Platelet–Leucocyte Aggregates as Novel Biomarkers in Cardiovascular Diseases
Abstract
:Simple Summary
Abstract
1. Introduction
2. Characteristics of Platelet–Leucocyte Aggregates
3. Clinical Applications
3.1. Risk Factors of Cardiovascular Diseases
3.2. Platelet–Leucocyte Aggregates in Chronic Coronary Syndromes
3.3. Changes in Platelet–Leucocyte Aggregates after Coronary Artery Bypass Grafting
3.4. Platelet–Leucocyte Aggregates in Acute Coronary Syndromes
3.5. Changes in Platelet–Leucocyte Aggregates after Percutaneous Coronary Intervention
3.6. Treatment with β-Blockers in Acute Myocardial Infarction
3.7. Monitoring Antiplatelet Treatment
3.7.1. Acetylsalicylic Acid in Monotherapy
3.7.2. P2Y12-Receptor Antagonists
3.7.3. Acetylsalicylic Acid in Comparison with P2Y12-Receptor Antagonists
3.7.4. Dual Antiplatelet Therapy
3.7.5. GP IIb/IIIa Inhibitors
3.7.6. Prostacyclin Analogues
4. Methods of Measurement
4.1. Conventional Flow Cytometry
4.2. Imaging Flow Cytometry
4.3. Microscopy
5. Summary and Future Possibilities
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Health Estimates 2020: Deaths by Cause, Age, Sex, by Country and by Region, 2000–2019; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Statistics Netherlands (CBS). StatLine: Population; Key Figures. Available online: https://opendata.cbs.nl/statline/#/CBS/en/dataset/37296eng/table?dl=45163 (accessed on 16 October 2021).
- Neumann, F.J.; Zohlnhofer, D.; Fakhoury, L.; Ott, I.; Gawaz, M.; Schomig, A. Effect of glycoprotein IIb/IIIa receptor blockade on platelet-leukocyte interaction and surface expression of the leukocyte integrin Mac-1 in acute myocardial infarction. J. Am. Coll. Cardiol. 1999, 34, 1420–1426. [Google Scholar] [CrossRef]
- Nagasawa, A.; Matsuno, K.; Tamura, S.; Hayasaka, K.; Shimizu, C.; Moriyama, T. The basis examination of leukocyte-platelet aggregates with CD45 gating as a novel platelet activation marker. Int. J. Lab. Hematol. 2013, 35, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Petito, E.; Amison, R.T.; Piselli, E.; Shah, S.A.; Momi, S.; Pitchford, S.C.; Gresele, P.; Page, C.P. A dichotomy in platelet activation: Evidence of different functional platelet responses to inflammatory versus haemostatic stimuli. Thromb. Res. 2018, 172, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Marques, P.; Collado, A.; Escudero, P.; Rius, C.; Gonzalez, C.; Servera, E.; Piqueras, L.; Sanz, M.J. Cigarette Smoke Increases Endothelial CXCL16-Leukocyte CXCR6 Adhesion In Vitro and In Vivo. Potential Consequences in Chronic Obstructive Pulmonary Disease. Front. Immunol. 2017, 8, 1766. [Google Scholar] [CrossRef]
- Miao, D.; Li, D.Y.; Chen, M.; Zhao, M.H. Platelets are activated in ANCA-associated vasculitis via thrombin-PARs pathway and can activate the alternative complement pathway. Arthritis Res. Ther. 2017, 19, 252. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.C.; Ezzelarab, M.; Shapiro, R.; Ekser, B.; Long, C.; Hara, H.; Echeverri, G.; Torres, C.; Watanabe, H.; Ayares, D.; et al. Recipient tissue factor expression is associated with consumptive coagulopathy in pig-to-primate kidney xenotransplantation. Am. J. Transplant. 2010, 10, 1556–1568. [Google Scholar] [CrossRef] [PubMed]
- Hara, T.; Shimizu, K.; Ogawa, F.; Yanaba, K.; Iwata, Y.; Muroi, E.; Takenaka, M.; Komura, K.; Hasegawa, M.; Fujimoto, M.; et al. Platelets control leukocyte recruitment in a murine model of cutaneous arthus reaction. Am. J. Pathol. 2010, 176, 259–269. [Google Scholar] [CrossRef]
- Hottz, E.D.; Quirino-Teixeira, A.C.; Merij, L.B.; Pinheiro, M.B.M.; Rozini, S.V.; Bozza, F.A.; Bozza, P.T. Platelet-leukocyte interactions in the pathogenesis of viral infections. Platelets 2021, 1–8. Available online: https://www.tandfonline.com/doi/full/10.1080/09537104.2021.1952179 (accessed on 27 November 2021). [CrossRef]
- Taus, F.; Salvagno, G.; Cane, S.; Fava, C.; Mazzaferri, F.; Carrara, E.; Petrova, V.; Barouni, R.M.; Dima, F.; Dalbeni, A.; et al. Platelets Promote Thromboinflammation in SARS-CoV-2 Pneumonia. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 2975–2989. [Google Scholar] [CrossRef]
- Liverani, E.; Rico, M.C.; Tsygankov, A.Y.; Kilpatrick, L.E.; Kunapuli, S.P. P2Y12 Receptor Modulates Sepsis-Induced Inflammation. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 961–971. [Google Scholar] [CrossRef]
- Gawaz, M.; Reininger, A.; Neumann, F.J. Platelet function and platelet-leukocyte adhesion in symptomatic coronary heart disease. Effects of intravenous magnesium. Thromb. Res. 1996, 83, 341–349. [Google Scholar] [CrossRef]
- Brambilla, M.; Camera, M.; Colnago, D.; Marenzi, G.; De Metrio, M.; Giesen, P.L.; Balduini, A.; Veglia, F.; Gertow, K.; Biglioli, P.; et al. Tissue factor in patients with acute coronary syndromes: Expression in platelets, leukocytes, and platelet-leukocyte aggregates. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 947–953. [Google Scholar] [CrossRef]
- Zhang, S.Z.; Jin, Y.P.; Qin, G.M.; Wang, J.H. Association of platelet-monocyte aggregates with platelet activation, systemic inflammation, and myocardial injury in patients with non-st elevation acute coronary syndromes. Clin. Cardiol. 2007, 30, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Sarma, J.; Laan, C.A.; Alam, S.; Jha, A.; Fox, K.A.; Dransfield, I. Increased platelet binding to circulating monocytes in acute coronary syndromes. Circulation 2002, 105, 2166–2171. [Google Scholar] [CrossRef] [PubMed]
- Ashman, N.; Macey, M.G.; Fan, S.L.; Azam, U.; Yaqoob, M.M. Increased platelet-monocyte aggregates and cardiovascular disease in end-stage renal failure patients. Nephrol. Dial. Transplant. 2003, 18, 2088–2096. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Lin, J.; Zhou, Q.; Huang, R.; Chai, Z. The TXA2R rs1131882, P2Y1 rs1371097 and GPIIIa rs2317676 three-loci interactions may increase the risk of carotid stenosis in patients with ischemic stroke. BMC Neurol. 2019, 19, 44. [Google Scholar] [CrossRef]
- Allen, N.; Barrett, T.J.; Guo, Y.; Nardi, M.; Ramkhelawon, B.; Rockman, C.B.; Hochman, J.S.; Berger, J.S. Circulating monocyte-platelet aggregates are a robust marker of platelet activity in cardiovascular disease. Atherosclerosis 2019, 282, 11–18. [Google Scholar] [CrossRef]
- Dopheide, J.F.; Rubrech, J.; Trumpp, A.; Geissler, P.; Zeller, G.C.; Bock, K.; Dünschede, F.; Trinh, T.T.; Dorweiler, B.; Münzel, T.; et al. Leukocyte-platelet aggregates-a phenotypic characterization of different stages of peripheral arterial disease. Platelets 2016, 27, 658–667. [Google Scholar] [CrossRef]
- Pfluecke, C.; Tarnowski, D.; Plichta, L.; Berndt, K.; Schumacher, P.; Ulbrich, S.; Forkmann, M.; Christoph, M.; Poitz, D.M.; Wunderlich, C.; et al. Monocyte-platelet aggregates and CD11b expression as markers for thrombogenicity in atrial fibrillation. Clin. Res. Cardiol. 2016, 105, 314–322. [Google Scholar] [CrossRef]
- Shih, L.; Kaplan, D.; Kraiss, L.W.; Casper, T.C.; Pendleton, R.C.; Peters, C.L.; Supiano, M.A.; Zimmerman, G.A.; Weyrich, A.S.; Rondina, M.T. Platelet-Monocyte Aggregates and C-Reactive Protein are Associated with VTE in Older Surgical Patients. Sci. Rep. 2016, 6, 27478. [Google Scholar] [CrossRef]
- Zagrapan, B.; Eilenberg, W.; Prausmueller, S.; Nawrozi, P.; Muench, K.; Hetzer, S.; Elleder, V.; Rajic, R.; Juster, F.; Martelanz, L.; et al. A Novel Diagnostic and Prognostic Score for Abdominal Aortic Aneurysms Based on D-Dimer and a Comprehensive Analysis of Myeloid Cell Parameters. Thromb. Haemost. 2019, 119, 807–820. [Google Scholar] [CrossRef] [PubMed]
- Finsterbusch, M.; Schrottmaier, W.C.; Kral-Pointner, J.B.; Salzmann, M.; Assinger, A. Measuring and interpreting platelet-leukocyte aggregates. Platelets 2018, 29, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Marques, P.; Collado, A.; Martinez-Hervas, S.; Domingo, E.; Benito, E.; Piqueras, L.; Real, J.T.; Ascaso, J.F.; Sanz, M.J. Systemic Inflammation in Metabolic Syndrome: Increased Platelet and Leukocyte Activation, and Key Role of CX3CL1/CX3CR1 and CCL2/CCR2 Axes in Arterial Platelet-Proinflammatory Monocyte Adhesion. J. Clin. Med. 2019, 8, 708. [Google Scholar] [CrossRef] [PubMed]
- Patko, Z.; Csaszar, A.; Acsady, G.; Ory, I.; Takacs, E.; Furesz, J. Elevation of monocyte-platelet aggregates is an early marker of type 2 diabetes. Interv. Med. Appl. Sci. 2012, 4, 181–185. [Google Scholar] [CrossRef]
- Elalamy, I.; Chakroun, T.; Gerotziafas, G.T.; Petropoulou, A.; Robert, F.; Karroum, A.; Elgrably, F.; Samama, M.M.; Hatmi, M. Circulating platelet-leukocyte aggregates: A marker of microvascular injury in diabetic patients. Thromb. Res. 2008, 121, 843–848. [Google Scholar] [CrossRef]
