Identification of Novel mRNA Isoforms Associated with Acute Heat Stress Response Using RNA Sequencing Data in Sprague Dawley Rats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Sample Collection
2.2. RNA Isolation and Library Construction
2.3. Sequence Assembly and Quantification
2.4. Identification of Differential mRNA Isoform Expression
2.5. Functional Enrichment Analysis and Gene Annotation
3. Results and Discussion
3.1. Global Landscape of the Rat Transcriptome
3.2. Identification of Various Types of the Differentially Expressed mRNA Isoforms
3.2.1. Differentially Expressed mRNA Isoforms Annotated in the Rat Genome (Rattus Norvegicus 6.0)
3.2.2. Differentially Expressed Novel Transcript Lengths for Genes Annotated in the Rat Genome Reference (Rattus Norvegicus 6.0)
3.2.3. Annotation of Differentially Expressed Novel Transcript Lengths Associated with Non-Annotated Genes in the Rat Genome Reference (Rattus Norvegicus 6.0)
3.3. Functional Enrichment Analysis
3.3.1. GO Analysis
3.3.2. Metabolic Pathway Analysis
3.4. Summary of Differential Isoform Corresponding Genes That Were also Differentially Expressed in Tissues
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate change 2014: Impacts, adaptation, and vulnerability. part A: Global and sectoral aspects. In Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; p. 1132. [Google Scholar]
- Bocheva, A.; Dzambazova, E.; Hadjiolova, R.; Traikov, L.; Mincheva, R.; Bivolarski, I. Effect of Tyr-MIF-1 peptides on blood ACTH and corticosterone concentration induced by three experimental models of stress. Auton. Autacoid Pharmacol. 2008, 28, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Jasnic, N.; Korac, A.; Velickovic, K.; Golic, I.; Djordjevic, J.; Djurasevic, S.; Djordjevic, I.; Vujovic, P.; Cvijic, G. The effect of acute heat exposure on rat pituitary corticotroph activation: The role of vasopressin. Folia Histochem. Cytobiol. 2011, 48, 507–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakahara, K.; Kojima, M.; Hanada, R.; Egi, Y.; Ida, T.; Miyazato, M.; Kangawa, K.; Murakami, N. Neuromedin U is involved in nociceptive reflexes and adaptation to environmental stimuli in mice. Biochem. Biophys. Res. Commun. 2004, 323, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, B.M.S.; Younas, U.; Asar, T.O.; Dikmen, S.; Hansen, P.; Dahl, G. Cows exposed to heat stress during fetal life exhibit improved thermal tolerance. J. Anim. Sci. 2017, 95, 3497–3503. [Google Scholar] [CrossRef] [PubMed]
- Cwynar, P.; Kolacz, R.; Czerski, A. Effect of heat stress on physiological parameters and blood composition in Polish Merino rams. Berl. Munch. Tierarztl. Wochenschr. 2014, 127, 177–188. [Google Scholar]
- Rakesh, V.; Stallings, J.; Helwig, G.; Leon, R.; Jackson, A.; Reifman, J. A 3-D mathematical model to identify organ-specific risks in rats during thermal stress. J. Appl. Physiol. 2013, 115, 1822–1837. [Google Scholar] [CrossRef] [Green Version]
- Kovats, R.S.; Hajat, S. Heat stress and public health: A critical review. Annu. Rev. Public Health 2008, 29, 41–55. [Google Scholar] [CrossRef]
- Dou, J.; Khan, A.; Khan, M.Z.; Mi, S.; Wang, Y.; Yu, Y.; Wang, Y. Heat Stress Impairs the Physiological Responses and Regulates Genes Coding for Extracellular Exosomal Proteins in Rat. Genes 2020, 11, 306. [Google Scholar] [CrossRef] [Green Version]
- Sammad, A.; Wang, Y.J.; Umer, S.; Lirong, H.; Khan, I.; Khan, A.; Ahmad, B.; Wang, Y. Nutritional Physiology and Biochemistry of Dairy Cattle under the Influence of Heat Stress: Consequences and Opportunities. Animals 2020, 10, 793. [Google Scholar] [CrossRef]
- Abbas, Z.; Sammad, A.; Hu, L.; Fang, H.; Xu, Q.; Wang, Y. Glucose metabolism and dynamics of facilitative glucose transporters (GLUTs) under the influence of heat stress in dairy cattle. Metabolites 2020, 10, 312. [Google Scholar] [CrossRef]
- Sammad, A.; Luo, H.; Qiu, W.; Galindez, J.M.; Wang, Y.; Guo, G.; Huang, X.; Wang, Y. Automated monitoring of seasonal and diurnal variation of rumination behaviour: Insights into thermotolerance management of Holstein cows. Biosyst. Eng. 2022, 223, 115–128. [Google Scholar] [CrossRef]
- Sammad, A.; Umer, S.; Shi, R.; Zhu, H.; Zhao, X.; Wang, Y. Dairy cow reproduction under the influence of heat stress. J. Anim. Physiol. Anim. Nutr. 2022, 104, 978–986. [Google Scholar] [CrossRef] [PubMed]
- Sammad, A.; Luo, H.; Hu, L.; Zhu, H.; Wang, Y. Transcriptome Reveals Granulosa Cells Coping through Redox, Inflammatory and Metabolic Mechanisms under Acute Heat Stress. Cells 2022, 11, 1443. [Google Scholar] [CrossRef] [PubMed]
- Sammad, A.; Luo, H.; Hu, L.; Khan, A.; Zhu, H.; Wang, Y. Joint Transcriptome and metabolome analysis prevails biological mechanisms underlying the prosurvival fight in heat stressed granulosa cells. Biology 2022, 11, 839. [Google Scholar] [CrossRef] [PubMed]
- Sammad, A.; Hu, L.; Luo, H.; Abbas, Z.; Umer, S.; Zhao, S.; Xu, Q.; Khan, A.; Wang, Y.; Zhu, H.; et al. Investigation of Metabolome Underlying the Biological Mechanisms of Acute Heat Stressed Granulosa Cells. Int. J. Mol. Sci. 2022, 23, 2146. [Google Scholar] [CrossRef] [PubMed]
