 0.84 medium CM vs. WM: 0.49 small CM vs. ST: 0.16 trivial WD vs. WM: 1.21 large WD vs. ST: 0.69 medium WM vs. ST: 0.62 medium |
Subscapular (mm) | 9.37 ± 1.25 | 10.25 ± 3.12 | 10.50 ± 3.10 | 14.40 ± 3.73 | 11.67 ± 0.57 | 0.178 (0.84) | CD vs. CM: 0.657 CD vs. WD: 0.371 CD vs. WM: 0.039 CD vs. ST: 0.085 CM vs. WD: 0.914 CM vs. WM: 0.127 CM vs. ST: 0.428 WD vs. WM: 0.317 WD vs. ST: 0.971 WM vs. ST: 0.625 | CD vs. CM: 0.37 small CD vs. WD: 0.47 small CD vs. WM: 1.71 large CD vs. ST: 2.22 very large CM vs. WD: 0.08 trivial CM vs. WM: 1.19 medium CM vs. ST: 0.58 small WD vs. WM: 1.12 moderate WD vs. ST: 0.48 small WM vs. ST: 0.89 medium |
BF % | 17.75 ± 1.15 | 21.57 ± 7.16 | 18.44 ± 2.37 | 24.72 ± 5.68 | 20.36 ± 3.79 | 0.385 (0.20) | CD vs. CM: >0.999 CD vs. WD: 0.371 CD vs. WM: 0.087 CD vs. ST: 0.628 CM vs. WD: 0.885 CM vs. WM: 0.682 CM vs. ST: 0.914 WD vs. WM: 0.095 WD vs. ST: 0.400 WM vs. ST: 0.250 | CD vs. CM: 0.74 medium CD vs. WD: 0.37 small CD vs. WM: 1.59 large CD vs. ST: 1.02 medium CM vs. WD: 0.58 small CM vs. WM: 0.49 small CM vs. ST: 0.20 small WD vs. WM: 1.37 large WD vs. ST: 0.63 medium WM vs. ST: 0.85 medium |
AW-first half (A.U.) | 1335 ± 57.39 | 1411 ± 128.0 | 1335 ± 59.95 | 1434 ± 69.45 | 1404 ± 8.44 | 0.210 (0.75) | CD vs. CM: 0.485 CD vs. WD: 0.885 CD vs. WM: 0.063 CD vs. ST: 0.400 CM vs. WD: 0.485 CM vs. WM: 0.904 CM vs. ST: >0.999 WD vs. WM: 0.111 WD vs. ST: 0.057 WM vs. ST: 0.392 | CD vs. CM: 0.76 medium CD vs. WD: 0.00 trivial CD vs. WM: 1.53 trivial CD vs. ST: 1.54 large CM vs. WD: 0.76 medium CM vs. WM: 0.23 trivial CM vs. ST: 0.07 trivial WD vs. WM: 1.51 large WD vs. ST: 1.47 large WM vs. ST: 0.52 small |
AW-second half (A.U.) | 1168 ± 58.49 | 1169 ± 101.9 | 1214 ± 62.22 | 1176 ± 66.71 | 1208 ± 61.64 | 0.904 (0.99) | CD vs. CM: 0.885 CD vs. WD: 0.685 CD vs. WM: 0.555 CD vs. ST: 0.400 CM vs. WD: 0.885 CM vs. WM: >0.999 CM vs. ST: 0.857 WD vs. WM: 0.555 WD vs. ST: >0.999 WM vs. ST: >0.999 | CD vs. CM: 0.01 trivial CD vs. WD: 0.76 medium CD vs. WM: 0.12 trivial CD vs. ST: 0.66 medium CM vs. WD: 0.53 small CM vs. WM: 0.084 trivial CM vs. ST: 0.44 trivial WD vs. WM: 0.58 small WD vs. ST: 0.09 medium WM vs. ST: 0.49 small |