- Sener, A.; Ozsavci, D.; Oba, R.; Demirel, G.Y.; Uras, F.; Yardimci, K.T. Do platelet apoptosis, activation, aggregation, lipid peroxidation and platelet-leukocyte aggregate formation occur simultaneously in hyperlipidemia? Clin. Biochem. 2005, 38, 1081–1087. [Google Scholar] [CrossRef] [PubMed]
- Ziegler-Heitbrock, L.; Ancuta, P.; Crowe, S.; Dalod, M.; Grau, V.; Hart, D.N.; Leenen, P.J.; Liu, Y.J.; MacPherson, G.; Randolph, G.J.; et al. Nomenclature of monocytes and dendritic cells in blood. Blood 2010, 116, e74–e80. [Google Scholar] [CrossRef]
- Czepluch, F.S.; Kuschicke, H.; Dellas, C.; Riggert, J.; Hasenfuss, G.; Schafer, K. Increased proatherogenic monocyte-platelet cross-talk in monocyte subpopulations of patients with stable coronary artery disease. J. Intern. Med. 2014, 275, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Zawada, A.M.; Rogacev, K.S.; Rotter, B.; Winter, P.; Marell, R.R.; Fliser, D.; Heine, G.H. SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset. Blood 2011, 118, e50–e61. [Google Scholar] [CrossRef] [PubMed]
- Thomas, G.D.; Hamers, A.A.J.; Nakao, C.; Marcovecchio, P.; Taylor, A.M.; McSkimming, C.; Nguyen, A.T.; McNamara, C.A.; Hedrick, C.C. Human Blood Monocyte Subsets: A New Gating Strategy Defined Using Cell Surface Markers Identified by Mass Cytometry. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1548–1558. [Google Scholar] [CrossRef]
- Kapellos, T.S.; Bonaguro, L.; Gemund, I.; Reusch, N.; Saglam, A.; Hinkley, E.R.; Schultze, J.L. Human Monocyte Subsets and Phenotypes in Major Chronic Inflammatory Diseases. Front. Immunol. 2019, 10, 2035. [Google Scholar] [CrossRef] [PubMed]
- Loguinova, M.; Pinegina, N.; Kogan, V.; Vagida, M.; Arakelyan, A.; Shpektor, A.; Margolis, L.; Vasilieva, E. Monocytes of Different Subsets in Complexes with Platelets in Patients with Myocardial Infarction. Thromb. Haemost. 2018, 118, 1969–1981. [Google Scholar] [CrossRef] [PubMed]
- Hartz, S.; Menart, B.; Tschoepe, D. Leukocyte apoptosis in whole blood involves platelet-dependent coaggregation. Cytom. A 2003, 52, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Granja, T.; Schad, J.; Schussel, P.; Fischer, C.; Haberle, H.; Rosenberger, P.; Straub, A. Using six-colour flow cytometry to analyse the activation and interaction of platelets and leukocytes—A new assay suitable for bench and bedside conditions. Thromb. Res. 2015, 136, 786–796. [Google Scholar] [CrossRef]
- Hagberg, I.A.; Lyberg, T. Evaluation of circulating platelet-leukocyte conjugates: A sensitive flow cytometric assay well suited for clinical studies. Platelets 2000, 11, 151–160. [Google Scholar] [CrossRef]
- Ed Rainger, G.; Chimen, M.; Harrison, M.J.; Yates, C.M.; Harrison, P.; Watson, S.P.; Lordkipanidze, M.; Nash, G.B. The role of platelets in the recruitment of leukocytes during vascular disease. Platelets 2015, 26, 507–520. [Google Scholar] [CrossRef]
- Schafer, A.; Fraccarollo, D.; Eigenthaler, M.; Tas, P.; Firnschild, A.; Frantz, S.; Ertl, G.; Bauersachs, J. Rosuvastatin reduces platelet activation in heart failure: Role of NO bioavailability. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 1071–1077. [Google Scholar] [CrossRef]
- Park, J.B. Bioavailability of Alfrutamide and Caffedymine and Their P-Selectin Suppression and Platelet-Leukocyte Aggregation Mechanisms in Mice. J. Nutr. 2016, 146, 437S–443S. [Google Scholar] [CrossRef]
- Badrnya, S.; Baumgartner, R.; Assinger, A. Smoking alters circulating plasma microvesicle pattern and microRNA signatures. Thromb. Haemost. 2014, 112, 128–136. [Google Scholar] [CrossRef]
- Lupia, E.; Bosco, O.; Goffi, A.; Poletto, C.; Locatelli, S.; Spatola, T.; Cuccurullo, A.; Montrucchio, G. Thrombopoietin contributes to enhanced platelet activation in cigarette smokers. Atherosclerosis 2010, 210, 314–319. [Google Scholar] [CrossRef]
- Labios, M.; Martinez, M.; Gabriel, F.; Guiral, V.; Aznar, J. Effect of doxazosin gastrointestinal therapeutic system on platelet degranulation and platelet-leukocyte microaggregate formation induced by physiologic shear stress in hypertension. Thromb. Res. 2006, 118, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Morel-Kopp, M.C.; McLean, L.; Chen, Q.; Tofler, G.H.; Tennant, C.; Maddison, V.; Ward, C.M. The association of depression with platelet activation: Evidence for a treatment effect. J. Thromb. Haemost. 2009, 7, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Ray, M.R.; Mukherjee, S.; Roychoudhury, S.; Bhattacharya, P.; Banerjee, M.; Siddique, S.; Chakraborty, S.; Lahiri, T. Platelet activation, upregulation of CD11b/ CD18 expression on leukocytes and increase in circulating leukocyte-platelet aggregates in Indian women chronically exposed to biomass smoke. Hum. Exp. Toxicol. 2006, 25, 627–635. [Google Scholar] [CrossRef]
- Li, N.; Goodall, A.H.; Hjemdahl, P. Efficient flow cytometric assay for platelet-leukocyte aggregates in whole blood using fluorescence signal triggering. Cytometry 1999, 35, 154–161. [Google Scholar] [CrossRef]
- Yaw, H.P.; Van Den Helm, S.; Linden, M.; Monagle, P.; Ignjatovic, V. Whole blood flow cytometry protocol for the assessment of platelet phenotype, function, and cellular interactions. Platelets 2021, 32, 786–793. [Google Scholar] [CrossRef] [PubMed]
- Gilstad, J.R.; Gurbel, P.A.; Andersen, R.E. Relationship between age and platelet activation in patients with stable and unstable angina. Arch. Gerontol. Geriatr. 2009, 48, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Gremmel, T.; Kopp, C.W.; Eichelberger, B.; Koppensteiner, R.; Panzer, S. Sex differences of leukocyte-platelet interactions and on-treatment platelet reactivity in patients with atherosclerosis. Atherosclerosis 2014, 237, 692–695. [Google Scholar] [CrossRef]
- Li, N.; Goodall, A.H.; Hjemdahl, P. A sensitive flow cytometric assay for circulating platelet-leucocyte aggregates. Br. J. Haematol. 1997, 99, 808–816. [Google Scholar] [CrossRef]
- Rosin, C.; Brunner, M.; Lehr, S.; Quehenberger, P.; Panzer, S. The formation of platelet-leukocyte aggregates varies during the menstrual cycle. Platelets 2006, 17, 61–66. [Google Scholar] [CrossRef]
- Li, Y.; Becker, K.C.; Slatkin, D.; Spencer, F.; Becker, R.C. The effect of temperature variation in vitro on platelet-leukocyte interactions and individual prothrombotic potential. J. Thromb. Thrombolysis 2004, 18, 19–23. [Google Scholar] [CrossRef]
- Etulain, J.; Negrotto, S.; Carestia, A.; Pozner, R.G.; Romaniuk, M.A.; D’Atri, L.P.; Klement, G.L.; Schattner, M. Acidosis downregulates platelet haemostatic functions and promotes neutrophil proinflammatory responses mediated by platelets. Thromb. Haemost. 2012, 107, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Varon, D.; Hjemdahl, P.; Savion, N.; Schulman, S.; Li, N. Platelet-leukocyte aggregation under shear stress: Differential involvement of selectins and integrins. Thromb. Haemost. 2003, 90, 679–687. [Google Scholar] [CrossRef] [PubMed]
- Vermillion, M.S.; Lyons, C.E.; Najarro, K.M.; Adams, R.J.; Metcalf Pate, K.A. Immune Activation of Platelets in Response to Serial Phlebotomy in Pigtailed Macaques (Macaca nemestrina). Comp. Med. 2017, 67, 360–367. [Google Scholar] [PubMed]
- Chung, A.W.; Radomski, A.; Alonso-Escolano, D.; Jurasz, P.; Stewart, M.W.; Malinski, T.; Radomski, M.W. Platelet-leukocyte aggregation induced by PAR agonists: Regulation by nitric oxide and matrix metalloproteinases. Br. J. Pharmacol. 2004, 143, 845–855. [Google Scholar] [CrossRef]
- Scotland, R.S.; Cohen, M.; Foster, P.; Lovell, M.; Mathur, A.; Ahluwalia, A.; Hobbs, A.J. C-type natriuretic peptide inhibits leukocyte recruitment and platelet-leukocyte interactions via suppression of P-selectin expression. Proc. Natl. Acad. Sci. USA 2005, 102, 14452–14457. [Google Scholar] [CrossRef]
- Izzi, B.; Gianfagna, F.; Yang, W.Y.; Cludts, K.; De Curtis, A.; Verhamme, P.; Di Castelnuovo, A.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; et al. Variation of PEAR1 DNA methylation influences platelet and leukocyte function. Clin. Epigenetics 2019, 11, 151. [Google Scholar] [CrossRef]
- Rinder, H.M.; Bonan, J.L.; Rinder, C.S.; Ault, K.A.; Smith, B.R. Dynamics of leukocyte-platelet adhesion in whole blood. Blood 1991, 78, 1730–1737. [Google Scholar] [CrossRef]
- Patko, Z.; Csaszar, A.; Acsady, G.; Peter, K.; Schwarz, M. Roles of Mac-1 and glycoprotein IIb/IIIa integrins in leukocyte-platelet aggregate formation: Stabilization by Mac-1 and inhibition by GpIIb/IIIa blockers. Platelets 2012, 23, 368–375. [Google Scholar] [CrossRef]
- Yokoyama, S.; Ikeda, H.; Haramaki, N.; Yasukawa, H.; Murohara, T.; Imaizumi, T. Platelet P-selectin plays an important role in arterial thrombogenesis by forming large stable platelet-leukocyte aggregates. J. Am. Coll. Cardiol. 2005, 45, 1280–1286. [Google Scholar] [CrossRef]