- Dou, J.; Cánovas, A.; Brito, L.F.; Yu, Y.; Schenkel, F.S.; Wang, Y. Comprehensive RNA-Seq Profiling Reveals Temporal and Tissue-Specific Changes in Gene Expression in Sprague–Dawley Rats as Response to Heat Stress Challenges. Front. Genet. 2021, 12, 651979. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Sammad, A.; Zhang, C.; Brito, L.F.; Xu, Q.; Wang, Y. Transcriptome Analyses Reveal Essential Roles of Alternative Splicing Regulation in Heat-Stressed Holstein Cows. Int. J. Mol. Sci. 2022, 23, 10664. [Google Scholar] [CrossRef]
- Dou, J.; Luo, H.; Sammad, A.; Lou, W.; Wang, D.; Schenkel, F.; Yu, Y.; Fang, L.; Wang, Y. Epigenomics of rats’ liver and its cross-species functional annotation reveals key regulatory genes underlying short term heat-stress response. Genomics 2022, 114, 110449. [Google Scholar] [CrossRef]
- Slimen, I.B.; Najar, T.; Ghram, A.; Dabbebi, H.; Mrad, M.B.; Abdrabbah, M. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. Int. J. Hyperth. 2014, 30, 513–523. [Google Scholar] [CrossRef]
- Wang, L.; Liu, F.; Luo, Y.; Zhu, L.; Li, G. Effect of acute heat stress on adrenocorticotropic hormone, cortisol, interleukin-2, interleukin-12 and apoptosis gene expression in rats. Biomed. Rep. 2015, 3, 425–429. [Google Scholar] [CrossRef] [Green Version]
- Slawinska, A.; Mendes, S.; Dunislawska, A.; Siwek, M.; Zampiga, M.; Sirri, F.; Meluzzi, A.; Tavaniello, S.; Maiorano, G. Avian model to mitigate gut-derived immune response and oxidative stress during heat. Biosystems 2019, 178, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Szustakowski, J.D.; Kosinski, P.A.; Marrese, C.A.; Lee, J.-H.; Elliman, S.J.; Nirmala, N.; Kemp, D.M. Dynamic resolution of functionally related gene sets in response to acute heat stress. BMC Mol. Biol. 2007, 8, 46. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Wang, X.; Wang, G.; Li, N.; Wu, C. Expression analysis of global gene response to chronic heat exposure in broiler chickens (Gallus gallus) reveals new reactive genes. Poult. Sci. 2011, 90, 1028–1036. [Google Scholar] [CrossRef] [PubMed]
- Islam, A.; Deuster, P.A.; Devaney, J.M.; Ghimbovschi, S.; Chen, Y. An Exploration of Heat Tolerance in Mice Utilizing mRNA and microRNA Expression Analysis. PLoS ONE 2013, 8, e72258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, J.; Shao, J.; Chen, Q.; Sun, H.; Guan, L.; Li, Y.; Liu, J.; Liu, H. Transcriptional changes in the hypothalamus, pituitary, and mammary gland underlying decreased lactation performance in mice under heat stress. FASEB J. 2019, 33, 12588–12601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Kong, L.; Deng, M.; Lian, Z.; Han, Y.; Sun, B.; Guo, Y.; Liu, G.; Liu, D. Heat Stress-Responsive Transcriptome Analysis in the Liver Tissue of Hu Sheep. Genes 2019, 10, 395. [Google Scholar] [CrossRef] [Green Version]
- Fujikake, N.; Nagai, Y.; Popiel, H.A.; Kano, H.; Yamaguchi, M.; Toda, T. Alternative splicing regulates the transcriptional activity of Drosophila heat shock transcription factor in response to heat/cold stress. FEBS Lett. 2005, 579, 3842–3848. [Google Scholar] [CrossRef] [Green Version]
- Kaitsuka, T.; Tomizawa, K.; Matsushita, M. Transformation of eEF1Bdelta into heat-shock response transcription factor by alternative splicing. EMBO Rep. 2011, 12, 673–681. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.; Wang, W.; Tian, C.; Niu, D.; Zhou, T.; Jin, Y.; Yang, Y.; Gao, D.; Dunham, R.; Liu, Z. Heat stress induced alternative splicing in catfish as determined by transcriptome analysis. Comp. Biochem. Physiol. Part D 2019, 29, 166–172. [Google Scholar] [CrossRef]
- Lopez-Bigas, N.; Audit, B.; Ouzounis, C.; Parra, G.; Guigo, R. Are splicing mutations the most frequent cause of hereditary disease? FEBS Lett. 2005, 579, 1900–1903. [Google Scholar] [CrossRef]
- Mastrangelo, A.M.; Marone, D.; Laido, G.; de Leonardis, A.M.; de Vita, P. Alternative splicing: Enhancing ability to cope with stress via transcriptome plasticity. Plant Sci. 2012, 185, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Staiger, D.; Brown, J.W. Alternative splicing at the intersection of biological timing, development, and stress responses. Plant Cell 2013, 25, 3640–3656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laloum, T.; Martín, G.; Duque, P. Alternative Splicing Control of Abiotic Stress Responses. Trends Plant Sci. 2018, 23, 140–150. [Google Scholar] [CrossRef] [Green Version]
- Takechi, H.; Hosokawa, N.; Hirayoshi, K.; Nagata, K. Alternative 5’ splice site selection induced by heat shock. Mol. Cell. Biol. 1994, 14, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Ju, X.-H.; Xu, H.-J.; Yong, Y.-H.; An, L.-L.; Xu, Y.-M.; Jiao, P.-R.; Liao, M. Heat Stress Upregulates the Expression of TLR4 and Its Alternative Splicing Variant in Bama Miniature Pigs. J. Integr. Agric. 2014, 13, 2479–2487. [Google Scholar] [CrossRef] [Green Version]
- Stallings, J.D.; Ippolito, D.L.; Rakesh, V.; Baer, C.E.; Dennis, W.E.; Helwig, B.G.; Jackson, D.A.; Leon, L.R.; Lewis, J.A.; Reifman, J. Patterns of gene expression associated with recovery and injury in heat-stressed rats. BMC Genom. 2014, 15, 1058. [Google Scholar] [CrossRef] [Green Version]
- Srikanth, K.; Kwon, A.; Lee, E.; Chung, H. Characterization of genes and pathways that respond to heat stress in Holstein calves through transcriptome analysis. Cell Stress Chaperones 2017, 22, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Srikanth, K.; Lee, E.; Kwan, A.; Lim, Y.; Lee, J.; Jang, G.; Chung, H. Transcriptome analysis and identification of significantly differentially expressed genes in Holstein calves subjected to severe thermal stress. Int. J. Biometeorol. 2017, 61, 1993–2008. [Google Scholar] [CrossRef]