10 m (s) | 1.16 ± 0.04 | 1.35 ± 0.07 | 1.26 ± 0.01 | 1.35 ± 0.08 | 1.29 ± 0.07 | 0.025 (1.90) | CD vs. CM: 0.028 CD vs. WD: 0.028 CD vs. WM: 0.031 CD vs. ST: 0.085 CM vs. WD: 0.057 CM vs. WM: 0.904 CM vs. ST: 0.628 WD vs. WM: 0.190 WD vs. ST: 0.628 WM vs. ST: 0.464 | CD vs. CM: 3.33 very large CD vs. WD: 3.43 very large CD vs. WM: 2.88 very large CD vs. ST: 2.40 very large CM vs. WD: 1.80 large CM vs. WM: 0.00 trivial CM vs. ST: 0.85 medium WD vs. WM: 1.48 large WD vs. ST: 0.66 medium WM vs. ST: 0.78 medium |
30 m (s) | 3.48 ± 0.03 | 3.85 ± 0.16 | 3.58 ± 0.07 | 3.85 ± 0.19 | 3.60 ± 0.17 | 0.017 (2.15) | CD vs. CM: 0.028 CD vs. WD: 0.057 CD vs. WM: 0.02 CD vs. ST: 0.285 CM vs. WD: 0.057 CM vs. WM: 0.904 CM vs. ST: 0.114 WD vs. WM: 0.119 WD vs. ST: >0.999 WM vs. ST: 0.142 | CD vs. CM: 3.21 very large CD vs. WD: 1.85 large CD vs. WM: 2.55 very large CD vs. ST: 1.09 medium CM vs. WD: 2.18 very large CM vs. WM: 0.00 trivial CM vs. ST: 1.52 large WD vs. WM: 1.79 large WD vs. ST: 0.16 trivial WM vs. ST: 1.36 large |
V IFT (km/h) | 17.00 ± 1.58 | 16.00 ± 0.91 | 17.00 ± 1.58 | 16.10 ± 1.81 | 16.00 ± 1.73 | 0.760 (0.81) | CD vs. CM: 0.457 CD vs. WD: >0.999 CD vs. WM: 0.539 CD vs. ST: 0.571 CM vs. WD: 0.457 CM vs. WM: 0.754 CM vs. ST: 0.914 WD vs. WM: 0.539 WD vs. ST: 0.571 WM vs. ST: >0.999 | CD vs. CM: 0.77 medium CD vs. WD: 0.00 trivial CD vs. WM: 0.52 small CD vs. ST: 0.60 medium CM vs. WD: 0.77 medium CM vs. WM: 0.06 trivial CM vs. ST: 0.00 trivial WD vs. WM: 0.52 small WD vs. ST: 0.60 medium WM vs. ST: 0.05 trivial |
VO2max (mL.kg−1 min−1) | 45.25 ± 2.98 | 43.08 ± 1.56 | 45.40 ± 2.90 | 43.96 ± 3.47 | 43.27 ± 3.40 | 0.700 (0.74) | CD vs. CM: 0.485 CD vs. WD: >0.999 CD vs. WM: 0.730 CD vs. ST: 0.457 CM vs. WD: 0.485 CM vs. WM: 0.730 CM vs. ST: 0.628 WD vs. WM: 0.730 WD vs. ST: 0.228 WM vs. ST: 0.785 | CD vs. CM: 0.91 medium CD vs. WD: 0.05 trivial CD vs. WM: 0.39 small CD vs. ST: 0.62 medium CM vs. WD: 0.99 medium CM vs. WM: 0.31 small CM vs. ST: 0.07 trivial WD vs. WM: 0.44 small WD vs. ST: 0.68 medium WM vs. ST: 0.20 small |
HRmax (bpm) | 206.0 ± 5.77 | 205.0 ± 8.40 | 200.8 ± 11.79 | 199.6 ± 17.95 | 202.7 ± 4.72 | 0.959 (1.07) | CD vs. CM: >0.999 CD vs. WD: 0.828 CD vs. WM: 0.904 CD vs. ST: 0.714 CM vs. WD: 0.828 CM vs. WM: >0.999 CM vs. ST: 0.714 WD vs. WM: 0.507 WD vs. ST: 0.685 WM vs. ST: 0.785 | CD vs. CM: 0.13 trivial CD vs. WD: 0.56 small CD vs. WM: 0.45 small CD vs. ST: 0.61 medium CM vs. WD: 0.41 small CM vs. WM: 0.36 small CM vs. ST: 0.32 small WD vs. WM: 0.07 trivial WD vs. ST: 0.19 trivial WM vs. ST: 0.20 small |
