The Influence of Movement on the Cerebrospinal Fluid Pressure of the American Alligator (Alligator mississippiensis)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Live Animals
2.2. Treadmill and Treadmill Training
2.3. Surgery and Data Collection
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olstad, E.W.; Ringers, C.; Hansen, J.N.; Wens, A.; Brandt, C.; Wachten, D.; Yaksi, E.; Jurisch-Yaksi, N. Ciliary beating compartmentalizes cerebrospinal fluid flow in the brain and regulates ventricular development. Curr. Biol. 2019, 29, 229–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segal, M. Transport of nutrients across the choroid plexus. Microsc. Res. Tech. 2001, 52, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Clarke, E.C.; Stoodley, M.A.; Bilston, L.E. Changes in temporal flow characteristics of CSF in Chiari malformation Type 1 with and without syringomyelia: Implications for theory of syrinx development. J. Neurosurg. 2013, 118, 1135–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iliff, J.J.; Wang, M.; Liao, Y.; Plogg, B.A.; Peng, W.; Gundersen, G.A.; Benveniste, H.; Vates, G.E.; Deane, R.; Goldman, S.A.; et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Trans. Med. 2012, 4, 147ra111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Rocco, C.; Pettorossi, V.; Caldarelli, M.; Mancinelli, R.; Velardi, F. Communicating hydrocephalus induced by mechanically increased amplitude of the interventricular cerebrospinal fluid pressure: Experimental studies. Exp. Neurol. 1978, 59, 40–52. [Google Scholar] [CrossRef]
- Qvarlander, S.; Lundkvist, B.; Koskinen, L.O.D.; Malm, J.; Eklund, A. Pulsatility in CSF dynamics: Pathophysiology of idiopathic normal pressure hydrocephalus. J. Neurol. Neurosurg. Psychiatry 2013, 84, 735–741. [Google Scholar] [CrossRef]
- Jacobsson, J.; Qvarlander, S.; Eklund, A.; Malm, J. Comparison of the CSF dynamics between patients with idiopathic normal pressure hydrocephalus and healthy volunteers. J. Neurosur. 2018, 131, 1018–1023. [Google Scholar] [CrossRef] [Green Version]
- Geregele, L.; Baledent, O.; Manet, R.; Lalou, A.; Barszcz, S.; Kasprowicz, M.; Smielewski, P.; Pickard, J.D.; Czosnyka, M.; Czosnyka, Z. Dynamics of cerebrospinal fluid: From theoretical models to clinical applications. In Biomechanics of the Brain; Miller, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 181–214. [Google Scholar]
- Czosnyka, M.; Pickard, J. Monitoring and interpretation of intracranial pressure. J. Neurol. Neurosurg. Psychiatry 2004, 75, 813–821. [Google Scholar] [CrossRef]
- Vinje, V.; Ringstad, G.; Lindstrøm, E.K.; Valnes, L.M.; Rognes, M.E.; Eide, P.K.; Mardal, K.-A. Respiratory influence on cerebrospinal fluid flow—A computational study based on long-term intracranial pressure measurements. Sci. Rep. 2019, 9, 9732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloomfield, G.; Ridlings, P.; Blocher, C.; Marmarou, A.; Sugerman, H. A proposed relationship between increased intra-abdominal, intrathoracic, and intracranial pressure. Crit. Care Med. 1997, 25, 496–503. [Google Scholar] [CrossRef]
- Guerci, A.D.; Shi, A.Y.; Levin, H.; Tsitlik, J.; Weisfeldt, M.L.; Chandra, N. Transmission of intrathoracic pressure to the intracranial space during cardiopulmonary resuscitation in dogs. Circ. Res. 1985, 56, 20–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dreha-Kulaczewski, S.; Joseph, A.A.; Merboldt, K.D.; Ludwig, H.C.; Gärtner, J.; Frahm, J. Identification of the upward movement of human CSF in vivo and its relation to the brain venous system. J. Neurosci. 2017, 37, 2395–2402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beggs, C.B. Cerebral venous outflow and cerebrospinal fluid dynamics. Veins Lymph. 