Effects of 8 Weeks of High-Intensity Interval Training and Spirulina Supplementation on Immunoglobin Levels, Cardio-Respiratory Fitness, and Body Composition of Overweight and Obese Women
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Sample Size
2.3. Experimental Approach to the Problem
2.4. Measurement of Fat Free Mass
2.5. Measurement of Cardio-Respiratory Fitness
2.6. Measurement of Blood Samples
2.7. Exercise Protocol
2.8. Supplementation
2.9. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation; World Health Organization Technical Report Series nr 894; WHO: Geneva, Switzerland, 2000; pp. 1–253. [Google Scholar]
- WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004, 363, 157–163. [Google Scholar] [CrossRef]
- Huttunen, R.; Syrjänen, J. Obesity and the risk and outcome of infection. Int. J. Obes. Lond. 2013, 37, 333–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanneganti, T.-D.; Dixit, V.D. Immunological complications of obesity. Nat. Immunol. 2012, 13, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Kaspersen, K.A.; Pedersen, O.B.; Petersen, M.S.; Hjalgrim, H.; Rostgaard, K.; Møller, B.K.; Juul-Sørensen, C.; Kotzé, S.; Dinh, K.M.; Erikstrup, L.T.; et al. Obesity and risk of infection: Results from the Danish Blood Donor Study. Epidemiology 2015, 26, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Miranda, M.; Cintra, R.; Barros, S.; Mancini-Filho, J. Antioxidant activity of the microalga Spirulina maxima. Braz. J. Med. Biol. Res. 1998, 31, 1075–1079. [Google Scholar] [CrossRef] [PubMed]
- Deng, R.; Chow, T.-J. Hypolipidemic, Antioxidant, and Antiinflammatory Activities of Microalgae Spirulina. Cardiovasc. Ther. 2010, 28, e33–e45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milasius, K.; Malickaite, R.; Dadeliene, R. Effect of spirulina food supplement on blood morphological parameters, biochemical composition and on the immune function of sportsmen. Biol. Sport 2009, 26, 157–172. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Lepe, M.A.; Olivas-Aguirre, F.J.; Gómez-Miranda, L.M.; Hernández-Torres, R.P.; Manríquez-Torres, J.J.; Ramos-Jiménez, A. Systematic physical exercise and Spirulina maxima supplementation improve body composition, cardiorespiratory fitness, and blood lipid profile: Correlations of a randomized double-blind controlled trial. Antioxidants 2019, 8, 507. [Google Scholar] [CrossRef] [Green Version]
- Thengodkar, R.R.M.; Sivakami, S. Degradation of chlorpyrifos by an alkaline phosphatase from the cyanobacterium Spirulina platensis. Biodegradation 2010, 21, 637–644. [Google Scholar] [CrossRef]
- Ramírez-Rodrigues, M.M.; Estrada-Beristain, C.; Metri-Ojeda, J.; Pérez-Alva, A.; Baigts-Allende, D.K. Spirulina platensis Protein as Sustainable Ingredient for Nutritional Food Products Development. Sustainability 2021, 13, 6849. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, L.; Miron, A.; Klímová, B.; Wan, D.; Kuča, K. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: An overview. Arch. Toxicol. 2016, 90, 1817–1840. [Google Scholar] [CrossRef]
- Zovko Koncic, M.; Tomczyk, M. New insights into dietary supplements used in sport: Active substances, pharmacological and side effects. Curr. Drug Targets 2013, 14, 1079–1092. [Google Scholar] [CrossRef]
- Hernández-Lepe, M.A.; López-Díaz, J.A.; Juárez-Oropeza, M.A.; Hernández-Torres, R.P.; Wall-Medrano, A.; Ramos-Jiménez, A. Effect of Arthrospira (Spirulina) maxima supplementation and a systematic physical exercise program on the body composition and cardiorespiratory fitness of overweight or obese subjects: A double-blind, randomized, and crossover controlled trial. Mar. Drugs 2018, 16, 364. [Google Scholar] [CrossRef] [Green Version]