- Tomaniak, M.; Gasecka, A.; Filipiak, K.J. Cell-derived microvesicles in cardiovascular diseases and antiplatelet therapy monitoring—A lesson for future trials? Current evidence, recent progresses and perspectives of clinical application. Int. J. Cardiol. 2017, 226, 93–102. [Google Scholar] [CrossRef]
- Maugeri, N.; Campana, L.; Gavina, M.; Covino, C.; De Metrio, M.; Panciroli, C.; Maiuri, L.; Maseri, A.; D’Angelo, A.; Bianchi, M.E.; et al. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J. Thromb. Haemost. 2014, 12, 2074–2088. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.R.; Ma, A.C.; Tavener, S.A.; McDonald, B.; Goodarzi, Z.; Kelly, M.M.; Patel, K.D.; Chakrabarti, S.; McAvoy, E.; Sinclair, G.D.; et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 2007, 13, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Perdomo, J.; Leung, H.H.L.; Ahmadi, Z.; Yan, F.; Chong, J.J.H.; Passam, F.H.; Chong, B.H. Neutrophil activation and NETosis are the major drivers of thrombosis in heparin-induced thrombocytopenia. Nat. Commun. 2019, 10, 1322. [Google Scholar] [CrossRef] [PubMed]
- Stakos, D.A.; Kambas, K.; Konstantinidis, T.; Mitroulis, I.; Apostolidou, E.; Arelaki, S.; Tsironidou, V.; Giatromanolaki, A.; Skendros, P.; Konstantinides, S.; et al. Expression of functional tissue factor by neutrophil extracellular traps in culprit artery of acute myocardial infarction. Eur. Heart J. 2015, 36, 1405–1414. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Li, T.; Jin, J.; Liu, Y.; Li, B.; Sun, Q.; Tian, J.; Zhao, H.; Liu, Z.; Ma, S.; et al. Interactions between neutrophil extracellular traps and activated platelets enhance procoagulant activity in acute stroke patients with ICA occlusion. EBioMedicine 2020, 53, 102671. [Google Scholar] [CrossRef]
- Zucoloto, A.Z.; Jenne, C.N. Platelet-Neutrophil Interplay: Insights Into Neutrophil Extracellular Trap (NET)-Driven Coagulation in Infection. Front. Cardiovasc. Med. 2019, 6, 85. [Google Scholar] [CrossRef]
- Lukasik, M.; Dworacki, G.; Kufel-Grabowska, J.; Watala, C.; Kozubski, W. Upregulation of CD40 ligand and enhanced monocyte-platelet aggregate formation are associated with worse clinical outcome after ischaemic stroke. Thromb. Haemost. 2012, 107, 346–355. [Google Scholar] [CrossRef]
- Cho, K.J.; Kim, J.; Jeon, S.H.; Kim, G.W. Circulating Factors and Ultrasono-findings are Linked to Previous Atherosclerotic Burden and Recurrent Risk. Curr. Pharm. Des. 2019, 25, 1424–1429. [Google Scholar] [CrossRef]
- Yusuf, S.; Joseph, P.; Rangarajan, S.; Islam, S.; Mente, A.; Hystad, P.; Brauer, M.; Kutty, V.R.; Gupta, R.; Wielgosz, A.; et al. Modifiable risk factors, cardiovascular disease, and mortality in 155,722 individuals from 21 high-income, middle-income, and low-income countries (PURE): A prospective cohort study. Lancet 2020, 395, 795–808. [Google Scholar] [CrossRef]
- Zahran, A.M.; El-Badawy, O.; Mohamad, I.L.; Tamer, D.M.; Abdel-Aziz, S.M.; Elsayh, K.I. Platelet Activation and Platelet-Leukocyte Aggregates in Type I Diabetes Mellitus. Clin. Appl. Thromb. Hemost. 2018, 24, 230S–239S. [Google Scholar] [CrossRef]
- Hu, H.; Li, N.; Yngen, M.; Ostenson, C.G.; Wallen, N.H.; Hjemdahl, P. Enhanced leukocyte-platelet cross-talk in Type 1 diabetes mellitus: Relationship to microangiopathy. J. Thromb. Haemost. 2004, 2, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Hilberg, T.; Eichler, E.; Glaser, D.; Schmidt, V.; Gabriel, H.H. Platelet activity, reactivity and platelet-leukocyte conjugate formation before and after exhaustive or moderate exercise in patients with IDDM. Platelets 2004, 15, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, F.; Grant, P.J.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, D.E.; Hansen, T.B.; et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur. Heart J. 2020, 41, 255–323. [Google Scholar] [CrossRef] [PubMed]
- Collado, A.; Marques, P.; Domingo, E.; Perello, E.; Gonzalez-Navarro, H.; Martinez-Hervas, S.; Real, J.T.; Piqueras, L.; Ascaso, J.F.; Sanz, M.J. Novel Immune Features of the Systemic Inflammation Associated with Primary Hypercholesterolemia: Changes in Cytokine/Chemokine Profile, Increased Platelet and Leukocyte Activation. J. Clin. Med. 2018, 8, 18. [Google Scholar] [CrossRef] [PubMed]
- Sexton, T.R.; Wallace, E.L.; Macaulay, T.E.; Charnigo, R.J.; Evangelista, V.; Campbell, C.L.; Bailey, A.L.; Smyth, S.S. The effect of rosuvastatin on platelet-leukocyte interactions in the setting of acute coronary syndrome. J. Am. Coll. Cardiol. 2015, 65, 306–307. [Google Scholar] [CrossRef] [PubMed]
- Malmstrom, R.E.; Settergren, M.; Bohm, F.; Pernow, J.; Hjemdahl, P. No effect of lipid lowering on platelet activity in patients with coronary artery disease and type 2 diabetes or impaired glucose tolerance. Thromb. Haemost. 2009, 101, 157–164. [Google Scholar] [PubMed]
- Chang, S.S.; Lee, V.S.; Tseng, Y.L.; Chang, K.C.; Chen, K.B.; Chen, Y.L.; Li, C.Y. Gallic Acid Attenuates Platelet Activation and Platelet-Leukocyte Aggregation: Involving Pathways of Akt and GSK3beta. Evid. Based Complement. Alternat. Med. 2012, 2012, 683872. [Google Scholar] [CrossRef] [PubMed]
- Bijak, M.; Dziedzic, A.; Synowiec, E.; Sliwinski, T.; Saluk-Bijak, J. Flavonolignans Inhibit IL1-beta-Induced Cross-Talk between Blood Platelets and Leukocytes. Nutrients 2017, 9, 1022. [Google Scholar] [CrossRef] [PubMed]
- Krga, I.; Vidovic, N.; Milenkovic, D.; Konic-Ristic, A.; Stojanovic, F.; Morand, C.; Glibetic, M. Effects of anthocyanins and their gut metabolites on adenosine diphosphate-induced platelet activation and their aggregation with monocytes and neutrophils. Arch. Biochem. Biophys. 2018, 645, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Iwase, H.; Kariyazono, H.; Arima, J.; Yamamoto, H.; Nakamura, K. Nutritional Effect of Oral Supplement Enriched in omega-3 Fatty Acids, Arginine, RNA on Immune Response and Leukocyte-platelet Aggregate Formation in Patients Undergoing Cardiac Surgery. Nutr. Metab. Insights 2014, 7, 39–46. [Google Scholar] [CrossRef]
- Hilberg, T.; Menzel, K.; Glaser, D.; Zimmermann, S.; Gabriel, H.H. Exercise intensity: Platelet function and platelet-leukocyte conjugate formation in untrained subjects. Thromb. Res. 2008, 122, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; He, S.; Blomback, M.; Hjemdahl, P. Platelet activity, coagulation, and fibrinolysis during exercise in healthy males: Effects of thrombin inhibition by argatroban and enoxaparin. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Perneby, C.; Wallen, N.H.; Hu, H.; Li, N.; Hjemdahl, P. Prothrombotic responses to exercise are little influenced by clopidogrel treatment. Thromb. Res. 2004, 114, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.S.; Lin, H.Y.; Cheng, M.L.; Wong, M.K. Chronic intermittent hypoxia modulates eosinophil- and neutrophil-platelet aggregation and inflammatory cytokine secretion caused by strenuous exercise in men. J. Appl. Physiol. 2007, 103, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Furman, M.I.; Benoit, S.E.; Barnard, M.R.; Valeri, C.R.; Borbone, M.L.; Becker, R.C.; Hechtman, H.B.; Michelson, A.D. Increased platelet reactivity and circulating monocyte-platelet aggregates in patients with stable coronary artery disease. J. Am. Coll. Cardiol. 1998, 31, 352–358. [Google Scholar] [CrossRef]
- Gremmel, T.; Michelson, A.D.; Frelinger, A.L., III. In Vivo and protease-activated receptor-1-mediated platelet activation in patients presenting for cardiac catheterization. Platelets 2016, 27, 308–316. [Google Scholar] [CrossRef]
- Sels, J.W.; Rutten, B.; van Holten, T.C.; Hillaert, M.A.; Waltenberger, J.; Pijls, N.H.; Pasterkamp, G.; de Groot, P.G.; Roest, M. The relationship between fractional flow reserve, platelet reactivity and platelet leukocyte complexes in stable coronary artery disease. PLoS ONE 2013, 8, e83198. [Google Scholar] [CrossRef]
- Di Serafino, L.; Sarma, J.; Dierickx, K.; Ntarladimas, I.; Pyxaras, S.A.; Delrue, L.; De Bruyne, B.; Wijns, W.; Barbato, E.; Bartunek, J. Monocyte-platelets aggregates as cellular biomarker of endothelium-dependent coronary vasomotor dysfunction in patients with coronary artery disease. J. Cardiovasc. Transl. Res. 2014, 7, 1–8. [Google Scholar] [CrossRef]
- Brown, R.A.; Lip, G.Y.H.; Varma, C.; Shantsila, E. Impact of Mon2 monocyte-platelet aggregates on human coronary artery disease. Eur. J. Clin. Investig. 2018, 48, e12911. [Google Scholar] [CrossRef]
- Perek, B.; Misterski, M.; Stachowiak, W.; Buczkowski, P.; Stefaniak, S.; Puślecki, M.; Urbanowicz, T.; Budniak, W.; Jemielity, M. The impact of coronary artery disease severity on late survival after combined aortic valve replacement and coronary artery bypass grafting—Experience of a single cardiac surgery center. Kardiochir. Torakochirurgia. Pol. 2014, 11, 361–366. [Google Scholar] [CrossRef]