2014, 3, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Wagshul, M.; Eide, P.; Madsen, J. The pulsating brain: A review of experimental and clinical studies of intracranial pulsatility. Fluids Barriers CNS 2011, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Piper, I.; Miller, J.; Dearden, N.; Leggate, J.; Robertson, I. Systems analysis of cerebrovascular pressure transmission: An observational study in head-injured patients. J. Neurosurg. 1990, 73, 871–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velazquez Sanchez, V.F.; Al Dayri, G.; Tschan, C.A. Long-term telemetric intracranial pressure monitoring for diagnosis and therapy optimisation of idiopathic intracranial hypertension. BMC Neurol. 2021, 21, 343. [Google Scholar] [CrossRef] [PubMed]
- Kiefer, M.; Antes, S.; Leonhardt, S.; Schmitt, M.; Orakcioglu, B.; Sakowitz, O.W.; Eymann, R. Telemetric ICP measurement with the first CE-approved device: Data from animal experiments and initial clinical experiences. Acta Neurochir. Suppl. 2012, 114, 111–117. [Google Scholar] [PubMed]
- Farahmand, D.; Qvarlander, S.; Malm, J.; Wikkelsö, C.; Eklund, A.; Tisell, M. Intracranial pressure in hydrocephalus: Impact of shunt adjustments and body positions. J. Neurol. Neurosur. Psychiatry 2015, 86, 222–228. [Google Scholar] [CrossRef]
- Gao, Y.-R.; Drew, P.J. Effects of voluntary locomotion and Calcitonin gene-related peptide on the dynamics of single dural vessels in awake mice. J. Neurosci. 2016, 36, 2503–2516. [Google Scholar] [CrossRef] [Green Version]
- Norwood, J.N.; Zhang, Q.; Card, D.; Craine, A.; Ryan, T.M.; Drew, P.J. Anatomical basis and physiological role of cerebrospinal fluid transport through the murine cribriform plate. eLife 2019, 8, e44278. [Google Scholar] [CrossRef]
- Starcevic, V.P.; Morrow, B.A.; Farner, L.A.; Keil, L.C.; Severs, W.B. Long-term recording of cerebrospinal fluid pressure in freely behaving rats. Brain Res. 1988, 462, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Eftekhari, S.; Westgate, C.S.J.; Johansen, K.P.; Bruun, S.R.; Jensen, R.H. Long-term monitoring of intracranial pressure in freely-moving rats; impact of different physiological states. Fluids Barriers CNS 2020, 17, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Huo, B.X.; Gao, Y.R.; Drew, P.J. Quantitative separation of arterial and venous cerebral blood volume increases during voluntary locomotion. NeuroImage 2015, 105, 369–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, B.A.; Greer, S.; Cramberg, M. Slithering CSF: Cerebrospinal fluid dynamics in the stationary and moving viper boa, Candoia aspera. Biology 2021, 10, 672. [Google Scholar] [CrossRef]
- Ma, Y.; Tang, W.; Gong, D.-Z.; Li, X.-Y.; Zhang, J.-H.; Sun, J.-H.; Wang, B.; Zhang, Y.; Chen, Y.-X.; Zhang, Z.-H.; et al. The morphology, biomechanics, and physiological function of the suboccipital myodural connections. Sci. Rep. 2021, 11, 8064. [Google Scholar] [CrossRef]
- Jirout, J. Mobility of the thoracic spinal cord under normal conditions. Acta Radiol. Diag. 1963, 1, 729–735. [Google Scholar] [CrossRef]
- Li, C.; Yue, C.; Liu, Z.-C.; Gong, J.; Wei, X.-S.; Yang, H.; Gilmore, C.; Yu, S.-B.; Hack, G.D.; Sui, H.-J. The relationship between myodural bridges, hyperplasia of the suboccipital musculature, and intracranial pressure. PLoS ONE 2022, 17, 0273193. [Google Scholar] [CrossRef]
- Young, B.A.; Adams, J.; Beary, J.M.; Mardal, K.-A.; Schneider, R.; Kondrashova, T. The myodural bridge of the American alligator (Alligator mississippiensis) alters CSF flow. J. Exp. Biol. 2020, 223, jeb230896. [Google Scholar] [CrossRef] [PubMed]