- Clark, T.; Morey, R.; Jones, M.D.; Marcos, L.; Ristov, M.; Ram, A.; Hakansson, S.; Franklin, A.; McCarthy, C.; De Carli, L.; et al. High-intensity interval training for reducing blood pressure: A randomized trial vs. moderate-intensity continuous training in males with overweight or obesity. Hypertens. Res 2020, 43, 396–403. [Google Scholar] [CrossRef]
- Francois, M.E.; Little, J.P. Effectiveness and safety of high-intensity interval training in patients with type 2 diabetes. Diabetes Spectr. 2015, 28, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Gibala, M.J.; Little, J.P.; MacDonald, M.J.; Hawley, J.A. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J. Physiol. 2012, 590, 1077–1084. [Google Scholar] [CrossRef]
- D’Amuri, A.; Sanz, J.M.; Capatti, E.; Di Vece, F.; Vaccari, F.; Lazzer, S.; Zuliani, G.; Nora, E.D.; Passaro, A. Effectiveness of high-intensity interval training for weight loss in adults with obesity: A randomised controlled non-inferiority trial. BMJ Open Sport Exerc. Med. 2021, 7, e001021. [Google Scholar] [CrossRef]
- Nobari, H.; Ahmadi, M.; Sá, M.; Pérez-Gómez, J.; Clemente, F.M.; Adsuar, J.C.; Minasian, V.; Afonso, J. The effect of two types of combined training on bio-motor ability adaptations in sedentary females. J. Sports Med. Phys. Fit. 2021, 61, 1317–1325. [Google Scholar] [CrossRef]
- Jurio-Iriarte, B.; Maldonado-Martín, S. Effects of different exercise training programs on cardiorespiratory fitness in overweight/obese adults with hypertension: A pilot study. Health Promot. Pract. 2019, 20, 390–400. [Google Scholar] [CrossRef]
- Sculthorpe, N.F.; Herbert, P.; Grace, F. One session of high-intensity interval training (HIIT) every 5 days, improves muscle power but not static balance in lifelong sedentary ageing men: A randomized controlled trial. Medicine 2017, 96, e6040. [Google Scholar] [CrossRef]
- Batacan, R.B.; Duncan, M.J.; Dalbo, V.J.; Tucker, P.S.; Fenning, A.S. Effects of high-intensity interval training on cardiometabolic health: A systematic review and meta-analysis of intervention studies. Br. J. Sports Med. 2017, 51, 494–503. [Google Scholar] [CrossRef]
- Khammassi, M.; Ouerghi, N.; Hadj-Taieb, S.; Feki, M.; Thivel, D.; Bouassida, A. Impact of a 12-week high-intensity interval training without caloric restriction on body composition and lipid profile in sedentary healthy overweight/obese youth. J. Exerc. Rehabil. 2018, 14, 118–125. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, R.L.; de Oliveira Silva, J.I.; Dantas, M.G.B.; Menezes, E.S.; Arruda, A.; Schwingel, P. High-intensity interval training applied in Brazilian Jiu-jitsu is more effective to improve athletic performance and body composition. J. Combat Sports Martial Arts 2015, 6, 1–5. [Google Scholar] [CrossRef]
- Gillen, J.B.; Percival, M.E.; Ludzki, A.; Tarnopolsky, M.A.; Gibala, M.J. Interval training in the fed or fasted state improves body composition and muscle oxidative capacity in overweight women. Obesity 2013, 21, 2249–2255. [Google Scholar] [CrossRef]
- Andreato, L.; Esteves, J.V.; Coimbra, D.R.; Moraes, A.J.P.; de Carvalho, T. The influence of high-intensity interval training on anthropometric variables of adults with over-weight or obesity: A systematic review and network meta-analysis. Obes. Rev. 2019, 20, 142–155. [Google Scholar] [CrossRef] [Green Version]
- Shirvani, H.; Ghahreman Tabrizi, K.; Sobhani, V. Effects of high intensity intermittent exercise on serum Immunoglobulin’s and Complement system response in youth soccer players. J. Birjand Univ. Med. Sci. 2013, 20, 233–243. [Google Scholar]
- Rahimi, R.; Ghaderi, M.; Mirzaei, B.; Ghaeni, S.; Faraji, H.; Vatani, D.S.; Rahmani-Nia, F. Effects of very short rest periods on immunoglobulin A and cortisol responses to resistance exercise in men. J. Hum. Sport Exerc. 2010, 5, 146–157. [Google Scholar] [CrossRef] [Green Version]