- Stefanini, G.G.; Stortecky, S.; Cao, D.; Rat-Wirtzler, J.; O’Sullivan, C.J.; Gloekler, S.; Buellesfeld, L.; Khattab, A.A.; Nietlispach, F.; Pilgrim, T.; et al. Coronary artery disease severity and aortic stenosis: Clinical outcomes according to SYNTAX score in patients undergoing transcatheter aortic valve implantation. Eur. Heart J. 2014, 35, 2530–2540. [Google Scholar] [CrossRef] [PubMed]
- Pfluecke, C.; Wydra, S.; Berndt, K.; Tarnowski, D.; Cybularz, M.; Jellinghaus, S.; Mierke, J.; Ende, G.; Poitz, D.M.; Barthel, P.; et al. Mon2-monocytes and increased CD-11b expression before transcatheter aortic valve implantation are associated with earlier death. Int. J. Cardiol. 2020, 318, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Astudillo, R.; Ivert, T.; Hjemdahl, P. Biphasic pro-thrombotic and inflammatory responses after coronary artery bypass surgery. J. Thromb. Haemost. 2003, 1, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Ivert, T.; Dalén, M.; Ander, C.; Stålesen, R.; Lordkipanidzé, M.; Hjemdahl, P. Increased platelet reactivity and platelet-leukocyte aggregation after elective coronary bypass surgery. Platelets 2019, 30, 975–981. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Huang, X.; Liao, J.; Li, Q.; Chen, S.; Liu, C.; Ling, L.; Zhou, J. Platelet-leukocyte aggregates—A predictor for acute kidney injury after cardiac surgery. Ren. Fail. 2021, 43, 1155–1162. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Yang, Y.; Du, L.; Chen, S.; Zhang, J.; Zhang, C.; Zhou, J. Platelet-leukocyte aggregate is associated with adverse events after surgical intervention for rheumatic heart disease. Sci. Rep. 2019, 9, 13069. [Google Scholar] [CrossRef] [PubMed]
- Montrief, T.; Koyfman, A.; Long, B. Coronary artery bypass graft surgery complications: A review for emergency clinicians. Am. J. Emerg. Med. 2018, 36, 2289–2297. [Google Scholar] [CrossRef]
- Ortega-Loubon, C.; Fernández-Molina, M.; Carrascal-Hinojal, Y.; Fulquet-Carreras, E. Cardiac surgery-associated acute kidney injury. Ann. Card. Anaesth 2016, 19, 687–698. [Google Scholar] [CrossRef]
- Huang, S.C.; Wong, M.K.; Lin, P.J.; Tsai, F.C.; Chu, J.J.; Wu, M.Y.; Fu, T.C.; Wang, J.S. Short-term intensive training attenuates the exercise-induced interaction of mono-1/2 cells and platelets after coronary bypass in cardiac patients. Thromb. Haemost. 2017, 117, 1761–1771. [Google Scholar] [CrossRef]
- Tofler, G.H.; Brezinski, D.; Schafer, A.I.; Czeisler, C.A.; Rutherford, J.D.; Willich, S.N.; Gleason, R.E.; Williams, G.H.; Muller, J.E. Concurrent morning increase in platelet aggregability and the risk of myocardial infarction and sudden cardiac death. N. Engl. J. Med. 1987, 316, 1514–1518. [Google Scholar] [CrossRef]
- Budkowska, M.; Lebiecka, A.; Marcinowska, Z.; Woźniak, J.; Jastrzębska, M.; Dołęgowska, B. The circadian rhythm of selected parameters of the hemostasis system in healthy people. Thromb. Res. 2019, 182, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Linsell, C.R.; Lightman, S.L.; Mullen, P.E.; Brown, M.J.; Causon, R.C. Circadian rhythms of epinephrine and norepinephrine in man. J. Clin. Endocrinol. Metab. 1985, 60, 1210–1215. [Google Scholar] [CrossRef] [PubMed]
- Takeda, N.; Maemura, K. Circadian clock and the onset of cardiovascular events. Hypertens. Res. 2016, 39, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Durstberger, M.; Eichelberger, B.; Kopp, C.W.; Koppensteiner, R.; Panzer, S.; Gremmel, T. β-blockers are associated with decreased leucocyte-platelet aggregate formation and lower residual platelet reactivity to adenosine diphosphate after angioplasty and stenting. Eur. J. Clin. Investig. 2016, 46, 1041–1047. [Google Scholar] [CrossRef]
- Weyrich, A.S.; McIntyre, T.M.; McEver, R.P.; Prescott, S.M.; Zimmerman, G.A. Monocyte tethering by P-selectin regulates monocyte chemotactic protein-1 and tumor necrosis factor-alpha secretion. Signal integration and NF-kappa B translocation. J. Clin. Investig. 1995, 95, 2297–2303. [Google Scholar] [CrossRef]
- Christersson, C.; Johnell, M.; Siegbahn, A. Tissue factor and IL8 production by P-selectin-dependent platelet-monocyte aggregates in whole blood involves phosphorylation of Lyn and is inhibited by IL10. J. Thromb. Haemost. 2008, 6, 986–994. [Google Scholar] [CrossRef] [PubMed]
- Hottz, E.D.; Azevedo-Quintanilha, I.G.; Palhinha, L.; Teixeira, L.; Barreto, E.A.; Pão, C.R.R.; Righy, C.; Franco, S.; Souza, T.M.L.; Kurtz, P.; et al. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood 2020, 136, 1330–1341. [Google Scholar] [CrossRef]
- Falati, S.; Liu, Q.; Gross, P.; Merrill-Skoloff, G.; Chou, J.; Vandendries, E.; Celi, A.; Croce, K.; Furie, B.C.; Furie, B. Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin. J. Exp. Med. 2003, 197, 1585–1598. [Google Scholar] [CrossRef]
- Ott, I.; Neumann, F.J.; Kenngott, S.; Gawaz, M.; Schömig, A. Procoagulant inflammatory responses of monocytes after direct balloon angioplasty in acute myocardial infarction. Am. J. Cardiol. 1998, 82, 938–942. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, H.; Shi, C.; Erhardt, P.W.; Pavlovsky, A.; Soloviev, D.A.; Bledzka, K.; Ustinov, V.; Zhu, L.; Qin, J.; et al. Leukocyte integrin Mac-1 regulates thrombosis via interaction with platelet GPIbalpha. Nat. Commun. 2017, 8, 15559. [Google Scholar] [CrossRef]
- Pircher, J.; Engelmann, B.; Massberg, S.; Schulz, C. Platelet-Neutrophil Crosstalk in Atherothrombosis. Thromb. Haemost. 2019, 119, 1274–1282. [Google Scholar] [CrossRef] [PubMed]
- Furman, M.I.; Barnard, M.R.; Krueger, L.A.; Fox, M.L.; Shilale, E.A.; Lessard, D.M.; Marchese, P.; Frelinger, A.L., III; Goldberg, R.J.; Michelson, A.D. Circulating monocyte-platelet aggregates are an early marker of acute myocardial infarction. J. Am. Coll. Cardiol. 2001, 38, 1002–1006. [Google Scholar] [CrossRef]
- Michelson, A.D.; Barnard, M.R.; Krueger, L.A.; Valeri, C.R.; Furman, M.I. Circulating monocyte-platelet aggregates are a more sensitive marker of in vivo platelet activation than platelet surface P-selectin: Studies in baboons, human coronary intervention, and human acute myocardial infarction. Circulation 2001, 104, 1533–1537. [Google Scholar] [CrossRef] [PubMed]
- Levinas, T.; Eshel, E.; Sharabi-Nov, A.; Marmur, A.; Dally, N. Differentiating ischemic from non-ischemic chest pain using white blood cell-surface inflammatory and coagulation markers. J. Thromb. Thrombolysis 2012, 34, 235–243. [Google Scholar] [CrossRef]
- Passacquale, G.; Vamadevan, P.; Pereira, L.; Hamid, C.; Corrigall, V.; Ferro, A. Monocyte-platelet interaction induces a pro-inflammatory phenotype in circulating monocytes. PLoS ONE 2011, 6, e25595. [Google Scholar] [CrossRef]
- Lippi, G.; Salvagno, G.L.; Montagnana, M.; Franchini, M.; Guidi, G.C. Venous stasis and routine hematologic testing. Clin. Lab. Haematol. 2006, 28, 332–337. [Google Scholar] [CrossRef]
- Zeng, S.; Zhou, X.; Ge, L.; Ji, W.J.; Shi, R.; Lu, R.Y.; Sun, H.Y.; Guo, Z.Z.; Zhao, J.H.; Jiang, T.M.; et al. Monocyte subsets and monocyte-platelet aggregates in patients with unstable angina. J. Thromb. Thrombolysis 2014, 38, 439–446. [Google Scholar] [CrossRef]
- Yang, D.H.; Tan, N.; He, P.C.; Liu, Y.; Wen, J.Y.; Chen, J.Y.; Zhou, Y.L.; Huang, W.H. Increased platelet-leukocyte aggregates in patients with acute coronary syndrome. Chin. J. Cardiol. 2012, 40, 482–486. [Google Scholar]
- Faraday, N.; Braunstein, J.B.; Heldman, A.W.; Bolton, E.D.; Chiles, K.A.; Gerstenblith, G.; Schulman, S.P. Prospective evaluation of the relationship between platelet-leukocyte conjugate formation and recurrent myocardial ischemia in patients with acute coronary syndromes. Platelets 2004, 15, 9–14. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, X.L.; Ji, W.J.; Liu, J.X.; Guo, Z.Z.; Ren, D.; Ma, Y.Q.; Zeng, S.; Xu, Z.W.; Li, H.X.; et al. The Kinetics of Circulating Monocyte Subsets and Monocyte-Platelet Aggregates in the Acute Phase of ST-Elevation Myocardial Infarction: Associations with 2-Year Cardiovascular Events. Medicine 2016, 95, e3466. [Google Scholar] [CrossRef]
- Harrison, R.W.; Aggarwal, A.; Ou, F.S.; Klein, L.W.; Rumsfeld, J.S.; Roe, M.T.; Wang, T.Y. Incidence and outcomes of no-reflow phenomenon during percutaneous coronary intervention among patients with acute myocardial infarction. Am. J. Cardiol. 2013, 111, 178–184. [Google Scholar] [CrossRef] [PubMed]
- de Waha, S.; Patel, M.R.; Granger, C.B.; Ohman, E.M.; Maehara, A.; Eitel, I.; Ben-Yehuda, O.; Jenkins, P.; Thiele, H.; Stone, G.W. Relationship between microvascular obstruction and adverse events following primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: An individual patient data pooled analysis from seven randomized trials. Eur. Heart J. 2017, 38, 3502–3510. [Google Scholar] [CrossRef] [PubMed]