- Young, B.A.; Cramberg, M. Treadmill locomotion in the American alligator (Alligator mississippiensis) produces dynamic changes in intracranial cerebrospinal fluid pressure. Sci. Rep. 2022, 12, 11826. [Google Scholar] [CrossRef]
- Putterill, J.F.; Soley, J.T. Morphology of the gular valve of the Nile crocodile, Crocodylus niloticus (Laurenti, 1768). J. Morph. 2006, 267, 924–939. [Google Scholar] [CrossRef]
- Gatson, B.J.; Goe, A.; Granone, T.D.; Wellehan, J.F. Intramuscular epinephrine results in reduced anesthetic recovery time in American alligators (Alligator mississippiensis) undergoing isoflurane anesthesia. J. Zoo Wild. Med. 2017, 48, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Eatwell, K. Options for analgesia and anaesthesia in reptiles. Practice 2019, 32, 306–311. [Google Scholar] [CrossRef] [Green Version]
- Barfuss, D.; Dantzler, W. Glucose transport in isolated perfused proximal tubules of snake kidney. Am. J. Physiol. 1976, 231, 1716–1728. [Google Scholar] [CrossRef] [PubMed]
- Warren, K. Reptile euthanasia—No easy solution? Pac. Conser. Biol. 2014, 20, 25–27. [Google Scholar] [CrossRef] [Green Version]
- Wright, J.C. Effects of body temperature, mass, and activity on aerobic and anaerobic metabolism in juvenile Crocodylus porosus. Physiol. Zool. 1986, 59, 505–513. [Google Scholar] [CrossRef]
- Lundberg, N. Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr. Scand. 1960, 36, 1–193. [Google Scholar] [CrossRef] [Green Version]
- Nag, D.S.; Sahu, S.; Swain, A.; Kant, S. Intracranial pressure monitoring: Gold standard and recent innovations. World J. Clin. Cases 2019, 7, 1535–1553. [Google Scholar] [CrossRef]
- Smith, M. Monitoring intracranial pressure in traumatic brain injury. Anesth. Analg. 2008, 106, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, A.; Gupta, A.K. Neuromonitoring in the intensive care unit. I. Intracranial pressure and cerebral blood flow monitoring. Intensiv. Care Med. 2007, 33, 1263–1271. [Google Scholar] [CrossRef]
- Zhong, J.; Dujovny, M.; Park, H.K.; Perez, E.; Perlin, A.R.; Diaz, F.G. Advances in ICP monitoring techniques. Neurol. Res. 2003, 25, 339–350. [Google Scholar] [CrossRef]
- Hoefnagel, D.; Dammers, R.; Laak-Poort, T.; Avezaat, C.J.J. Risk factors for infections related to external ventricular drainage. Acta Neurochir. 2008, 150, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Dasic, D.; Hanna, S.J.; Bojanic, S.; Kerr, R.C. External ventricular drain infection: The effect of a strict protocol on infection rates and a review of the literature. Br. J. Neurosur. 2006, 20, 296–300. [Google Scholar] [CrossRef] [PubMed]
- Gardner, P.A.; Engh, J.; Atteberry, D.; Moossy, J.J. Hemorrhage rates after external ventricular drain placement. J. Neurosur. 2009, 110, 1021–1025. [Google Scholar] [CrossRef] [PubMed]
- Raboel, P.H.; Bartek, J.; Andresen, M.; Bellander, B.M.; Romner, B. Intracranial pressure monitoring: Invasive versus non-invasive methods—A review. Crit. Care Res. Pract. 2012, 2012, 950393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, B.A.; Adams, J.; Beary, J.M.; Mardal, K.-A.; Schneider, R.; Kondrashova, T. Variations in the cerebrospinal fluid dynamics of the American alligator (Alligator mississippiensis). Fluids Barriers CNS 2021, 18, 11. [Google Scholar] [CrossRef] [PubMed]
- Platt, S.G.; Elsey, R.M.; Rainwater, T.R.; Fredenberg, M. A Critical analysis of a historic size record for the American Alligator. Southeast. Nat. 2018, 17, N60–N63. [Google Scholar] [CrossRef]