- Lira, F.S.; Yamashita, A.S.; Uchida, M.C.; Zanchi, N.E.; Gualano, B.; Martins, E.; Caperuto, E.C.; Seelaender, M. Low and moderate, rather than high intensity strength exercise induces benefit regarding plasma lipid profile. Diabetol. Metab. Syndr. 2010, 2, 31. [Google Scholar] [CrossRef] [Green Version]
- Azarbayjani, M.A.; Nikbakht, H. The effect of continuous and intermittent training on resting level and acute response of salivary IgA and total protein in male basketball players. J. Shahrekord Univ. Med. Sci. 2010, 12, 1–11. [Google Scholar]
- Saeedy, M.; Bijeh, N.; Moazzami, M. The effect of six weeks of high-intensity interval training with Zinc supplementation on some humoral immunity markers in female futsal players. Ann. Appl. Sport Sci. 2018, 6, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Nobari, H.; Saedmocheshi, S.; Chung, L.H.; Suzuki, K.; Maynar-Mariño, M.; Pérez-Gómez, J. An Overview on How Exercise with Green Tea Consumption Can Prevent the Production of Reactive Oxygen Species and Improve Sports Performance. Int. J. Env. Res. Public Health 2021, 19, 218. [Google Scholar] [CrossRef] [PubMed]
- Zwetsloot, K.A.; John, C.S.; Lawrence, M.M.; Battista, R.A.; Shanely, R.A. High-intensity interval training induces a modest systemic inflammatory response in active, young men. J. Inflamm. Res. 2014, 7, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Owen, A.L.; Wong, D.P.; Dunlop, G.; Groussard, C.; Kebsi, W.; Dellal, A.; Morgans, R.; Zouhal, H. High-intensity training and salivary immunoglobulin a responses in professional top-level soccer players: Effect of training intensity. J. Strength Cond. Res. 2016, 30, 2460–2469. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.; Kim, J.; Hyung, G.A.; Park, J.H.; Kim, S.J.; Kim, H.B.; Jung, H.S. Training effects on immune function in judoists. Asian J. Sports Med. 2015, 6, e24050. [Google Scholar] [CrossRef] [Green Version]
- Oyeyinka, G.; Salimonu, L.S.; Williams, A.I.; Johnson, A.O.; Ladipo, O.A.; Osunkoya, B.O. Range of normal serum immunoglobulin (IgG, IgA and IgM) values in Nigerians. Afr. J. Med. Med Sci. 1984, 13, 169–176. [Google Scholar]
- Bayram, R.O.; Özdemir, H.; Emsen, A.; Türk Dağı, H.; Artaç, H. Reference ranges for serum immunoglobulin (IgG, IgA, and IgM) and IgG subclass levels in healthy children. Turk. J. Med. Sci. 2019, 49, 497–505. [Google Scholar] [CrossRef]
- Kalafati, M.; Jamurtas, T.; Nikolaidis, M.G.; Paschalis, V.; Theodorou, A.A.; Sakellariou, G.K.; Koutedakis, Y.; Kouretas, D. Ergogenic and antioxidant effects of spirulina supplementation in humans. Med. Sci. Sports Exerc. 2010, 42, 142–151. [Google Scholar] [CrossRef]
- Faelli, E.; Bisio, A.; Codella, R.; Ferrando, V.; Perasso, L.; Panascì, M.; Saverino, D.; Ruggeri, P. Acute and Chronic Catabolic Responses to CrossFit® and Resistance Training in Young Males. Int. J. Environ. Res. Public Health 2020, 17, 7172. [Google Scholar] [CrossRef]
- Codella, R.; Chirico, A.; Lucidi, F.; Ferrulli, A.; La Torre, A.; Luzi, L. The immune-modulatory effects of exercise should be favorably harnessed against COVID-19. J. Endocrinol. Investig. 2021, 44, 1119–1122. [Google Scholar] [CrossRef]
- Gibson, A.S.C.; Broomhead, S.; Lambert, M.; Hawley, J. Prediction of maximal oxygen uptake from a 20-m shuttle run as measured directly in runners and squash players. J. Sports Sci. 1998, 16, 331–335. [Google Scholar] [CrossRef]
- Pearce, C. Is Using a Patient’s Estimated Lean Body Mass a Suitable Method of Predicting Their Eventual Therapeutic Units of Botulinum Toxin for the Treatment of Cervical Dystonia? 2016. Available online: https://rde.dspace-express.com/bitstream/handle/11287/610852/Is+using+a+patient%20s+lean+body+mass+a+suitable+method+of+predicting+their+eventual+therapeutic+dose+of+botulinum+toxin+for+the+treatment+of+cervical+dystonia.pdf?sequence=2 (accessed on 16 December 2021).