- Khan, A.; Dou, J.; Wang, Y.; Jiang, X.; Khan, M.Z.; Luo, H.; Usman, T.; Zhu, H. Evaluation of heat stress effects on cellular and transcriptional adaptation of bovine granulosa cells. J. Anim. Sci. Biotechnol. 2020, 11, 25. [Google Scholar] [CrossRef] [Green Version]
- Dou, J.; Montanholi, Y.R.; Wang, Z.; Li, Z.; Yu, Y.; Martell, J.E.; Wang, Y.J.; Wang, Y. Corticosterone tissue-specific response in Sprague Dawley rats under acute heat stress. J. Therm. Biol. 2019, 81, 12–19. [Google Scholar] [CrossRef]
- Jeon, H.J.; Han, S.R.; Lim, K.H.; Won, K.A.; Bae, Y.C.; Ahn, D.K. Intracisternal Administration of NR2 Subunit Antagonists Attenuates the Nociceptive Behavior and p-p38 MAPK Expression Produced by Compression of the Trigeminal Nerve Root. Mol. Pain 2011, 7, 46. [Google Scholar] [CrossRef] [PubMed]
- Cánovas, A.; Rincón, G.; Islas-Trejo, A.; Jimenez-Flores, R.; Laubscher, A.; Medrano, J. RNA sequencing to study gene expression and single nucleotide polymorphism variation associated with citrate content in cow milk. J. Dairy Sci. 2013, 96, 2637–2648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cánovas, A.; Rincón, G.; Bevilacqua, C.; Trejo, A.I.; Brenaut, P.; Hovey, R.C.; Boutinaud, M.; Morgenthaler, C.; VanKlompenberg, M.K.; Martin, P.; et al. Comparison of five different RNA sources to examine the lactating bovine mammary gland transcriptome using RNA-Sequencing. Sci. Rep. 2014, 4, 5297. [Google Scholar] [CrossRef] [Green Version]
- Muniz, M.M.M.; Fonseca, L.F.S.; Silva, D.B.D.S.; de Oliveira, H.R.; Baldi, F.; Chardulo, A.L.; Ferro, J.A.; Cánovas, A.; de Albuquerque, L.G. Identification of novel mRNA isoforms associated with meat tenderness using RNA sequencing data in beef cattle. Meat Sci. 2020, 173, 108378. [Google Scholar] [CrossRef]
- Cardoso, T.F.; Quintanilla, R.; Castelló, A.; González-Prendes, R.; Amills, M.; Cánovas, Á. Differential expression of mRNA isoforms in the skeletal muscle of pigs with distinct growth and fatness profiles. BMC Genom. 2018, 19, 145. [Google Scholar] [CrossRef] [PubMed]
- Asselstine, V.; Medrano, J.F.; Cánovas, A. Identification of novel alternative splicing associated with mastitis disease in Holstein dairy cows using large gap read mapping. BMC Genom. 2022, 23, 222. [Google Scholar] [CrossRef]
- Allison, D.B.; Cui, X.; Page, G.; Sabripour, M. Microarray data analysis: From disarray to consolidation and consensus. Nat. Rev. Genet. 2006, 7, 55–65. [Google Scholar] [CrossRef]
- Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 2008, 5, 621–628. [Google Scholar] [CrossRef]
- Asselstine, V.; Miglior, F.; Suárez-Vega, A.; Fonseca, P.; Mallard, B.; Karrow, N.; Islas-Trejo, A.; Medrano, J.; Cánovas, A. Genetic mechanisms regulating the host response during mastitis. J. Dairy Sci. 2019, 102, 9043–9059. [Google Scholar] [CrossRef]
- Robinson, M.D.; Smyth, G.K. Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics 2007, 9, 321–332. [Google Scholar] [CrossRef] [Green Version]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Bolstad, B.M.; Irizarry, R.A.; Astrand, M.; Speed, T.P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Medici, V.; Kieffer, D.A.; Shibata, N.M.; Chima, H.; Kim, K.; Canovas, A.; Medrano, J.F.; Islas-Trejo, A.D.; Kharbanda, K.K.; Olson, K.; et al. Wilson Disease: Epigenetic effects of choline supplementation on phenotype and clinical course in a mouse model. Epigenetics 2016, 11, 804–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cánovas, A.; Pena, R.N.; Gallardo, D.; Ramírez, O.; Amills, M.; Quintanilla, R. Segregation of Regulatory Polymorphisms with Effects on the Gluteus Medius Transcriptome in a Purebred Pig Population. PLoS ONE 2012, 7, e35583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bindea, G.; Mlecnik, B.; Hackl, H.; Charoentong, P.; Tosolini, M.; Kirilovsky, A.; Fridman, W.-H.; Pagès, F.; Trajanoski, Z.; Galon, J. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 2009, 25, 1091–1093. [Google Scholar] [CrossRef] [Green Version]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Fumagalli, S.; Di Cara, A.; Neb-Gulati, A.; Natt, F.; Schwemberger, S.; Hall, J.; Babcock, G.F.; Bernardi, R.; Pandolfi, P.P.; Thomas, G. Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11-translation-dependent mechanism of p53 induction. Nat. Cell Biol. 2009, 11, 501–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.-H.; Leslie, P.; Zhang, Y. Ribosomal proteins as unrevealed caretakers for cellular stress and genomic instability. Oncotarget 2014, 5, 860–871. [Google Scholar] [CrossRef] [Green Version]
- Gu, Z.T.; Li, L.; Wu, F.; Zhao, P.; Yang, H.; Liu, Y.S.; Geng, Y.; Zhao, M.; Su, L. Heat stress induced apoptosis is triggered by transcription-independent p53, Ca2+ dyshomeostasis and the subsequent Bax mitochondrial translocation. Sci. Rep. 2015, 5, 11497. [Google Scholar] [CrossRef] [Green Version]
- Ghouili, I.; Bahdoudi, S.; Morin, F.; Amri, F.; Hamdi, Y.; Coly, P.M.; Walet-Balieu, M.-L.; Leprince, J.; Zekri, S.; Vaudry, H.; et al. Endogenous Expression of ODN-Related Peptides in Astrocytes Contributes to Cell Protection Against Oxidative Stress: Astrocyte-Neuron Crosstalk Relevance for Neuronal Survival. Mol. Neurobiol. 2017, 55, 4596–4611. [Google Scholar] [CrossRef]