- Donkelaar, H.J. Ten. Reptiles. In The Central Nervous System of Vertebrates; Nieuwenhuys, R., Donkelaar, H.J.T., Nicholson, C., Eds.; Springer: New York, NY, USA, 1998; Volume 2, pp. 1315–1524. [Google Scholar]
- Satchell, G.; Rossiter, G. Pulsatile pressures in the cranial fluids of Heterodontus portusjacksoni. J. Exp. Biol. 1972, 57, 161–171. [Google Scholar] [CrossRef]
- Young, B.A.; Potter, J.; Blanchard, J.; Knoche, L.; Kondarshova, T. Cardiac response to stimulation and stress in the American alligator (Alligator mississippiensis). Amphibia-Reptilia 2020, 41, 547–551. [Google Scholar] [CrossRef]
- Knoche, L.; Young, B.A.; Kondrashova, T. The influence of gravitational gradients on the American alligator (Alligator mississippiensis). FASEB J. 2019, 33, 615. [Google Scholar] [CrossRef]
- Kondrashova, T.; Blanchard, J.; Knoche, L.; Potter, J.; Young, B.A. Intracranial pressure in the American alligator (Alligator mississippiensis): Reptilian meninges and orthostatic gradients. J. Comp. Physiol. A 2020, 206, 45–54. [Google Scholar] [CrossRef]
- Fleming, G.J. Crocodilians (Crocodiles, Alligators, Caimans, Gharial). In Zoo Animal and Wildlife Immobilization and Anesthesia; West, G., Heard, D., Caulkett, N., Eds.; Blackwell Publishing: Ames, Iowa, 2007; pp. 223–232. [Google Scholar]
- Reichert, M.N.; de Oliveira, P.R.C.; Souza, G.M.P.R.; Moranza, H.G.; Restan, W.A.Z.; Abe, A.S.; Klein, W.; Milsom, W.K. The respiratory mechanics of the yacare caiman (Caiman yacare). J. Exp. Biol. 2019, 222, jeb.193037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farmer, C.; Carrier, D. Pelvic aspiration in the American alligator (Alligator mississippiensis). J. Exp. Biol. 2000, 203, 1679–1687. [Google Scholar] [CrossRef] [PubMed]
- Riede, T.; Li, Z.; Tokuda, I.T.; Farmer, C.G. Functional morphology of the Alligator mississippiensis larynx with implications for vocal production. J. Exp. Biol. 2015, 218, 991–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galli, G.L.; Crossley, J.; Elsey, R.M.; Dzialowski, E.M.; Shiels, H.A. Developmental plasticity of mitochondrial function in American alligators, Alligator mississippiensis. Am. J. Physiol. 2016, 311, R1164–R1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milsom, W. Intermittent breathing in vertebrates. Ann. Rev. Physiol. 1991, 53, 87–105. [Google Scholar] [CrossRef]
- Cramberg, M.; Greer, S.; Young, B.A. The functional morphology of the post-pulmonary septum of the American alligator (Alligator mississippiensis). Anat. Rec. 2021, 305, 3055–3074. [Google Scholar] [CrossRef]
- Allen, V.; Molnar, J.; Parker, W.; Pollard, A.; Nolan, G.; Hutchinson, J.R. Comparative architectural properties of limb muscles in Crocodylidae and Alligatoridae and their relevance to divergent use of asymmetrical gaits in extant Crocodylia. J. Anat. 2014, 225, 569–582. [Google Scholar] [CrossRef] [Green Version]
- Dodson, P. Functional and ecological significance of relative growth in Alligator. J. Zool. 1975, 175, 315–355. [Google Scholar] [CrossRef]
- Greer, S.; Cramberg, M.J.; Young, B.A. Morphometrics of the Spinal Cord and Surrounding Structures in Alligator mississippiensis. Biology 2022, 11, 514. [Google Scholar] [CrossRef]
- Grondel, B.; Cramberg, M.; Greer, S.; Young, B.A. The morphology of the suboccipital region in snakes, and the anatomical and functional diversity of the myodural bridge. J. Morphol. 2022, 283, 123–133. [Google Scholar] [CrossRef]