- Hume, R. Prediction of lean body mass from height and weight. J. Clin. Pathol. 1966, 19, 389–391. [Google Scholar] [CrossRef] [Green Version]
- Nobari, H.; Silva, A.F.; Clemente, F.M.; Siahkouhian, M.; García-Gordillo, M.Á.; Adsuar, J.C.; Pérez-Gómez, J. Analysis of fitness status variations of Under-16 soccer players over a season and their relationships with maturational status and training load. Front. Physiol. 2021, 11, 1840. [Google Scholar] [CrossRef]
- Nobari, H.; Cholewa, J.M.; Pérez-Gómez, J.; Castillo-Rodríguez, A. Effects of 14-weeks betaine supplementation on pro-inflammatory cytokines and hematology status in professional youth soccer players during a competition season: A double blind, randomized, placebo-controlled trial. J. Int. Soc. Sports Nutr. 2021, 18, 42. [Google Scholar] [CrossRef]
- Jackson, A.S.; Pollock, M.L.; Ward, A. Generalized equations for predicting body density of women. Med. Sci. Sports Exerc. 1980, 12, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Wagner, D.R. Ultrasound as a tool to assess body fat. J. Obes. 2013, 2013, 280713. [Google Scholar] [CrossRef]
- Arazi, H.; Mirzaei, B.; Nobari, H. Anthropometric profile, body composition and somatotyping of national Iranian cross-country runners. Turk. J. Sport Exerc. 2015, 17, 35–41. [Google Scholar] [CrossRef]
- Rahmat, A.J.; Arsalan, D.; Bahman, M.; Hadi, N. Anthropometrical profile and bio-motor abilities of young elite wrestlers. Phys. Educ. Stud. 2016, 20, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Wannamethee, S.G.; Shaper, A.G.; Whincup, P.H. Body fat distribution, body composition, and respiratory function in elderly men. Am. J. Clin. Nutr. 2005, 82, 996–1003. [Google Scholar] [CrossRef] [Green Version]
- Nobari, H.; Alves, A.R.; Clemente, F.M.; Pérez-Gómez, J.; Clark, C.C.T.; Granacher, U.; Zouhal, H. Associations between variations in accumulated workload and physiological variables in young male soccer players over the course of a season. Front. Physiol. 2021, 12, 233. [Google Scholar] [CrossRef]
- Nobari, H.; Aquino, R.; Clemente, F.M.; Khalafi, M.; Adsuar, J.C.; Pérez-Gómez, J. Description of acute and chronic load, training monotony and strain over a season and its relationships with well-being status: A study in elite under-16 soccer players. Physiol. Behav. 2020, 225, 113117. [Google Scholar] [CrossRef]
- Jafari, M.; Pouryamehr, E.; Fathi, M. The effect of eight weeks high intensity interval training (HIIT) on E-selection and P-selection in young obese females. Int. J. Sport Stud. Health 2018, 1, e64336. [Google Scholar] [CrossRef]
- Kilding, A.E.; Aziz, A.R.; Teh, K. Measuring and predicting maximal aerobic power in international-level intermittent sport athletes. J. Sports Med. Phys. Fit. 2006, 46, 366. [Google Scholar]
- Bahram, M.E.; Mogharnasi, M. The Effect of Twelve weeks High Intensity Training Interval (HIIT) on Leptin Levels and Obesity Dependent Factors among Female Students Suffering Overweight. J. Sport Biosci. 2015, 6, 451–465. [Google Scholar]