- Chan, Y.L.; Olvera, J.; Paz, V.; Wool, I.G. The primary structure of rat ribosomal protein S15a. Biochem. Biophys. Res. Commun. 1994, 200, 1498–1504. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Verdun, D.; Roussel, P.; Thiry, M.; Sirri, V.; Lafontaine, D.L.J. The nucleolus: Structure/function relationship in RNA metabolism. Wiley Interdiscip. Rev. RNA 2010, 1, 415–431. [Google Scholar] [CrossRef]
- Hocine, S.; Singer, R.H.; Grunwald, D. RNA processing and export. Cold Spring Harb. Perspect. Biol. 2010, 2, a000752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henras, A.K.; Plisson-Chastang, C.; O'Donohue, M.-F.; Chakraborty, A.; Gleizes, P.-E. An overview of pre-ribosomal RNA processing in eukaryotes: Pre-Ribosomal RNA Processing in Eukaryotes. Wiley Interdiscip. Rev. RNA 2015, 6, 225–242. [Google Scholar] [CrossRef]
- Gaudet, P.; Livstone, M.S.; Lewis, S.E.; Thomas, P.D. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief. Bioinform. 2011, 12, 449–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bieging, K.T.; Mello, S.S.; Attardi, L.D. Unravelling mechanisms of p53-mediated tumour suppression. Nat. Rev. Cancer 2014, 14, 359–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berchtold, M.W.; Villalobo, A. The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer. Biochim. ET Biophys. Acta 2014, 1843, 398–435. [Google Scholar] [CrossRef]
- Lantto, T.A.; Laakso, I.; Dorman, H.J.D.; Mauriala, T.; Hiltunen, R.; Kõks, S.; Raasmaja, A. Cellular Stress and p53-Associated Apoptosis by Juniperus communis L. Berry Extract Treatment in the Human SH-SY5Y Neuroblastoma Cells. Int. J. Mol. Sci. 2016, 17, 1113. [Google Scholar] [CrossRef] [Green Version]
- Ustinova, M.; Peculis, R.; Rescenko, R.; Rovite, V.; Zaharenko, L.; Elbere, I.; Silamikele, L.; Konrade, I.; Sokolovska, J.; Pirags, V.; et al. Novel susceptibility loci identified in a genome-wide association study of type 2 diabetes complications in population of Latvia. BMC Med. Genom. 2021, 14, 18. [Google Scholar] [CrossRef]
- Sun, Y.; Wen, H.; Tian, Y.; Mao, X.; Li, X.; Li, J.; Hu, Y.; Liu, Y.; Li, J.; Li, Y. HSP90 and HSP70 Families in Lateolabrax maculatus: Genome-Wide Identification, Molecular Characterization, and Expression Profiles in Response to Various Environmental Stressors. Front. Physiol. 2021, 12, 784803. [Google Scholar] [CrossRef]
- Fang, H.; Kang, L.; Abbas, Z.; Hu, L.; Chen, Y.; Tan, X.; Wang, Y.; Xu, Q. Identification of key Genes and Pathways Associated With Thermal Stress in Peripheral Blood Mononuclear Cells of Holstein Dairy Cattle. Front. Genet. 2021, 12, 662080. [Google Scholar] [CrossRef] [PubMed]
- Huo, C.; Xiao, C.; She, R.; Liu, T.; Tian, J.; Dong, H.; Tian, H.; Hu, Y. Chronic heat stress negatively affects the immune functions of both spleens and intestinal mucosal system in pigs through the inhibition of apoptosis. Microb. Pathog. 2019, 136, 103672. [Google Scholar] [CrossRef] [PubMed]
- Kadzere, C.; Murphy, M.; Silanikove, N.; Maltz, E. Heat stress in lactating dairy cows: A review. Livest. Prod. Sci. 2002, 77, 59–91. [Google Scholar] [CrossRef]
- Sonna, L.A.; Fujita, J.; Gaffin, S.L.; Lilly, C.M. Invited Review: Effects of heat and cold stress on mammalian gene expression. J. Appl. Physiol. 2002, 92, 1725–1742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Wen, H.; Tian, Y.; Mao, X.; Li, X.; Li, J.; Hu, Y.; Liu, Y.; Li, J.; Li, Y. Transient cold shock induces the heat shock response upon recovery at 37 degrees C in human cells. J. Biolical Chem. 1994, 20, 14768–14775. [Google Scholar]
- Nazıroğlu, M.; Braidy, N. Thermo-Sensitive TRP Channels: Novel Targets for Treating Chemotherapy-Induced Peripheral Pain. Front. Physiol. 2017, 8, 1040. [Google Scholar] [CrossRef]
- Kanda, T.; Nakano, M.; Yokoyama, T.; Hoshino, Y.; Okajima, F.; Tanaka, T.; Saito, Y.; Nagai, R.; Kobayashi, I. Heat stress aggravates viral myocarditis in mice. Life Sci. 1998, 64, 93–101. [Google Scholar] [CrossRef]
- Lauridsen, C. Effects of dietary fatty acids on gut health and function of pigs pre- and post-weaning. J. Anim. Sci. 2020, 98, skaa086. [Google Scholar] [CrossRef]
- Huang, Y.; Xie, H.; Pan, P.; Qu, Q.; Xia, Q.; Gao, X.; Zhang, S.; Jiang, Q. Heat stress promotes lipid accumulation by inhibiting the AMPK-PGC-1α signaling pathway in 3T3-L1 preadipocytes. Cell Stress Chaperon. 2021, 26, 563–574. [Google Scholar] [CrossRef]
- Du, D.; Jiang, W.; Feng, L.; Zhang, Y.; Chen, P.; Wang, C.; Hu, Z. Effect of Saccharomyces cerevisiae culture mitigates heat stress-related dame in dairy cows by multi-omics. Front. Microbiol. 2022, 13, 935004. [Google Scholar] [CrossRef]
- Korbecki, J.; Bobiński, R.; Dutka, M. Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors. Inflamm. Res. 2019, 68, 443–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunn, K.M.; Holly, M.A.; Veith, T.L.; Buda, A.R.; Prasad, R.; Rotz, C.A.; Soder, K.J.; Stoner, A.M.K. Projected heat stress challenges and abatement opportunities for U.S. milk production. PLoS ONE 2019, 14, e0214665. [Google Scholar] [CrossRef] [PubMed]