- Niccoli, G.; Scalone, G.; Lerman, A.; Crea, F. Coronary microvascular obstruction in acute myocardial infarction. Eur. Heart J. 2016, 37, 1024–1033. [Google Scholar] [CrossRef]
- Aurigemma, C.; Scalone, G.; Tomai, F.; Altamura, L.; De Persio, G.; Stazi, A.; Lanza, G.A.; Crea, F. Persistent enhanced platelet activation in patients with acute myocardial infarction and coronary microvascular obstruction: Clinical implications. Thromb. Haemost. 2014, 111, 122–130. [Google Scholar] [CrossRef]
- Huang, G.Y.; Yang, L.J.; Wang, X.H.; Wang, Y.L.; Xue, Y.Z.; Yang, W.B. Relationship between platelet-leukocyte aggregation and myocardial perfusion in patients with ST-segment elevation myocardial infarction after primary percutaneous coronary intervention. Heart Lung 2016, 45, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Ren, F.; Mu, N.; Zhang, X.; Tan, J.; Li, L.; Zhang, C.; Dong, M. Increased Platelet-leukocyte Aggregates are Associated with Myocardial No-reflow in Patients With ST Elevation Myocardial Infarction. Am. J. Med. Sci. 2016, 352, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Al-Jabari, A.M.K.; Elserafy, A.S.; Abuemara, H.Z.A. Effect of chronic pretreatment with beta-blockers on no-reflow phenomenon in diabetic patients with acute ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention. Egypt. Heart J. 2017, 69, 171–175. [Google Scholar] [CrossRef]
- García-Prieto, J.; Villena-Gutiérrez, R.; Gómez, M.; Bernardo, E.; Pun-García, A.; García-Lunar, I.; Crainiciuc, G.; Fernández-Jiménez, R.; Sreeramkumar, V.; Bourio-Martínez, R.; et al. Neutrophil stunning by metoprolol reduces infarct size. Nat. Commun. 2017, 8, 14780. [Google Scholar] [CrossRef]
- Giannakopoulos, G.; Noble, S. Should We Be Using Upstream Beta-Blocker Therapy for Acute Myocardial Infarction? Curr. Cardiol. Rep. 2021, 23, 66. [Google Scholar] [CrossRef]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. 2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2018, 49, e46–e110. [Google Scholar] [CrossRef]
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.P.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Rev. Esp. Cardiol. 2017, 70, 1082. [Google Scholar] [CrossRef] [PubMed]
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef] [PubMed]
- Collet, J.P.; Thiele, H.; Barbato, E.; Barthelemy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021, 42, 1289–1367. [Google Scholar] [CrossRef] [PubMed]
- Galie, N.; Humbert, M.; Vachiery, J.L.; Gibbs, S.; Lang, I.; Torbicki, A.; Simonneau, G.; Peacock, A.; Vonk Noordegraaf, A.; Beghetti, M.; et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur. Respir. J. 2015, 46, 903–975. [Google Scholar] [CrossRef] [PubMed]
- Michelson, A.D. Flow cytometry: A clinical test of platelet function. Blood 1996, 87, 4925–4936. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Bath, P.; Heptinstall, S. Effects of combining three different antiplatelet agents on platelets and leukocytes in whole blood in vitro. Br. J. Pharmacol. 2001, 134, 353–358. [Google Scholar] [CrossRef]
- Storey, R.F.; Judge, H.M.; Wilcox, R.G.; Heptinstall, S. Inhibition of ADP-induced P-selectin expression and platelet-leukocyte conjugate formation by clopidogrel and the P2Y12 receptor antagonist AR-C69931MX but not aspirin. Thromb. Haemost. 2002, 88, 488–494. [Google Scholar]
- Li, N.; Hu, H.; Hjemdahl, P. Aspirin treatment does not attenuate platelet or leukocyte activation as monitored by whole blood flow cytometry. Thromb. Res. 2003, 111, 165–170. [Google Scholar] [CrossRef]
- Lukasik, M.; Dworacki, G.; Michalak, S.; Kufel-Grabowska, J.; Golanski, J.; Watala, C.; Kozubski, W. Aspirin treatment influences platelet-related inflammatory biomarkers in healthy individuals but not in acute stroke patients. Thromb. Res. 2011, 128, e73–e80. [Google Scholar] [CrossRef]
- Mastenbroek, T.G.; Karel, M.F.A.; Nagy, M.; Chayoua, W.; Korsten, E.I.J.; Coenen, D.M.; Debets, J.; Konings, J.; Brouns, A.E.; Leenders, P.J.A.; et al. Vascular protective effect of aspirin and rivaroxaban upon endothelial denudation of the mouse carotid artery. Sci. Rep. 2020, 10, 19360. [Google Scholar] [CrossRef]
- Iba, T.; Kidokoro, A.; Fukunaga, M.; Takuhiro, K.; Ouchi, M.; Ito, Y. Comparison of the protective effects of type III phosphodiesterase (PDE3) inhibitor (cilostazol) and acetylsalicylic acid on intestinal microcirculation after ischemia reperfusion injury in mice. Shock 2006, 26, 522–526. [Google Scholar] [CrossRef] [PubMed]
- Serebruany, V.L.; Malinin, A.I.; Oshrine, B.R.; Sane, D.C.; Takserman, A.; Atar, D.; Hennekens, C.H. Lack of uniform platelet activation in patients after ischemic stroke and choice of antiplatelet therapy. Thromb. Res. 2004, 113, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Gasecka, A.; Konwerski, M.; Pordzik, J.; Soplinska, A.; Filipiak, K.J.; Siller-Matula, J.M.; Postula, M. Switching between P2Y12 antagonists—From bench to bedside. Vascul. Pharmacol. 2019, 115, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Evangelista, V.; Manarini, S.; Dell’Elba, G.; Martelli, N.; Napoleone, E.; Di Santo, A.; Lorenzet, P.S. Clopidogrel inhibits platelet-leukocyte adhesion and platelet-dependent leukocyte activation. Thromb. Haemost. 2005, 94, 568–577. [Google Scholar] [PubMed]
- Klinkhardt, U.; Dragutinovic, I.; Harder, S. P-selectin (CD62p) and P-selectin glycoprotein ligand-1 (PSGL-1) polymorphisms: Minor phenotypic differences in the formation of platelet-leukocyte aggregates and response to clopidogrel. Int. J. Clin. Pharmacol. Ther. 2005, 43, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Theroux, P. Clopidogrel inhibits platelet-leukocyte interactions and thrombin receptor agonist peptide-induced platelet activation in patients with an acute coronary syndrome. J. Am. Coll. Cardiol. 2004, 43, 1982–1988. [Google Scholar] [CrossRef] [PubMed]
- Gurbel, P.A.; Malinin, A.I.; Callahan, K.P.; Serebruany, V.L.; O’Connor, C.M. Effect of loading with clopidogrel at the time of coronary stenting on platelet aggregation and glycoprotein IIb/IIIa expression and platelet-leukocyte aggregate formation. Am. J. Cardiol. 2002, 90, 312–315. [Google Scholar] [CrossRef] [PubMed]
- Totani, L.; Dell’Elba, G.; Martelli, N.; Di Santo, A.; Piccoli, A.; Amore, C.; Evangelista, V. Prasugrel inhibits platelet-leukocyte interaction and reduces inflammatory markers in a model of endotoxic shock in the mouse. Thromb. Haemost. 2012, 107, 1130–1140. [Google Scholar] [CrossRef] [PubMed]
- Judge, H.M.; Buckland, R.J.; Sugidachi, A.; Jakubowski, J.A.; Storey, R.F. The active metabolite of prasugrel effectively blocks the platelet P2Y12 receptor and inhibits procoagulant and pro-inflammatory platelet responses. Platelets 2008, 19, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Klinkhardt, U.; Kuczka, K.; Harder, S. Effects of the NHE-1 inhibitor cariporide alone or together with the P2Y12 antagonist AR-C 69331 MX on CD62p expression and formation of platelet-leukocyte aggregates. Thromb. Res. 2003, 111, 251–257. [Google Scholar] [CrossRef]
- Thomas, M.R.; Storey, R.F. Effect of P2Y12 inhibitors on inflammation and immunity. Thromb. Haemost. 2015, 114, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Steinhubl, S.R.; Badimon, J.J.; Bhatt, D.L.; Herbert, J.M.; Luscher, T.F. Clinical evidence for anti-inflammatory effects of antiplatelet therapy in patients with atherothrombotic disease. Vasc. Med. 2007, 12, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Deng, H.F.; Li, T.; Miao, S.Y.; Xiao, Z.H.; Liu, M.D.; Liu, K.; Xiao, X.Z. Clopidogrel reduces lipopolysaccharide-induced inflammation and neutrophil-platelet aggregates in an experimental endotoxemic model. J. Biochem. Mol. Toxicol. 2019, 33, e22279. [Google Scholar] [CrossRef]
- Jia, L.X.; Qi, G.M.; Liu, O.; Li, T.T.; Yang, M.; Cui, W.; Zhang, W.M.; Qi, Y.F.; Du, J. Inhibition of platelet activation by clopidogrel prevents hypertension-induced cardiac inflammation and fibrosis. Cardiovasc. Drugs Ther. 2013, 27, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Tunjungputri, R.N.; van der Ven, A.J.; Riksen, N.; Rongen, G.; Tacke, S.; van den Berg, T.N.; Fijnheer, R.; Gomes, M.E.; Dinarello, C.A.; van de Veerdonk, F.L.; et al. Differential effects of platelets and platelet inhibition by ticagrelor on TLR2- and TLR4-mediated inflammatory responses. Thromb. Haemost. 2015, 113, 1035–1045. [Google Scholar] [CrossRef] [PubMed]