- Glaister, M.; Hauck, H.; Abraham, C.S.; Merry, K.L.; Beaver, D.; Woods, B.; McInnes, G. Familiarization, reliability, and comparability of a 40-m maximal shuttle run test. J. Sports Sci. Med. 2009, 8, 77. [Google Scholar]
- Camarda, S.R.d.A.; Tebexreni, A.S.; Páfaro, C.N.; Sasai, F.B.; Tambeiro, V.L.; Juliano, Y.; de Barros Neto, T.L. Comparison of maximal heart rate using the prediction equations proposed by Karvonen and Tanaka. Arq. Bras. Cardiol. 2008, 91, 311–314. [Google Scholar] [CrossRef] [Green Version]
- Nobari, H.; Fashi, M.; Eskandari, A.; Pérez-Gómez, J.; Suzuki, K. Potential Improvement in Rehabilitation Quality of 2019 Novel Coronavirus by Isometric Training System; Is There “Muscle-Lung Cross-Talk”? Int. J. Environ. Res. Public Health 2021, 18, 6304. [Google Scholar] [CrossRef]
- Hopkins, B.; Cole, B.L.; Mason, T.L. A critique of the usefulness of inferential statistics in applied behavior analysis. Behav. Anal. 1998, 21, 125–137. [Google Scholar] [CrossRef] [Green Version]
- Jahani, Q.G.R.; Abkar, A.R.; Heidari, H. The Effect of High-Intensity Intermittent Training (HIIT) and Consumption of Probiotic Supplement on Immune Cells, C-Reactive Protein, and IgA in Young Football Player. Qom Univ. Med. Sci. J. 2016, 10, 36–46. [Google Scholar]
- Khafaga, A.F.; El-Sayed, Y.S. Spirulina ameliorates methotrexate hepatotoxicity via antioxidant, immune stimulation, and proinflammatory cytokines and apoptotic proteins modulation. Life Sci. 2018, 196, 9–17. [Google Scholar] [CrossRef]
- Hayashi, O.; Hirahashi, T.; Katoh, T.; Miyajima, H.; Hirano, T.; Okuwaki, Y. Class specific influence of dietary Spirulina platensis on antibody production in mice. J. Nutr. Sci. Vitaminol. 1998, 44, 841–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tominaga, A.; Konishi, Y.; Taguchi, T.; Fukuoka, S.; Kawaguchi, T.; Noda, T.; Shimizu, K. Autonomous cure of damaged human intestinal epithelial cells by TLR2 and TLR4-dependent production of IL-22 in response to Spirulina polysaccharides. Int. Immunopharmacol. 2013, 17, 1009–1019. [Google Scholar] [CrossRef] [PubMed]
- Uzar, E.; Sahin, O.; Koyuncuoglu, H.R.; Uz, E.; Bas, O.; Kilbas, S.; Yilmaz, H.R.; Yurekli, V.A.; Kucuker, H.; Songur, A. The activity of adenosine deaminase and the level of nitric oxide in spinal cord of methotrexate administered rats: Protective effect of caffeic acid phenethyl ester. Toxicology 2006, 218, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Leicht, C.A.; Goosey-Tolfrey, V.L.; Bishop, N.C. Exercise intensity and its impact on relationships between salivary immunoglobulin A, saliva flow rate and plasma cortisol concentration. Eur. J. Appl. Physiol. 2018, 118, 1179–1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Souza, D.C.; Matos, V.; Dos Santos, V.O.A.; Medeiros, I.F.; Marinho, C.S.R.; Nascimento, P.R.P.; Dorneles, G.P.; Peres, A.; Müller, C.H.; Krause, M.; et al. Effects of High-Intensity Interval and Moderate-Intensity Continuous Exercise on Inflammatory, Leptin, IgA, and Lipid Peroxidation Responses in Obese Males. Front. Physiol. 2018, 9, 567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nobari, H.; Nejad, H.; Kargarfard, M.; Mohseni, S.; Suzuki, K.; Adsuar, J.C.; Pérez-Gómez, J. The Effect of Acute Intense Exercise on Activity of Antioxidant Enzymes in Smokers and Non-Smokers. Biomolecules 2021, 11, 171. [Google Scholar] [CrossRef]