- El-Sappah, A.H.; Rather, S.A.; Wani, S.H.; Elrys, A.S.; Bilal, M.; Huang, Q.; Dar, Z.A.; Elashtokhy, M.M.; Soaud, N.; Koul, M.; et al. Heat Stress-Mediated Constraints in Maize (Zea mays) Production: Challenges and Solutions. Front. Plant Sci. 2022, 13, 879366. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Peng, T.; Shang, H.; Shang, X.; Zhao, X.; Qu, M.; Song, X. RNA-Seq Analysis Reveals the Potential Molecular Mechanisms of Puerarin on Intramuscular Fat Deposition in Heat-Stressed Beef Cattle. Front. Nutr. 2022, 9, 817557. [Google Scholar] [CrossRef] [PubMed]
Comparisons | DEIs Annotated with Associated Known Genes | Novel Differentially Expressed Transcript Lengths of Annotated Genes | Novel Differentially Expressed Transcripts with Non-Annotated Associated Genes | ||||||
---|---|---|---|---|---|---|---|---|---|
Total | Up | Down | Total | Up | Down | Total | Up | Down | |
B_CT vs. H120 | 81 | 57 | 24 | 136 | 86 | 50 | 8 | 6 | 2 |
L_CT vs. H30 | 812 | 99 | 713 | 1214 | 413 | 801 | 46 | 16 | 30 |
L_CT vs. H60 | 731 | 332 | 399 | 1311 | 301 | 1010 | 44 | 14 | 30 |
L_CT vs. H120 | 552 | 216 | 336 | 1024 | 268 | 756 | 30 | 12 | 18 |
A_CT vs. H30 | 309 | 217 | 92 | 788 | 492 | 296 | 33 | 17 | 16 |
A_CT vs. H60 | 702 | 499 | 203 | 1208 | 709 | 499 | 84 | 57 | 27 |
A_CT vs. H120 | 679 | 447 | 232 | 1082 | 725 | 357 | 103 | 83 | 20 |
Feature ID | Position | mRNA Length (bp) | p-Value | FC | E-Value | Identity (%) | Pred. Gene Accession | Predicted Gene |
---|---|---|---|---|---|---|---|---|
Gene_338_1 | 6:11067663-11069810 | 1225 | 3.97 × 102 | −2.52 | 0.00 × 100 | 100.00 | BC058485.1 | Calm2 |
Gene_45_2 | 1:148454137-148457578 | 414 | 3.52 × 103 | 9.19 | 8.49 × 10−29 | 100.00 | BC091223.1 | Mpp1 |
Gene_45_3 | 1:148454178-148457578 | 373 | 9.40 × 103 | 2.86 | 8.49 × 10−29 | 100.00 | BC091223.1 | Mpp1 |
Gene_739_2 | 17:36393064-36395863 | 553 | 3.48 × 102 | 6.23 | 0.00 × 100 | 100.00 | XR_598144.1 | LOC103694081 |
Gene_750_1 | 17:85715378-85749024 | 833 | 1.18 × 102 | 4.62 | 3.44 × 10−121 | 100.00 | AB032899.1 | Pip4k2a |
Gene_786_1 | 19:31115483-31131085 | 1405 | 2.48 × 102 | −16.84 | 0.00 × 100 | 100.00 | FQ225003.1 | Gypa |
Feature ID | Position | mRNA Length (bp) | p-Value | FC | E-Value | Identity (%) | Pred. Gene Accession | Predicted Gene |
---|---|---|---|---|---|---|---|---|
Gene_218 | 1:227110795-227113948 | 1023 | 8.98 × 104 | −2.15 | 2.23 × 1014 | 100.00 | FQ229791.1 | TL0ADA46YK21 |
Gene_544 | 3:165405586-165412314 | 836 | 2.18 × 109 | −2.32 | 4.86 × 104 | 100.00 | AC091536.2 | clone RP31-547A5 |
Gene_668 | 4:180315560-180317130 | 810 | 9.84 × 104 | −15.11 | 2.40 × 106 | 100.00 | AC091503.2 | clone RP31-446A15 |
Gene_360 | 2:225812754-225827011 | 291 | 2.70 × 104 | −7.31 | 7.98 × 105 | 100.00 | AC087067.3 | RP31-40H10 |
Gene_45 | 1:77219372-77222802 | 3430 | 6.65 × 104 | 5.42 | 6.86 × 105 | 100.00 | AC091514.2 | RP31-223K12 |
Gene_277 | 2:34923108-34940410 | 382 | 3.54 × 1012 | −6.06 | 1.00 × 103 | 100.00 | AC091514.2 | clone RP31-223K12 |
Gene_1132 | 8:127840013-127845706 | 1258 | 7.93 × 104 | −5.85 | 6.83 × 107 | 100.00 | AC087722.2 | RP31-198L13 |
Gene_1132 | 8:127837857-127845709 | 2438 | 3.37 × 104 | −3.22 | 9.43 × 107 | 100.00 | AC087722.2 | clone RP31-198L13 |
Gene_2893 | 11:81514108-81516760 | 278 | 2.02 × 104 | −23.14 | 5.29 × 105 | 100.00 | AC087722.2 | clone RP31-198L13 |
Gene_1241 | 10:14087347-14088001 | 419 | 3.00 × 104 | −5.45 | 5.83 × 109 | 100.00 | AC087262.2 | RP31-151E23 |
Gene_1814 | 16:70876536-70896702 | 1230 | 1.00 × 104 | −9.08 | 5.22 × 108 | 100.00 | AC087262.2 | clone RP31-151E23 |
Gene_69 | 1:90859863-90889196 | 226 | 2.87 × 104 | −2.84 | 1.64 × 104 | 100.00 | AC079389.2 | RP31-263K14 |
Gene_1894 | 18:3426564-3437474 | 1205 | 5.46 × 104 | −2.27 | 7.89 × 104 | 100.00 | AC079389.2 | clone RP31-263K14 |
Gene_812 | 6:60958385-61055343 | 434 | 6.73 × 104 | −2.66 | 2.39 × 1042 | 100.00 | AC079378.2 | clone RP31-7L11 |
Gene_262 | 2:22812846-22819691 | 524 | 8.38 × 104 | 4.76 | 4.74 × 1034 | 100.00 | AC079378.2 | clone RP31-7L11 |
Gene_661 | 4:175847044-175882304 | 6963 | 7.15 × 1013 | 7.19 | 9.13 × 108 | 100.00 | AC079378.2 | clone RP31-7L11 |
Gene_1000 | 7:127445500-127447242 | 1742 | 7.06 × 104 | 6.96 | 0.00 | 100.00 | XM_017595283.1 | LOC678774 |
Gene_2063 | KL568103.1:3964-4554 | 404 | 1.18 × 107 | −5.11 | 1.13 × 104 | 100.00 | AB002169.1 | RT1 |
Gene_102 | 1:137413556-137422477 | 8921 | 6.05 × 105 | 5.79 | 1.39 × 104 | 100.00 | AC105654.4 | Renin BAC CH230-201P14 |
Gene_102 | 1:137413555-137427301 | 12812 | 8.50 × 105 | 11.95 | 2.14 × 104 | 100.00 | AC105654.4 | Renin BAC CH230-201P14 |
Gene_2027 | 20:5353181-5354060 | 840 | 4.67 × 105 | −4.90 | 7.89 × 104 | 100.00 | AJ314857.1 | Atp6G |
Gene_886 | 7:3051669-3053895 | 1569 | 1.79 × 1010 | −5.63 | 1.59 × 104 | 100.00 | AB218617.1 | clone CH230-65K18 |
Gene_662 | 4:176559544-176565091 | 3618 | 4.23 × 104 | 7.85 | 6.56 × 1017 | 100.00 | AC092530.35 | clone rp32-28p17 |
Gene_245 | 1:266346460-266355969 | 2762 | 9.70 × 109 | −5.97 | 1.48 × 105 | 100.00 | AC094697.7 | BAC CH230-5F4 |
Gene_2086 | X:74324189-74329900 | 5711 | 1.34 × 1016 | 4.71 | 4.12 × 104 | 100.00 | AC107611.6 | 10 BAC CH230-195I24 |
Gene_2086 | X:74324189-74330435 | 1143 | 4.22 × 107 | 3.32 | 4.51 × 104 | 100.00 | AC107611.6 | 10 BAC CH230-195I24 |
Gene_541 | 3:163817141-163817905 | 296 | 7.88 × 104 | −44.03 | 0.00 | 100.00 | FO181541.11 | clone bRB-233C6 |
Gene_859 | 6:125861248_125870177 | 363 | 5.82 × 1010 | −2.42 | 6.45 × 104 | 100.00 | AC091503.2 | clone RP31-446A15 |
Gene_859 | 6:125861248_125870115 | 298 | 1.27 × 109 | −2.65 | 6.41 × 104 | 100.00 | AC091503.2 | clone RP31-446A15 |