- Sexton, T.R.; Zhang, G.; Macaulay, T.E.; Callahan, L.A.; Charnigo, R.; Vsevolozhskaya, O.A.; Li, Z.; Smyth, S. Ticagrelor Reduces Thromboinflammatory Markers in Patients With Pneumonia. JACC Basic Transl. Sci. 2018, 3, 435–449. [Google Scholar] [CrossRef]
- Le Manach, Y.; Kahn, D.; Bachelot-Loza, C.; Le Sache, F.; Smadja, D.M.; Remones, V.; Loriot, M.A.; Coriat, P.; Gaussem, P. Impact of aspirin and clopidogrel interruption on platelet function in patients undergoing major vascular surgery. PLoS ONE 2014, 9, e104491. [Google Scholar] [CrossRef]
- Valgimigli, M.; Bueno, H.; Byrne, R.A.; Collet, J.P.; Costa, F.; Jeppsson, A.; Juni, P.; Kastrati, A.; Kolh, P.; Mauri, L.; et al. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS. Eur. J. Cardiothorac. Surg. 2018, 53, 34–78. [Google Scholar] [CrossRef]
- Yi, X.; Zhou, Q.; Wang, C.; Lin, J.; Chai, Z. Aspirin plus clopidogrel may reduce the risk of early neurologic deterioration in ischemic stroke patients carrying CYP2C19*2 reduced-function alleles. J. Neurol. 2018, 265, 2396–2403. [Google Scholar] [CrossRef]
- Perneby, C.; Wallen, N.H.; Hofman-Bang, C.; Tornvall, P.; Ivert, T.; Li, N.; Hjemdahl, P. Effect of clopidogrel treatment on stress-induced platelet activation and myocardial ischemia in aspirin-treated patients with stable coronary artery disease. Thromb. Haemost. 2007, 98, 1316–1322. [Google Scholar] [CrossRef]
- Rudolph, T.K.; Fuchs, A.; Klinke, A.; Schlichting, A.; Friedrichs, K.; Hellmich, M.; Mollenhauer, M.; Schwedhelm, E.; Baldus, S.; Rudolph, V. Prasugrel as opposed to clopidogrel improves endothelial nitric oxide bioavailability and reduces platelet-leukocyte interaction in patients with unstable angina pectoris: A randomized controlled trial. Int. J. Cardiol. 2017, 248, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Lin, J.; Wang, C.; Zhang, B.; Chi, W. A comparative study of dual versus monoantiplatelet therapy in patients with acute large-artery atherosclerosis stroke. J. Stroke Cerebrovasc. Dis. 2014, 23, 1975–1981. [Google Scholar] [CrossRef] [PubMed]
- Braun, O.O.; Johnell, M.; Varenhorst, C.; James, S.; Brandt, J.T.; Jakubowski, J.A.; Winters, K.J.; Wallentin, L.; Erlinge, D.; Siegbahn, A. Greater reduction of platelet activation markers and platelet-monocyte aggregates by prasugrel compared to clopidogrel in stable coronary artery disease. Thromb. Haemost. 2008, 100, 626–633. [Google Scholar] [PubMed]
- Arzamendi, D.; Dandachli, F.; Theoret, J.F.; Ducrocq, G.; Chan, M.; Mourad, W.; Gilbert, J.C.; Schaub, R.G.; Tanguay, J.F.; Merhi, Y. An anti-von Willebrand factor aptamer reduces platelet adhesion among patients receiving aspirin and clopidogrel in an ex vivo shear-induced arterial thrombosis. Clin. Appl. Thromb. Hemost. 2011, 17, E70–E78. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, W.; Li, N. Glycoprotein IIb/IIIa inhibition attenuates platelet-activating factor-induced platelet activation by reducing protein kinase C activity. J. Thromb. Haemost. 2003, 1, 1805–1812. [Google Scholar] [CrossRef]
- Scholz, T.; Zhao, L.; Temmler, U.; Bath, P.; Heptinstall, S.; Losche, W. The GPIIb/IIIa antagonist eptifibatide markedly potentiates platelet-leukocyte interaction and tissue factor expression following platelet activation in whole blood in vitro. Platelets 2002, 13, 401–406. [Google Scholar] [CrossRef]
- Straub, A.; Azevedo, R.; Beierlein, W.; Wendel, H.P.; Dietz, K.; Ziemer, G. Glycoprotein IIb/IIIa inhibition reduces prothrombotic events under conditions of deep hypothermic circulatory arrest. Thromb. Haemost. 2005, 94, 115–122. [Google Scholar] [CrossRef]
- Frelinger, A.L., III; Furman, M.I.; Barnard, M.R.; Krueger, L.A.; Dae, M.W.; Michelson, A.D. Combined effects of mild hypothermia and glycoprotein IIb/IIIa antagonists on platelet-platelet and leukocyte-platelet aggregation. Am. J. Cardiol. 2003, 92, 1099–1101. [Google Scholar] [CrossRef]
- Barlage, S.; Wimmer, A.; Pfeiffer, A.; Rothe, G.; Schmitz, G. MK-383 (tirofiban) induces a GPIIb/IIIa receptor conformation which differs from the resting and activated receptor. Platelets 2002, 13, 133–140. [Google Scholar] [CrossRef]
- Bertram, U.; Moser, M.; Peter, K.; Kuecherer, H.F.; Bekeredjian, R.; Straub, A.; Nordt, T.K.; Bode, C.; Ruef, J. Effects of different thrombolytic treatment regimen with abciximab and tirofiban on platelet aggregation and platelet-leukocyte interactions: A subgroup analysis from the GUSTO V and FASTER trials. J. Thromb. Thrombolysis 2002, 14, 197–203. [Google Scholar] [CrossRef]
- Gasecka, A.; Banaszkiewicz, M.; Nieuwland, R.; van der Pol, E.; Hajji, N.; Mutwil, H.; Rogula, S.; Rutkowska, W.; Pluta, K.; Eyileten, C.; et al. Prostacyclin Analogues Inhibit Platelet Reactivity, Extracellular Vesicle Release and Thrombus Formation in Patients with Pulmonary Arterial Hypertension. J. Clin. Med. 2021, 10, 1024. [Google Scholar] [CrossRef] [PubMed]
- Tamburrelli, C.; Crescente, M.; Izzi, B.; Barisciano, M.; Donati, M.B.; de Gaetano, G.; Cerletti, C. Epoprostenol inhibits human platelet-leukocyte mixed conjugate and platelet microparticle formation in whole blood. Thromb. Res. 2011, 128, 446–451. [Google Scholar] [CrossRef] [PubMed]
- Harding, S.A.; Din, J.N.; Sarma, J.; Jessop, A.; Weatherall, M.; Fox, K.A.; Newby, D.E. Flow cytometric analysis of circulating platelet-monocyte aggregates in whole blood: Methodological considerations. Thromb. Haemost. 2007, 98, 451–456. [Google Scholar] [PubMed]
- Coumans, F.A.W.; Brisson, A.R.; Buzas, E.I.; Dignat-George, F.; Drees, E.E.E.; El-Andaloussi, S.; Emanueli, C.; Gasecka, A.; Hendrix, A.; Hill, A.F.; et al. Methodological Guidelines to Study Extracellular Vesicles. Circ. Res. 2017, 120, 1632–1648. [Google Scholar] [CrossRef] [PubMed]
- Klinkhardt, U.; Harder, S. Flow cytometric measurement of platelet-leukocyte aggregates: A possible target to monitor platelet function? Semin. Thromb. Hemost. 2005, 31, 400–403. [Google Scholar] [CrossRef]
- Pennings, G.J.; Siegwald, J.; Yong, A.S.; Kritharides, L.; Lowe, H.C. Intravascular blood sampling using the Thrombuster II catheter does not cause artifactual platelet activation. J. Thromb. Thrombolysis 2014, 37, 326–330. [Google Scholar] [CrossRef]
- Jy, W.; Horstman, L.L.; Park, H.; Mao, W.W.; Valant, P.; Ahn, Y.S. Platelet aggregates as markers of platelet activation: Characterization of flow cytometric method suitable for clinical applications. Am. J. Hematol. 1998, 57, 33–42. [Google Scholar] [CrossRef]
- Ayukawa, O.; Nakamura, K.; Kariyazono, H.; Ikeda, R.; Arima, J.; Shinkawa, T.; Iwase, H.; Sakata, R.; Yamada, K. Enhanced platelet responsiveness due to chilling and its relation to CD40 ligand level and platelet-leukocyte aggregate formation. Blood Coagul. Fibrinolysis 2009, 20, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, V.; Hilberg, T. ThromboFix platelet stabilizer: Advances in clinical platelet analyses by flow cytometry? Platelets 2006, 17, 266–273. [Google Scholar] [CrossRef]
- Hui, H.; Fuller, K.A.; Erber, W.N.; Linden, M.D. Imaging flow cytometry in the assessment of leukocyte-platelet aggregates. Methods 2017, 112, 46–54. [Google Scholar] [CrossRef]
- Susanto, O.; Hickey, M.J. Using imaging to study inflammatory platelet-leukocyte interactions in vivo. Platelets 2020, 31, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Klug, M.; Lazareva, O.; Kirmes, K.; Rosenbaum, M.; Lukas, M.; Weidlich, S.; Spinner, C.D.; von Scheidt, M.; Gosetti, R.; Baumbach, J.; et al. Platelet Surface Protein Expression and Reactivity upon TRAP Stimulation after BNT162b2 Vaccination. Thromb. Haemost. 2021. Available online: https://www.thieme-connect.de/products/ejournals/abstract/10.1055/s-0041-1733934 (accessed on 27 November 2021). [CrossRef] [PubMed]
- Brambilla, M.; Canzano, P.; Becchetti, A.; Tremoli, E.; Camera, M. Alterations in platelets during SARS-CoV-2 infection. Platelets 2021, 1–9. Available online: https://www.tandfonline.com/doi/full/10.1080/09537104.2021.1962519 (accessed on 27 November 2021). [CrossRef] [PubMed]
- Agrati, C.; Sacchi, A.; Tartaglia, E.; Vergori, A.; Gagliardini, R.; Scarabello, A.; Bibas, M. The Role of P-Selectin in COVID-19 Coagulopathy: An Updated Review. Int. J. Mol. Sci. 2021, 22, 7942. [Google Scholar] [CrossRef]
Clinical Condition | No. of Patients | Control Group | Outcome | Reference |
---|---|---|---|---|
Clinical Studies | ||||
CVD | yes, N = 345 | no, N = 64 | CVD cohort, including patients with CAD, PAD, carotid artery stenosis and abdominal aortic aneurysm, had significantly higher PLA-M compared with healthy controls (both groups received ASA). The association was true for each CVD separately, but after multivariant analysis it remained significant only for PAD. Patients with critical limb ischemia had significantly higher PLA-M than other PAD patients. | Allen et al., 2019 [19] |