- Zheng, N.; Yuan, X.; Chi, Y.; Liu, P.; Wang, B.; Sui, J.; Han, S.; Yu, S.; Sui, H. The universal existence of myodural bridge in mammals: An indication of a necessary function. Sci. Rep. 2017, 7, 8248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.C.; Lueck, C.J. Cerebrospinal fluid pressure in adults. J. Neuroopthal. 2014, 34, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Avery, R.A. Reference range of cerebrospinal fluid opening pressure in children: Historical overview and current data. Neuropediatrics 2014, 45, 206–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, B. Cerebrospinal fluid pressure changes in response to coughing. Brain 1978, 99, 331–346. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, X.; Jonas, J.B.; Wang, H.; Zhang, X.; Peng, X.; Ritch, R.; Tian, G.; Yang, D.; Li, L.; et al. Valsalva manoeuver, intra-ocular pressure, cerebrospinal fluid pressure, optic disc topography: Beijing intracranial and intra-ocular pressure study. Acta. Ophthal. 2014, 92, e475–e480. [Google Scholar] [CrossRef]
- Rosenthal, R.J.; Hiatt, J.R.; Phillips, E.H.; Hewitt, W.; Demetriou, A.A.; Grode, M. Intracranial pressure. Surg. Endoscop. 1997, 11, 376–380. [Google Scholar] [CrossRef]
- Pedersen, S.H.; Norager, N.H.; Lilja-Cyron, A.; Juhler, M. Telemetric intracranial pressure monitoring in children. Child’s Nervous Syst. 2020, 36, 49–58. [Google Scholar] [CrossRef]
- Korfias, S.I.; Banos, S.; Alexoudi, A.; Themistoklis, K.; Vlachakis, E.; Patrikelis, P.; Gatzonis, S.; Sakas, D.E. Telemetric intracranial pressure monitoring: Our experience with 22 patients investigated for intracranial hypertension. Br. J. Neurosur. 2021, 35, 430–437. [Google Scholar] [CrossRef]
- Jensen, T.S.R.; Rekate, H.L.; Juhler, M. Long-term telemetric intracerebral pressure monitoring as a tool in intracranial hypotension. Acta Neurochir. 2021, 163, 733–737. [Google Scholar] [CrossRef]
- Reilly, S.; Elias, J. Locomotion in Alligator mississippiensis: Kinematic effects of speed and posture and their relevance to the sprawling-to-erect paradigm. J. Exp. Biol. 1998, 201, 2559–2574. [Google Scholar] [CrossRef]
- Molnar, J.L.; Pierce, S.E.; Hutchinson, J.R. An experimental and morphometric test of the relationship between vertebral morphology and joint stiffness in Nile crocodiles (Crocodylus niloticus). J. Exp. Biol. 2014, 217, 758–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Q.; Yu, S.; Zheng, N.; Yuan, X.; Chi, Y.; Liu, C.; Wang, X.; Lin, X.; Sui, H. Head movement, an important contributor to human cerebrospinal fluid circulation. Sci. Rep. 2016, 6, 31787. [Google Scholar] [CrossRef] [PubMed]
Mean (mm Hg) | Cardiac Units | |
---|---|---|
Resting cardiac | 3.7 | 1.0 |
Passive ventilatory | 9.2 | 2.5 |
30 head-up tilt | −16.8 | −4.5 |
30 head-down tilt | 18.6 | 5.0 |
Tail oscillation | 4.9 | 1.3 |
Foot sweeps | 9.4 | 2.5 |
Manual body bends | 35.6 | 9.6 |
Body tone | 12 | 3.2 |
Active ventilation | 43.7 | 11.8 |
Defensive strikes | 76.7 | 20.7 |
locomotion | 59.5 | 16.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Young, B.A.; Cramberg, M. The Influence of Movement on the Cerebrospinal Fluid Pressure of the American Alligator (Alligator mississippiensis). Biology 2022, 11, 1702. https://doi.org/10.3390/biology11121702
Young BA, Cramberg M. The Influence of Movement on the Cerebrospinal Fluid Pressure of the American Alligator (Alligator mississippiensis). Biology. 2022; 11(12):1702. https://doi.org/10.3390/biology11121702
Chicago/Turabian StyleYoung, Bruce A., and Michael Cramberg. 2022. "The Influence of Movement on the Cerebrospinal Fluid Pressure of the American Alligator (Alligator mississippiensis)" Biology 11, no. 12: 1702. https://doi.org/10.3390/biology11121702
APA StyleYoung, B. A., & Cramberg, M. (2022). The Influence of Movement on the Cerebrospinal Fluid Pressure of the American Alligator (Alligator mississippiensis). Biology, 11(12), 1702. https://doi.org/10.3390/biology11121702