Gene_409 | 3:23268250_23272886 | 3211 | 8.75 × 104 | −7.90 | 4.08 × 1043 | 100.00 | AC091503.2 | clone RP31-446A15 |
Gene_360 | 2:225812754_225827011 | 291 | 3.59 × 104 | -6.17 | 7.98 × 105 | 100.00 | AC087067.3 | clone RP31-40H10 |
Gene_277 | 2:34923108_34940410 | 382 | 7.82 × 1011 | −5.16 | 1.00 × 103 | 100.00 | AC091514.2 | clone RP31-223K12 |
Gene_3099 | 11:81514105_81516759 | 280 | 4.30 × 104 | −12.03 | 5.29 × 105 | 100.00 | AC087722.2 | clone RP31-198L13 |
Gene_886 | 7:3051672_3053895 | 1566 | 6.61 × 1011 | −5.93 | 1.59 × 104 | 100.00 | AB218617.1 | clone CH230-65K18 |
Gene_2215 | 1:187792023_187853814 | 9668 | 3.79 × 104 | 14.36 | 3.27 × 1044 | 100.00 | AB218617.1 | clone CH230-65K18 |
Gene_679 | 5:33659016_33696506 | 464 | 8.46 × 105 | 8.85 | 9.70 × 108 | 100.00 | AC094583.7 | BAC CH230-4M16 |
Gene_738 | 5:150489343_150492182 | 479 | 1.52 × 104 | 2.12 | 3.22 × 1042 | 100.00 | AC094583.7 | BAC CH230-4M16 |
Gene_797 | 6:21900746_21915819 | 2045 | 2.64 × 106 | −6.86 | 3.03 × 104 | 100.00 | AC096165.10 | BAC CH230-11H2 |
Gene_838 | 6:102105282_102134302 | 541 | 5.13 × 106 | −4.44 | 4.52 × 105 | 100.00 | AB049248.2 | Atrn gene |
Gene_413 | 3:36034086_36035501 | 334 | 2.21 × 104 | −4.57 | 7.77 × 106 | 100.00 | AC091353.6 | BAC CH230-1B20 |
Gene_45 | 1:77213725_77228134 | 14409 | 1.75 × 104 | 10.13 | 2.90 × 104 | 100.00 | AC096051.7 | BAC CH230-21G1 |
Gene_541 | 3:163817141_163817905 | 296 | 7.23 × 104 | −46.82 | 0.00 | 100.00 | FO181541.11 | clone bRB-233C6 |
Gene_738 | 5:150489343-150492182 | 479 | 2.02 × 105 | 2.30 | 3.22 × 1042 | 100.00 | AC094583.7 | BAC CH230-4M16 |
Gene_44 | 1:77203585-77213633 | 1006 | 3.68 × 105 | 4.39 | 1.21 × 106 | 100.00 | AC106169.5 | BAC CH230-105D14 |
Gene_838 | 6:102105282-102134302 | 541 | 3.86 × 105 | −3.69 | 4.52 × 105 | 100.00 | AB049248.2 | Atrn |
Gene_886 | 7:3051668-3053625 | 1523 | 2.53 × 104 | −2.24 | 1.40 × 104 | 100.00 | AB218617.1 | clone CH230-65K18 |
Gene_45 | 1:77214418-77228129 | 6759 | 3.84 × 104 | 7.73 | 2.76 × 104 | 100.00 | AC096051.7 | BAC CH230-21G1 |
Gene_541 | 3:163817141-163817905 | 296 | 8.31 × 104 | −43.04 | 0.00 | 100.00 | FO181541.11 | clone bRB-233C6 |
Feature ID | Position | mRNA Length (bp) | p-Value | FC | E-Value | Identity (%) | Pred. Gene Accession | Predicted Gene |
---|---|---|---|---|---|---|---|---|
Gene_754 | 3:154869698-154872439 | 2741 | 8.27 × 107 | 34.47 | 6.69 × 1044 | 100.00 | AC079378.2 | clone RP31-7L11 |
Gene_3637 | 5:157946908-157956567 | 1627 | 4.62 × 104 | 16.08 | 1.14 × 1016 | 100.00 | AC109542.6 | BAC CH230-270O15 |
Gene_481 | 2:183542130-183582702 | 411 | 4.78 × 104 | −21.50 | 3.78 × 107 | 100.00 | AC087262.2 | clone RP31-151E23 |
Gene_88 | 1:81050735-81058656 | 339 | 7.50 × 105 | −27.62 | 9.51 × 107 | 100.00 | AC095281.6 | BAC CH230-10M16 |
Gene_3637 | 5:157939068-157956567 | 2706 | 4.61 × 104 | 6.99 | 3.52 × 104 | 100.00 | AC105515.5 | BAC CH230-13H11 |
Gene_3633 | 5:155905289-155912270 | 1803 | 1.83 × 105 | −32.28 | 5.04 × 104 | 100.00 | AB294577.1 | chromosome 13q11-q12 |
Gene_3748 | 6:133793172-133801420 | 3252 | 2.34 × 104 | −2.36 | 5.96 × 104 | 100.00 | AC079389.2 | clone RP31-263K14 |
Gene_916 | 4:157118179-157122026 | 1796 | 4.73 × 105 | −2.72 | 2.77 × 104 | 100.00 | AC241808.7 | BAC RNECO-49K24 |
Gene_444 | 2:112717826-112723008 | 842 | 5.03 × 104 | 10.76 | 3.71 × 109 | 100.00 | AC094963.9 | BAC CH230-6L20 |
Gene_187 | 1:146659430-146706927 | 2531 | 7.03 × 104 | 2.72 | 7.35 × 1010 | 100.00 | AC087775.2 | clone RP31-464J4 |
Gene_8 | 1:15748741-15760499 | 4456 | 1.67 × 104 | 6.87 | 8.51 × 104 | 100.00 | AC087722.2 | clone RP31-198L13 |
Gene_2499 | 15:51276012-51303786 | 248 | 1.39 × 104 | 6.51 | 1.56 × 104 | 100.00 | AC087112.2 | clone RP31-162L19 |
Gene_1808 | 10:16149054-16155114 | 4974 | 1.88 × 107 | 24.50 | 3.38 × 105 | 100.00 | AC090529.2 | clone RP31-160L19 |
Gene_1808 | 10:16149054-16155114 | 5049 | 5.93 × 106 | 14.63 | 3.38 × 105 | 100.00 | AC090529.2 | clone RP31-160L19 |
Gene_1808 | 10:16149054-16155114 | 5639 | 7.33 × 106 | 7.73 | 3.38 × 105 | 100.00 | AC090529.2 | clone RP31-160L19 |
Gene_1808 | 10:16149054-16155114 | 4241 | 4.31 × 104 | 4.53 | 3.38 × 105 | 100.00 | AC090529.2 | clone RP31-160L19 |
Gene_991 | 5:100650478-100688178 | 1405 | 1.36 × 104 | −2.56 | 1.26 × 106 | 100.00 | AC087262.2 | clone RP31-151E23 |
Gene_539 | 2:205516170-205525297 | 614 | 2.60 × 105 | 9.34 | 3.05 × 107 | 100.00 | AC079389.2 | clone RP31-263K14 |
Gene_363 | 1:236356294-236466993 | 6485 | 7.56 × 105 | 12.31 | 2.87 × 107 | 100.00 | AC079378.2 | clone RP31-7L11 |
Gene_424 | 2:33937181-33983278 | 1391 | 1.89 × 105 | −31.70 | 1.14 × 1042 | 100.00 | AC079378.2 | clone RP31-7L11 |
Gene_424 | 2:33935270-33983278 | 1481 | 9.16 × 104 | 3.33 | 1.18 × 1042 | 100.00 | AC079378.2 | clone RP31-7L11 |
Gene_754 | 3:154870205-154872439 | 1160 | 3.20 × 108 | −6.07 | 5.44 × 1044 | 100.00 | AC079378.2 | clone RP31-7L11 |
Gene_2229 | 12:40266483-40332612 | 3832 | 2.48 × 104 | −21.32 | 3.50 × 1044 | 100.00 | AB218617.1 | clone CH230-65K18 |
Gene_2487 | 15:39865097-39873520 | 897 | 2.51 × 105 | −6.52 | 7.76 × 1013 | 100.00 | AC095845.8 | CH230-10C24 |
Gene_2224 | 12:38974186-38975238 | 787 | 4.17 × 105 | 8.86 | 9.47 × 1014 | 100.00 | AC097039.8 | BAC CH230-61E1 |
Gene_4449 | 16:83872552-83875193 | 2070 | 1.68 × 105 | 17.28 | 5.27 × 105 | 100.00 | AC095195.6 | BAC CH230-5J23 |