peripheral artery disease | critical limb ischemia, N = 20 | intermittent claudication, N = 45 healthy, N = 20 | PLA correlated with the disease severity. Critical limb ischemia was associated with significantly higher PLA-M with intermediate or non-classical monocytes, total PLA-M and PLA-N. | Dopheide et al., 2016 [20] |
atrial fibrillation | with left atrium thrombus, N = 27 | without left atrium thrombus, N = 80 | Among patients assessed with transoesophageal echocardiography before electric cardioversion/ablation PLA-M over 170 cells/μl independently predicted left atrium thrombus with sensitivity of 93%. | Pfluecke et al., 2016 [21] |
venous thromboembolism | VTE, N = 13 | no VTE, N = 19 | Patients who suffered VTE 30 days following orthopaedic surgery had significantly elevated PLA-M 24 h after the procedure compared with the group without this complication. | Shin et al., 2016 [22] |
abdominal aortic aneurysm | AAA, N = 41 | no AAA, N = 38 | Although significantly more activated and newly released neutrophils circulated in blood of AAA group, it was not true for PLA-N or PLA-M. | Zagrapan et al., 2019 [23] |
smoking | yes, N = 10 | no, N = 10 | PLA-M, PLA-N and PLA-Ly were significantly higher in smokers. | Badrnya et al., 2014 [41] |
smoking | yes, N = 20 | no, N = 20 | Smokers had significantly higher PLA-M and PLA-N than controls. Three-weeks-long smoking cessation led to significantly reduced PLA-M formation. | Lupia et al., 2010 [42] |
hypertension | yes, N = 22 | no, N = 22 | Hypertensive subjects had significantly higher PLA at baseline compared with controls. This effect persistent during 2 months’ observation despite the treatment with doxazosin and a trend towards pressure normalization. | Labios et al., 2006 [43] |
depression | yes, N = 102 | no, N = 44 | Depressed patients had significantly higher PLA, PLA-M, PLA-G, than controls. This state persistent after 6 months of therapy despite concurrent improvement in platelet reactivity. | Morel-Kopp et al., 2009 [44] |
exposure to biomass smoke | yes, N = 165 | no, N = 155 | PLA-M and platelet-polymorphonuclear aggregates were elevated in women cooking with biomass. | Ray et al., 2006 [45] |
metabolic syndrome | yes, N = 18 | no, N = 21 | Metabolic syndrome was associated with elevated PLA-LyT and PLA-E. | Marques et al., 2019 [25] |
type 2 diabetes mellitus | yes, N = 14 | no, N = 14 | Elevated PLA-M; its level correlated positively with plasma glucose and TG. | Patko et al., 2012 [26] |
type 1 and type 2 diabetes mellitus | yes, N = 65 | no, N = 25 | Diabetic patients exhibited higher platelet–polymorphonuclear aggregates and PLA-M regardless of the disease type. Concentrations of aggregates were higher in diabetics with vascular lesions. | Elalamy et al., 2008 [27] |
type 1 diabetes mellitus | yes, N = 35 | no, N = 20 | The patients had significantly higher PLA-M. Its level correlated with HbA1c, total cholesterol, LDL and TG. | Zahran et al., 2018 [72] |
type 1 diabetes mellitus | T1D with microangiopathy, N = 20 T1D without microangiopathy, N = 19 | healthy, N = 27 | In T1D with microangiopathy baseline PLA-M and PLA-N were slightly higher that in controls. Total baseline PLA was comparable between all groups. TXA2 analogue-induced PLA formation was significantly greater in T1D subjects, whereas thrombin-induced PLA formation was significantly higher only in T1D with microangiopathy compared with controls. | Hu et al., 2004 [73] |
type 1 diabetes mellitus, exercise | T1D, N = 16 | healthy, N = 16 | At rest T1D group showed higher PLA-G and PLA-Ly (spontaneous and TRAP-induced). Exercise significantly increased PLA-G, PLA-M, PLA-Ly in both groups; the effect of exercise was comparable between T1D and controls. | Hilberg et al., 2004 [74] |
hyperlipidemia | yes, N = 8 | no, N = 8 | Hyperlipidaemic subjects had higher baseline PLA-M and PLA-N. Their PLA-M correlated positively with total cholesterol, LDL, and serum fibrinogen, and negatively with HDL. | Sener et al., 2005 [28] |
primary hypercholesterolemia | yes, N = 22 | no, N = 21 | PLA-M, PLA-N and PLA-Ly were increased in PH compared with controls, which resulted in greater adhesiveness to arterial walls. | Collado et al., 2018 [76] |
ACS | rosuvastatin, N = 21 | placebo, N = 23 | Administration of a high dose of rosuvastatin within 8 h of symptoms onset led to significantly lower PLA in rosuvastatin group compared with placebo at 8 and 24h after treatment. | Sexton et al., 2015 [77] |
stable CAD with T2D/impaired glucose tolerance | simvastatin 80 mg, N = 16 ezetimibe 10 mg and simvastatin 10 mg, N = 16 | without lipid-lowering treatment, N = 32 | Patients received their assigned medication once daily for six weeks-no significant effect on baseline PLA was found. | Malmstrom et al., 2009 [78] |
gallic acid | with gallic acid, N = 5 | without gallic acid, N = 5 | In vitro gallic acid significantly and dose-dependently decreased stimulation-induced (ADP, TXA2 analogue) PLA-M and PLA-G formation in blood from healthy subjects. | Chang et al., 2012 [79] |
flavonolignans | with silychristin or silybin or silydianin, each N = 12 | no flavonolignan, N = 12 | In whole blood from healthy volunteers silychristin and silybin (but not silydianin) significantly and dose-dependently reduced PLA formation induced with IL-1β. | Bijak et al., 2017 [80] |
anthocyanins | with 1 of 10 tested compounds, each N = 7 | no anthocyanins added, N = 7 | During in vitro ADP stimulation 2 of tested compounds (cyanidin-3-arabinoside, cyanidin-3-galactoside) significantly reduced PLA-N, ferulic acid reduced PLA-M and 4-hydroxybenzaldehyde reduced both. | Krga et al., 2018 [81] |
cardiac surgery | supplementation, N = 7 | no supplementation, N = 7 | Preoperative supplementation of omega-3 fatty acids for 5 days resulted in significantly lower PLA on the day of operation and first post-operative day. | Iwase et al., 2014 [82] |
exercise | after exercise, N = 20 | before exercise, N = 20 | PLA-G, PLA-M and PLA-Ly were significantly elevated after both moderate and strenuous exertion, although higher intensity caused significantly greater elevation of PLA-G and PLA-Ly. | Hilberg et al., 2008 [83] |
exercise | after exercise, N = 21 | before exercise, N = 21 | PLA were significantly elevated after exertion; the effect was not abolished by enoxaparin nor argatroban administration. However, enoxaparin and argatroban did reduce PLA formation on thrombin or ADP stimulation post-exercise. | Li et al., 2007 [84] |
exercise | after exercise, N = 14 | before exercise, N = 14 | PLA were significantly elevated after exertion, but percentage of PLA in regard to leukocyte count was similar. Increased PLA formation in response to exertion was not abolished by pretreatment with clopidogrel. | Perneby et al., 2004 [85] |
exercise | MIH after exercise, N = 10 SIH after exercise, N = 10 | MIH before exercise, N = 10 SIH before exercise, N = 10 | After strenuous exercise PLA-E formation was significantly increased in response to LPS, shear stress and fMLP. Eight-weeks-long intermittent hypoxia regimen abolished this effect in both MIH and SIH group. | Wang et al., 2007 [86] |
angiography for CAD evaluation | ACS, N = 125 | No ACS, N = 437 | PLA-M were significantly higher in ACS patients than those with and without angiographically-proven CAD. There was no association between baseline nor TRAP-induced PLA-M and adverse clinical outcomes (as defined in the study) in 2 years of observation. | Gremmel et al., 2016 [88] |
adverse clinical outcomes, N = 117 | no adverse clinical outcomes, N = 445 | |||
CAD | FFR(+), N = 75 | FFR(-), N = 70 | PLA-M did not significantly differ dependent on FFR status. Higher PLA-M associated with coronary vasomotor dysfunction independent of FFR status. | Di Serafino et al., 2014 [90] |
vasoconstrictors in endothelial function test, N = 10 | vasodilators in endothelial function test, N = 20 | |||
CAD | diffuse CAD, N = 50 | healthy, N = 50 focal CAD, N = 40 | PLA-M with M2 was significantly higher in the diffuse CAD group than the others; PLA-M with M2 independently and inversely correlated with endothelium-dependent vasodilation in patients with the diffuse disease. | Brown et al., 2018 [91] |
CABG | after CABG, N = 15 | before CABG, N = 15 | PLA were increased for at least 1 week after the surgery and returned to baseline after 3 months. Immediately after CABG ADP- and TRAP-induced PLA formation was reduced, but at 1 week it was markedly increased. The effects were more evident for PLA-N and PLA-M. | Li et al., 2003 [95] |