- Nobari, H.; Kargarfard, M.; Minasian, V.; Cholewa, J.M.; Pérez-Gómez, J. The effects of 14-week betaine supplementation on endocrine markers, body composition and anthropometrics in professional youth soccer players: A double blind, randomized, placebo-controlled trial. J. Int. Soc. Sports Nutr. 2021, 18, 20. [Google Scholar] [CrossRef]
- Szulinska, M.; Gibas-Dorna, M.; Miller-Kasprzak, E.; Suliburska, J.; Miczke, A.; Walczak-Gałezewska, M.; Stelmach-Mardas, M.; Walkowiak, J.; Bogdanski, P. Spirulina maxima improves insulin sensitivity, lipid profile, and total antioxidant status in obese patients with well-treated hypertension: A randomized double-blind placebo-controlled study. Eur. Rev. Med. Pharm. Sci. 2017, 21, 2473–2481. [Google Scholar]
- Mohebbi, H.; Azizi, M.; Moradiani, H. Effect of 8 weeks low and high intensity resistance training on leukocyte count, Igg, cortisol and lactate concentration in untrained men. World Appl. Sci. J. 2012, 16, 949–954. [Google Scholar]
- Santoso, D.A.; Asnar, E. Changes of Interleukin-6 (IL-6) and Immunoglobulin G (igG) in Respiratory Excercise. Indian J. Forensic Med. Toxicol. 2020, 14, 1501–1506. [Google Scholar]
- Chu, W.-L.; Van Quynh, L.; Radhakrishnan, A.K. Effect of Spirulina (Arthrospira) supplementation on the immune response to tetanus toxoid vaccination in a mouse model. J. Diet. Suppl. 2013, 10, 229–240. [Google Scholar] [CrossRef]
- Seyidoglu, N.; Inan, S.; Aydin, C. A Prominent Superfood: Spirulina platensis. In Superfood Functional Food. The Development of Superfoods Their Roles as Medicine; Shiomi, N., Ed.; InTechOpen: London, UK, 2017; pp. 1–27. [Google Scholar]
- Ötleş, S.; Pire, R. Fatty acid composition of Chlorella and Spirulina microalgae species. J. AOAC Int. 2001, 84, 1708–1714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, G.R.; Fisher, G.; Neumeier, W.H.; Carter, S.J.; Plaisance, E.P. Exercise training and energy expenditure following weight loss. Med. Sci. Sports Exerc. 2015, 47, 1950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vella, C.A.; Taylor, K.; Drummer, D. High-intensity interval and moderate-intensity continuous training elicit similar enjoyment and adherence levels in overweight and obese adults. Eur. J. Sport Sci. 2017, 17, 1203–1211. [Google Scholar] [CrossRef] [PubMed]
Group | Age (Year) | Height (cm) | Body Mass (kg) | BMI (kg/m2) | 90% HRmax |
---|---|---|---|---|---|
PH | 26 ± 8 | 162 ± 4 | 73 ± 5 | 27.6 ± 1.9 | ~171 bpm |
CG | 24 ± 6 | 163 ± 3 | 76 ± 11 | 28.8 ± 4.3 | ~172 bpm |
SG | 24 ± 6 | 160 ± 2 | 77 ± 9 | 29.9 ± 1.2 | ~172 bpm |
Variables | Groups | Pre-Training | Post-Training | CI 95% for Difference | Hedge’s g | % Changes | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
VO2max (mL·kg−1· min−1) | PH | 21.8 ± 3.4 | 23.4 ± 1.8 | −4.21 | 0.93 | 0.57 | 9.21 |
CG | 23.2 ± 2.1 | 25.6 ± 3.1 | −4.85 | 0.05 | 0.88 | 11.03 | |
SG | 21.3 ± 1.9 | 21.9 ± 3.0 | −2.91 | 1.73 | 0.23 | 2.58 | |