Gene_3993 | 10:10510094-10515742 | 2519 | 5.79 × 106 | 16.55 | 6.77 × 107 | 100.00 | AC132013.4 | BAC CH230-269G5 |
Gene_3993 | 10:10510094-10515742 | 5648 | 7.01 × 104 | 21.75 | 6.77 × 107 | 100.00 | AC132013.4 | BAC CH230-269G5 |
Gene_2043 | 10:108207735-108209413 | 1678 | 9.77 × 106 | 4.16 | 2.57 × 106 | 100.00 | AC128611.4 | BAC CH230-249K23 |
Gene_88 | 1:81050735-81058656 | 339 | 2.99 × 105 | −28.24 | 9.51 × 107 | 100.00 | AC095281.6 | BAC CH230-10M16 |
Gene_1807 | 10:16140312-16148385 | 2296 | 2.30 × 1020 | 32.72 | 1.62 × 104 | 100.00 | AC094950.6 | BAC CH230-6H12 |
Gene_3837 | 8:61949091-61960895 | 645 | 3.15 × 104 | 8.02 | 1.04 × 1042 | 100.00 | AC091537.2 | clone RP31-78C13 |
Gene_2257 | 12:52289596-52307976 | 3292 | 2.35 × 105 | 3.29 | 2.21 × 106 | 100.00 | AC091000.2 | clone RP31-485F9 |
Gene_1975 | 10:88721220-88731424 | 915 | 2.13 × 108 | 15.04 | 5.51 × 1030 | 100.00 | AC091514.2 | clone RP31-223K12 |
Gene_2044 | 10:108197514-108207915 | 8978 | 2.35 × 107 | 3.87 | 3.45 × 1012 | 100.00 | AC087722.2 | clone RP31-198L13 |
Gene_4266 | 14:5550182-5556214 | 424 | 1.32 × 104 | 2.64 | 5.59 × 108 | 100.00 | AC087722.2 | clone RP31-198L13 |
Gene_2137 | 12:992649-1008813 | 4578 | 3.66 × 104 | −7.57 | 5.41 × 107 | 100.00 | AC087722.2 | clone RP31-198L13 |
Gene_2137 | 12:992649-1008813 | 4317 | 8.03 × 104 | −6.96 | 5.41 × 107 | 100.00 | AC087722.2 | clone RP31-198L13 |
Gene_1808 | 10:16149065-16154830 | 5344 | 3.31 × 1017 | 10.22 | 3.22 × 105 | 100.00 | AC090529.2 | clone RP31-160L19 |
Gene_1808 | 10:16149065-16154830 | 5765 | 9.16 × 1015 | 13.41 | 3.22 × 105 | 100.00 | AC090529.2 | clone RP31-160L19 |
Gene_38 | 1:52785873-52810395 | 5598 | 9.61 × 1015 | 8.83 | 2.28 × 107 | 100.00 | AC087262.2 | clone RP31-151E23 |
Gene_1582 | 8:104634314-104656536 | 961 | 8.57 × 105 | 6.79 | 2.07 × 107 | 100.00 | AC087262.2 | clone RP31-151E23 |
Gene_3812 | 8:33136091-33153195 | 7456 | 1.48 × 104 | 12.63 | 1.59 × 107 | 100.00 | AC087262.2 | clone RP31-151E23 |
Gene_2354 | 14:5744018-5746923 | 298 | 4.82 × 104 | −2.66 | 7.45 × 109 | 100.00 | AC087262.2 | clone RP31-151E23 |
Gene_86 | 1:80618017-80630218 | 1402 | 5.20 × 104 | 2.63 | 3.15 × 108 | 100.00 | AC087262.2 | clone RP31-151E23 |
Gene_3977 | 10:16154557-16162465 | 7908 | 4.19 × 1015 | 15.41 | 2.04 × 108 | 100.00 | AC079389.2 | clone RP31-263K14 |
Gene_1626 | 8:129175363-129180711 | 3264 | 9.80 × 1011 | 12.50 | 4.96 × 108 | 100.00 | AC079389.2 | clone RP31-263K14 |
Gene_1752 | 9:113942674-113948528 | 576 | 1.84 × 105 | 9.05 | 1.87 × 1037 | 100.00 | AC079389.2 | clone RP31-263K14 |
Gene_1753 | 9:113952791-114001447 | 817 | 1.14 × 109 | 8.60 | 1.60 × 1021 | 100.00 | AC080157.26 | RP32-475K22 |
Gene_172 | 1:137413500-137427306 | 2703 | 6.43 × 104 | −2.01 | 2.15 × 105 | 100.00 | AC105654.4 | BAC CH230-201P14 |
Gene_4216 | 13:6344942-6347579 | 1405 | 6.94 × 105 | 6.02 | 3.98 × 1021 | 100.00 | AJ297736.1 | hsp86 |
Gene_2541 | 16:7199973-7203706 | 3733 | 1.76 × 104 | −10.96 | 7.47 × 105 | 100.00 | AC111654.6 | BAC CH230-108G17 |
Gene_2086 | 11:39085999-39093587 | 7533 | 4.30 × 104 | −3.06 | 5.48 × 104 | 100.00 | AC095195.6 | BAC CH230-5J23 |
Gene_3947 | 10:10509959-10516032 | 5836 | 4.23 × 107 | 73.20 | 7.28 × 107 | 100.00 | AC132013.4 | BAC CH230-269G5 |
Gene_3947 | 10:10509959-10516032 | 3181 | 4.60 × 107 | 26.59 | 7.28 × 107 | 100.00 | AC132013.4 | BAC CH230-269G5 |
Gene_3947 | 10:10509959-10516032 | 5512 | 5.63 × 106 | 24.26 | 7.28 × 107 | 100.00 | AC132013.4 | BAC CH230-269G5 |
Gene_3947 | 10:10509959-10516032 | 6073 | 4.05 × 105 | 59.93 | 7.28 × 107 | 100.00 | AC132013.4 | BAC CH230-269G5 |
Gene_3947 | 10:10509959-10516032 | 5749 | 7.53 × 104 | 27.74 | 7.28 × 107 | 100.00 | AC132013.4 | BAC CH230-269G5 |
Gene_2043 | 10:108207735-108209413 | 1678 | 1.84 × 1017 | 8.43 | 2.57 × 106 | 100.00 | AC128611.4 | BAC CH230-249K23 |
Gene_1617 | 8:122685629-122689781 | 417 | 9.80 × 104 | −17.87 | 2.99 × 104 | 100.00 | AC120734.5 | BAC CH230-220D1 |
Gene_846 | 4:61876180-61892396 | 10229 | 4.68 × 108 | 5.65 | 1.51 × 107 | 100.00 | AC095876.6 | BAC CH230-10G12 |
Gene_846 | 4:61876180-61892397 | 10230 | 1.58 × 107 | 5.68 | 1.51 × 107 | 100.00 | AC095876.6 | BAC CH230-10G12 |
Gene_846 | 4:61876180-61892396 | 14726 | 2.31 × 105 | 7.13 | 1.51 × 107 | 100.00 | AC095876.6 | BAC CH230-10G12 |
Gene_846 | 4:61876180-61892397 | 15413 | 5.10 × 104 | 3.36 | 1.51 × 107 | 100.00 | AC095876.6 | BAC CH230-10G12 |
Gene_1807 | 10:16140312-16148385 | 2296 | 3.86 × 1041 | 47.78 | 1.62 × 104 | 100.00 | AC094950.6 | BAC CH230-6H12 |
Gene_1807 | 10:16132421-16148466 | 16045 | 9.80 × 104 | 16.99 | 3.23 × 104 | 100.00 | AC094950.6 | BAC CH230-6H12 |
Comparisons | No. DEIDEGs | No. Up-Regulated DEIDEGs | No. Down-Regulated DEIDEGs |
---|---|---|---|
B_CT vs. H120 | 43 | 25 | 18 |
L_CT vs. H30 | 81 | 15 | 66 |
L_CT vs. H60 | 452 | 187 | 265 |
L_CT vs. H120 | 253 | 134 | 119 |
A_CT vs. H30 | 132 | 107 | 25 |
A_CT vs. H60 | 451 | 353 | 98 |
A_CT vs. H120 | 566 | 405 | 161 |
Comparisons | Gene Name | Position | FC | FDR |
---|---|---|---|---|
Response to heat L_CT vs. H60 | Bag3 | 1:199941160-199965191 | 13.18 | 1.13 × 1016 |
Hsp90aa1 | 6:135107270-135112775 | 3.73 | 1.13 × 108 | |
Dnaja1 | 5:57028466-57039378 | 2.96 | 1.23 × 108 | |
Hmox1 | 19:14508615-14515456 | 3.28 | 1.85 × 107 | |
Dnaja4 | 8:59278261-59294003 | 7.24 | 4.61 × 107 | |