Variables | Maturity | PHV | AW1 | AW2 | 10 m | 30 m | VO2max | HRmax | BF% | RPE | TD-Top | TD-Mean | s-RPE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
maturity | 1.000 | ||||||||||||
PHV | −0.190 | 1.000 | |||||||||||
AW1 | −0.159 | 0.361 | 1.000 | ||||||||||
AW2 | −0.215 | 0.290 | 0.551 | 1.000 | |||||||||
10m | −0.337 | 0.351 | 0.084 | −0.104 | 1.000 | ||||||||
30m | −0.031 | 0.231 | 0.173 | −0.121 | 0.769 | 1.000 | |||||||
VO2max | 0.266 | −0.210 | −0.480 | −0.419 | −0.081 | −0.054 | 1.000 | ||||||
HRmax | 0.112 | −0.110 | −0.389 | −0.236 | 0.075 | −0.021 | 0.495 | 1.000 | |||||
BF% | −0.302 | 0.271 | 0.344 | 0.056 | 0.399 | 0.241 | −0.230 | −0.469 | 1.000 | ||||
RPE | 0.431 | −0.270 | 0.059 | −0.072 | −0.109 | 0.055 | 0.238 | −0.259 | 0.417 | 1.000 | |||
TD-top | −0.072 | 0.030 | −0.066 | −0.194 | −0.098 | −0.092 | 0.429 | −0.204 | 0.154 | 0.294 | 1.000 | ||
TD-mean | −0.072 | 0.030 | −0.066 | −0.194 | −0.098 | −0.092 | 0.429 | −0.204 | 0.154 | 0.294 | 1.000 | 1.000 | |
s-RPE | 0.190 | −0.090 | 0.065 | −0.084 | −0.183 | −0.087 | 0.375 | −0.264 | 0.401 | 0.853 | 0.666 | 0.666 | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nobari, H.; Eken, Ö.; Prieto-González, P.; Brito, J.P.; Oliveira, R. Associations among Maturity, Accumulated Workload, Physiological, and Body Composition Factors in Youth Soccer Players: A Comparison between Playing Positions. Biology 2022, 11, 1605. https://doi.org/10.3390/biology11111605
Nobari H, Eken Ö, Prieto-González P, Brito JP, Oliveira R. Associations among Maturity, Accumulated Workload, Physiological, and Body Composition Factors in Youth Soccer Players: A Comparison between Playing Positions. Biology. 2022; 11(11):1605. https://doi.org/10.3390/biology11111605
Chicago/Turabian StyleNobari, Hadi, Özgür Eken, Pablo Prieto-González, João Paulo Brito, and Rafael Oliveira. 2022. "Associations among Maturity, Accumulated Workload, Physiological, and Body Composition Factors in Youth Soccer Players: A Comparison between Playing Positions" Biology 11, no. 11: 1605. https://doi.org/10.3390/biology11111605
APA StyleNobari, H., Eken, Ö., Prieto-González, P., Brito, J. P., & Oliveira, R. (2022). Associations among Maturity, Accumulated Workload, Physiological, and Body Composition Factors in Youth Soccer Players: A Comparison between Playing Positions. Biology, 11(11), 1605. https://doi.org/10.3390/biology11111605