IgA (mg/lit) | PH | 161.7 ± 86.2 | 149.2 ± 50.8 | −53.97 | 78.97 | −0.16 | −2.31 |
CG | 173.1 ± 33.7 | 212.7 ± 67.8 * | −89.90 | 10.70 | 0.70 | 21.23 | |
SG | 171.1 ± 47.9 | 187.5 ± 44.6 * | −59.86 | 27.06 | 0.33 | 11.82 | |
IgG (mg/lit) | PH | 1253.5 ± 413.6 | 1227.1 ± 316.1 | −319.46 | 372.26 | −0.06 | −3.21 |
CG | 1309.3 ± 285.3 | 1461.5 ± 240.1 | −399.91 | 95.51 | 0.55 | 13.28 | |
SG | 1301.0 ± 317.8 | 1460.4 ± 272.2 | −437.38 | 118.58 | 0.51 | 14.17 |
Variables | Groups | Pre-Training | Post-Training | CI 95% for Difference | Hedge’s g | % Changes | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
BMI (kg/m2) | PH | 27.6 ± 1.9 | 26.3 ± 1.9 | −0.48 | 3.08 | −0.65 | −4.64 |
CG | 28.8 ± 4.3 | 27.7 ± 4.6 | −3.08 | 5.26 | −0.23 | −3.92 | |
SG | 29.9 ± 4.0 | 29.6 ± 4.1 | −3.49 | 4.09 | −0.07 | −1.06 | |
WHR (cm) | PH | 0.80 ± 0.05 | 0.79 ± 0.06 | −0.04 | 0.06 | −0.17 | −1.15 |
CG | 0.73 ± 0.03 | 0.72 ± 0.03 | −0.01 | 0.03 | −0.31 | −1.79 | |
SG | 0.88 ± 0.18 | 0.80 ± 0.09 | −0.05 | 0.21 | −0.53 | −6.74 | |
Body mass (kg) | PH | 73.3 ± 5.3 | 70.2 ± 4.0 | −1.33 | 7.45 | −0.62 | −4.03 |
CG | 76.7 ± 11.1 | 74.1 ± 11.1 | −7.83 | 13.01 | −0.22 | −3.40 | |
SG | 77.3 ± 8.9 | 76.1 ± 10.0 | −7.64 | 10.10 | −0.12 | −1.73 | |
FFM (kg) | PH | 19.5 ± 2.1 | 19.1 ± 2.4 | −1.76 | 2.46 | −0.14 | −1.89 |
CG | 18.8 ± 0.8 | 18.3 ± 0.96 * | −0.32 | 1.36 | −0.54 | −2.76 | |
SG | 19.7 ± 2.3 | 20.1 ± 2.1 | −2.47 | 1.67 | 0.17 | 2.22 | |
BF (%) | PH | 31.7 ± 3.0 | 30.4 ± 3.0 | −1.39 | 4.09 | −0.43 | −4.20 |
CG | 32.0 ± 2.4 | 31.0 ± 3.0 | −1.48 | 3.62 | −0.37 | −3.43 | |
SG | 33.9 ± 3.9 | 31.3 ± 2.9 | −0.64 | 5.82 | −0.71 | −7.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nobari, H.; Gandomani, E.E.; Reisi, J.; Vahabidelshad, R.; Suzuki, K.; Volpe, S.L.; Pérez-Gómez, J. Effects of 8 Weeks of High-Intensity Interval Training and Spirulina Supplementation on Immunoglobin Levels, Cardio-Respiratory Fitness, and Body Composition of Overweight and Obese Women. Biology 2022, 11, 196. https://doi.org/10.3390/biology11020196
Nobari H, Gandomani EE, Reisi J, Vahabidelshad R, Suzuki K, Volpe SL, Pérez-Gómez J. Effects of 8 Weeks of High-Intensity Interval Training and Spirulina Supplementation on Immunoglobin Levels, Cardio-Respiratory Fitness, and Body Composition of Overweight and Obese Women. Biology. 2022; 11(2):196. https://doi.org/10.3390/biology11020196
Chicago/Turabian StyleNobari, Hadi, Elham Eyni Gandomani, Jalil Reisi, Reyhaneh Vahabidelshad, Katsuhiko Suzuki, Stella Lucia Volpe, and Jorge Pérez-Gómez. 2022. "Effects of 8 Weeks of High-Intensity Interval Training and Spirulina Supplementation on Immunoglobin Levels, Cardio-Respiratory Fitness, and Body Composition of Overweight and Obese Women" Biology 11, no. 2: 196. https://doi.org/10.3390/biology11020196
APA StyleNobari, H., Gandomani, E. E., Reisi, J., Vahabidelshad, R., Suzuki, K., Volpe, S. L., & Pérez-Gómez, J. (2022). Effects of 8 Weeks of High-Intensity Interval Training and Spirulina Supplementation on Immunoglobin Levels, Cardio-Respiratory Fitness, and Body Composition of Overweight and Obese Women. Biology, 11(2), 196. https://doi.org/10.3390/biology11020196