Pklr | 2:188449209-188459592 | −3.56 | 1.27 × 105 | |
Chordc1 | 8:17421556-17446165 | 2.53 | 1.02 × 103 | |
Cdkn1a | 20:6351457-6358864 | 9.40 | 1.45 × 103 | |
LOC680121 | 11:13499163-13501263 | 2.22 | 1.53 × 103 | |
Hspa1b | 20:4877323-4879779 | 1281.27 | 1.05 × 1059 | |
Tp53inp1 | 5:24410862-24416888 | 11.16 | 2.54 × 104 | |
LOC103694877 | AABR07024106.1:11533-12195 | −2.32 | 2.99 × 103 | |
Mif | 20:13732197-13732859 | −2.34 | 3.12 × 103 | |
Atp2a2 | 12:39553902-39603326 | 2.27 | 5.63 × 103 | |
Response to heat L_CT vs. H120 | Hsp90aa1 | 6:135107270-135112775 | 3.84 | 2.99 × 1010 |
Pklr | 2:188449209-188459592 | −3.06 | 3.85 × 109 | |
AABR07011951.1 | 2:177651240-177653288 | 3.74 | 1.61 × 108 | |
Abcc2 | 1:263554452-263613252 | 2.28 | 4.77 × 108 | |
Hmox1 | 19:14508615-14515456 | 3.61 | 6.85 × 106 | |
Dnaja4 | 8:59278261-59294003 | 8.29 | 9.12 × 106 | |
Bag3 | 1:199941160-199965191 | 5.56 | 3.04 × 104 | |
Dnaja1 | 5:57028466-57039378 | 2.35 | 3.40 × 104 | |
Cdkn1a | 20:6351457-6358864 | 5.82 | 1.51 × 103 | |
Chordc1 | 8:17421556-17446165 | 2.45 | 2.00 × 103 | |
Cold-induced thermogenesis L_CT vs. H120 | Fabp5 | 2:93981655-93985378 | −6.24 | 6.83 × 1014 |
Prkab1 | 12:46316235-46326790 | −3.17 | 9.30 × 109 | |
Lpin1 | 6:41799748-41870046 | 4.09 | 4.31 × 104 | |
Scd | 1:264160128-264172729 | −3.07 | 2.11 × 103 | |
Response to heat A_CT vs. H30 | Hspa1b | 20:4877323-4879779 | 35.00 | 1.84 × 1013 |
Bag3 | 1:199941160-199965191 | 4.20 | 7.50 × 106 | |
Response to heat A_CT vs. H60 | Bag3 | 1:199941160-199965191 | 35.79 | 2.05 × 1047 |
Hspa1b | 20:4877323-4879779 | 182.12 | 8.50 × 1038 | |
Dnaja1 | 5:57028466-57039378 | 9.43 | 6.77 × 1032 | |
Hsp90aa1 | 6:135107270-135112775 | 9.56 | 2.95 × 1030 | |
LOC680121 | 11:13499163-13501263 | 5.44 | 4.21 × 1027 | |
Dnaja4 | 8:59278261-59294003 | 16.65 | 8.66 × 1023 | |
Chordc1 | 8:17421556-17446165 | 5.15 | 7.58 × 1014 | |
AABR07011951.1 | 2:177651240-177653288 | 3.68 | 2.71 × 1011 | |
Hmox1 | 19:14508615-14515456 | 5.29 | 1.57 × 109 | |
Hspd1 | 9:61680529-61690956 | 2.02 | 1.72 × 108 | |
Cdkn1a | 20:6351457-6358864 | 4.73 | 1.95 × 104 | |
Hspa5 | 3:13838303-13842762 | 2.05 | 6.98 × 105 | |
Response to heat A_CT vs. H120 | LOC680121 | 11:13499163-13501263 | 7.37 | 1.50 × 1053 |
Hsp90aa1 | 6:135107270-135112775 | 11.35 | 2.46 × 1037 | |
Dnaja1 | 5:57028466-57039378 | 9.24 | 1.55 × 1025 | |
Dnaja4 | 8:59278261-59294003 | 22.41 | 3.09 × 1023 | |
AABR07011951.1 | 2:177651240-177653288 | 4.01 | 8.87 × 1018 | |
Chordc1 | 8:17421556-17446165 | 5.06 | 1.14 × 1015 | |
Vcp | 5:58426548-58445953 | 2.12 | 8.30 × 1013 | |
Bag3 | 1:199941160-199965191 | 13.50 | 2.75 × 1011 | |
Hspd1 | 9:61680529-61690956 | 2.04 | 4.29 × 1010 | |
Hmox1 | 19:14508615-14515456 | 5.19 | 2.18 × 108 | |
Cdkn1a | 20:6351457-6358864 | 5.95 | 2.58 × 106 | |
Trpv2 | 10:48903539-48925030 | −3.02 | 2.33 × 105 | |
Cold-induced thermogenesis A_CT vs. H30 | AABR07033324.1 | 11:17336443-17340373 | 3.41 | 3.09 × 103 |
Gadd45g | 17:13391466-13393243 | 5.60 | 6.99 × 107 | |
Arntl | 1:178039062-178137465 | 7.45 | 2.22 × 106 | |
Gnas | 3:172374956-172428483 | 4.59 | 4.77 × 106 | |
Cebpb | 3:164424514-164425910 | 2.48 | 9.99 × 105 | |
Cold-induced thermogenesis A_CT vs. H60 | Atf4 | 7:121480722-121482772 | 3.16 | 1.50 × 1012 |
Arntl | 1:178039062-178137465 | 9.73 | 5.39 × 108 | |
Gnas | 3:172374956-172428483 | 4.02 | 6.04 × 108 | |
Gadd45g | 17:13391466-13393243 | 7.05 | 9.29 × 108 | |
Acsl1 | 16:48937455-49003246 | −2.09 | 7.51 × 103 | |
Igf1r | 1:128924965-129206516 | 2.76 | 2.00 × 102 | |
Cold-induced thermogenesis A_CT vs. H120 | Arntl | 1:178039062-178137465 | 17.47 | 1.72 × 1021 |
Stk11 | 7:12440750-12457513 | 3.06 | 9.21 × 1015 | |
Atf4 | 7:121480722-121482772 | 3.56 | 1.21 × 103 | |
Vegfa | 9:17340340-17355681 | 2.19 | 2.37 × 1013 | |
Gadd45g | 17:13391466-13393243 | 7.37 | 4.47 × 1012 | |
Trpv2 | 10:48903539-48925030 | −3.02 | 2.33 × 105 | |
Dync1h1 | 6:134958853-135085769 | 2.05 | 1.10 × 103 | |
Acsl1 | 16:48937455-49003246 | −2.11 | 1.33 × 103 | |
Igf1r | 1:128924965-129206516 | 3.16 | 1.67 × 103 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dou, J.; Sammad, A.; Cánovas, A.; Schenkel, F.; Usman, T.; Muniz, M.M.M.; Guo, K.; Wang, Y. Identification of Novel mRNA Isoforms Associated with Acute Heat Stress Response Using RNA Sequencing Data in Sprague Dawley Rats. Biology 2022, 11, 1740. https://doi.org/10.3390/biology11121740
Dou J, Sammad A, Cánovas A, Schenkel F, Usman T, Muniz MMM, Guo K, Wang Y. Identification of Novel mRNA Isoforms Associated with Acute Heat Stress Response Using RNA Sequencing Data in Sprague Dawley Rats. Biology. 2022; 11(12):1740. https://doi.org/10.3390/biology11121740
Chicago/Turabian StyleDou, Jinhuan, Abdul Sammad, Angela Cánovas, Flavio Schenkel, Tahir Usman, Maria Malane Magalhães Muniz, Kaijun Guo, and Yachun Wang. 2022. "Identification of Novel mRNA Isoforms Associated with Acute Heat Stress Response Using RNA Sequencing Data in Sprague Dawley Rats" Biology 11, no. 12: 1740. https://doi.org/10.3390/biology11121740
APA StyleDou, J., Sammad, A., Cánovas, A., Schenkel, F., Usman, T., Muniz, M. M. M., Guo, K., & Wang, Y. (2022). Identification of Novel mRNA Isoforms Associated with Acute Heat Stress Response Using RNA Sequencing Data in Sprague Dawley Rats. Biology, 11(12), 1740. https://doi.org/10.3390/biology11121740