CABG for stable angina pectoris | after CABG, N = 54 | before CABG, N = 54 | One month after CABG PLA-M, PLA-N and PLA-Ly were significantly increased (unstimulated, ADP, thrombin, thromboxane analogue). At 3 months a significant decrease was observed in PLA-M (unstimulated, ADP, thromboxane analogue) and PLA-N (ADP, thromboxane analogue), whereas there was an increase for PLA-Ly (ADP). | Ivert et al. 2019 [96] |
cardiac surgery (valve replacement for rheumatic heart disease) | AKI, N = 15 | no AKI, N = 229 | PLA in AKI group were significantly higher at all points throughout the perioperative period. High PLA (>6.8%) preoperatively entailed 18 times greater risk of AKI. | Yang et al., 2021 [97] |
cardiac surgery (valve replacement for rheumatic heart disease) | high PLA, N = 151 | low PLA, N = 93 | Patients with high PLA (>6.8%) preoperatively, experienced significantly more major adverse events and perioperative complications than low PLA (<6.8%) group. | Liu et al., 2019 [98] |
CABG | short-term intensive training after CABG, N = 19 | conventional training after CABG, N = 21 healthy, N = 15 | Strenuous exercise increased PLA-M and PLA-M subset with M1 in conventional training group but not in short-term intensive training group nor healthy controls. | Huang et al., 2017 [101] |
AMI | AMI, N = 61 | non-AMI chest pain, N = 150 | In patients with chest pain PLA was significantly higher in AMI group. PLA level was the highest within 4 h from the onset of symptoms. | Furman et al., 2001 [114] |
AMI | AMI, N = 9 | non-AMI chest pain, N = 84 healthy, N = 10 | Among patients with chest pain PLA-M were significantly higher in AMI group compared with non-AMI and control subjects. | Michelson et al., 2001 [115] |
ACS | ACS, N = 43 | non-ACS chest pain, N = 31 | Among patients with chest pain PLA-M did not differ significantly between ACS and non-ACS subjects. | Levinas et al., 2012 [116] |
AMI | AMI, N = 9 | non-AMI chest pain, N = 21 | Among patients suspected of AMI, those with actual AMI had significantly higher PLA-M. 100% of sensitivity and specificity for AMI with a PLA-M cut-off at 31.6%. | Lippi et al., 2007 [118] |
UA | UA, N = 95 | stable CAD, N = 30 | UA patients had significantly higher total PLA-M, PLA-M with M2 and M3. Higher total PLA-M and PLA-M with M2 independently associated with intermediate-to-high risk by GRACE score. | Zeng et al., 2014 [119] |
recurrent ischemia after UA/NSTEMI | yes, N = 7 | no, N = 21 | Patients who developed recurrent ischemia exhibited significantly greater PLA-N formation after adding TRAP. For every 1% increase in PLA-N the risk of recurrent ischemia rose about 7%. | Faraday et al., 2004 [121] |
AMI treated with PCI | AMI, N = 31 | healthy, N = 28 | On admission AMI patients had higher PLA-M (in all subsets) than healthy controls. After adjustments higher PLA-M with M2 was significantly and independently associated with complications within 7 days of hospitalization in AMI patients. | Loguinova et al., 2018 [34] |
AMI treated with PCI | STEMI, N = 100 | stable CAD, N = 60 healthy controls, N = 35 | PLA-M containing either M1 or M2 were significantly higher in STEMI group than in stable CAD at baseline. Higher accumulation of M2 and PLA-M with M2 on the seven days following AMI corresponded with the 2-years risk of serious cardiovascular adverse events. | Zhou et al., 2016 [122] |
AMI treated with PCI | STEMI and successful reperfusion N = 35 STEMI and MVO, N = 13 | stable CAD, N = 20 | Baseline PLA-M were significantly higher in STEMI patients compared with stable CAD. MVO group had significantly higher PLA-M both on admission and 1-month post-treatment compared with good reperfusion group. | Aurigemma et al., 2014 [126] |
AMI treated with PCI | poor perfusion, N = 28 | good perfusion, N = 115 | Patients with poor reperfusion after intervention had significantly higher PLA, PLA-M, PLA-N in aortic blood immediately after the procedure. PLA-N level showed independent correlation with sumSTR. | Huang et al., 2016 [127] |
AMI treated with PCI | no-reflow, N = 19 | successful reperfusion, N = 64 | Patients with no-reflow after PCI had statistically greater preprocedural amount of PLA. High PLA appeared to be an independent risk factor for MVO. | Ren et al., 2016 [128] |
ASA monotherapy | with, N = 6 | without, N = 6 | ASA did not affect spontaneous nor induced (with ADP, PAF) formation of PLA-N and PLA-M in vitro. | Zhao et al., 2001 [138] |
ASA monotherapy | with, N = 15 | without, N = 15 | PLA amount did not differ before and after aspirin administration in healthy subjects. | Li et al., 2003 [140] |
ASA monotherapy | with, N = 40 | without, N = 40 | Only PLA-M, but not PLA-G, amount differed significantly before and after ASA administration in healthy subjects. PLA formation in response to TRAP was not significantly affected. | Lukasik et al., 2011 [141] |
clopidogrel treatment | Pro715-allele, N = 10 PSGL-1 B-allele, N = 5 | without polymorphism, N = 10 | PLA-M formation in response to ADP and TRAP was similarly reduced by clopidogrel both in controls and polymorphisms carriers. | Klinkhardt et al., 2005 [147] |
clopidogrel for NSTEMI | NSTEMI on admission, N = 23 | healthy, N = 20 NSTEMI group 24 h after clopidogrel, N = 23 | NSTEMI patients had significantly higher PLA-M and PLA-N and enhanced PLA formation in response to ADP on admission. Clopidogrel counteracted both of these effects. | Xiao et al., 2004 [148] |
coronary stenting | on clopidogrel after stenting, N = 51 | before clopidogrel use and stenting, N = 51 | Clopidogrel significantly reduced PLA formation in response to ADP, but not collagen. Nevertheless, PLA was significantly elevated for 30 days following the procedure. | Gurbel et al., 2002 [149] |
P2Y12 and NHE-1 inhibitors treatment | with cariporide or AR-C 69331 or cariporide with AR-C 69331, each N = 8 | no drug, N = 8 | P2Y12 inhibitor AR-C69331 significantly limited PLA-M formation at normal and 7 pH, whereas NHE-1 inhibitor cariporide was only effective at 7 pH (conditions of NHE-1 activation). Combination of these agents had additive effect on PLA-M at 7 pH. | Klinkhardt et al., 2003 [152] |
ticagrelor in healthy subjects | ticagrelor, N = 7 | placebo, N = 7 | Ticagrelor was associated with significant reduction in PLA-M formation in response to LPS and Pam3CSK4, but not spontaneous. Type of produced cytokines did not depend on ticagrelor use but seemed to differ due to receptor (TLR-2 or TLR-4). | Tunjungputri et al. 2014 [157] |
pneumonia | ticagrelor, N = 30 | placebo, N = 30 | PLA decreased significantly in patients on ticagrelor in 24-h, while it increased in placebo group after the same time. Ticagrelor group had better forced expiratory volume and needed less oxygen supplementation after the treatment. | Sexton et al., 2018 [158] |
chronic antiplatelet treatment | clopidogrel group, N = 15 aspirin group, N = 15 | healthy, N = 15 | 5 days after 7 days’ break in antiplatelet therapy and aortic surgery PLA were significantly elevated in the clopidogrel group, but not in the aspirin group. | Le Manach et al., 2014 [159] |
ischemic stroke | clopidogrel with ASA, N = 284 | ASA monotherapy, N = 286 | Patients who experienced early neurological deterioration had higher baseline PLA-N, PLA-M, PLA-Ly. Significantly lower PLA levels at 7–10 days of treatment with clopidogrel + ASA, but only in a group with functionally deficient CYP2C19*2 | Yi et al., 2018 [161] |
stable CAD | ASA with clopidogrel, N = 16 | ASA with placebo, N = 15 | ASA with clopidogrel group showed lesser PLA and PLA-M formation in response to ADP and thrombin. | Perneby et al., 2007 [162] |
UA treated with PCI and DAPT | clopidogrel, N = 23 prasugrel, N = 22 | before clopidogrel, N = 23 before prasugrel, N = 22 | After 3 months, prasugrel group showed 40% decrease in ADP-induced PLA formation. There was a moderate negative correlation between ADP-induced PLA formation and flow-mediated dilation (measurement of endothelial function). | Rudolph et al., 2017 [163] |
acute ischemic stroke | ASA with clopidogrel, N = 284 | ASA monotherapy, N = 286 | Patients receiving DAPT had significantly lower PLA-N, PLA-M and PLA-Ly after 30 days of treatment. DAPT reduced recurrence of stroke more effectively than ASA monotherapy. | Yi et al., 2014 [164] |
stable CAD | prasugrel, N = 55 | clopidogrel, N = 55 | PLA-M formation induced with ADP was significantly decreased in prasugrel group compared with clopidogrel. The effect persisted at least one month after starting the treatment. | Braun et al., 2008 [165] |
glycoprotein IIb/IIIa inhibitor treatment | with SR121566 or c7E3, each N = 5 | without SR121566 and c7E3, each N = 5 | In vitro SR121566 and c7E3 (glycoprotein IIb/IIIa inhibitors) significantly reduced PAF-induced PLA-N formation but led to augmented PLA-N formation in response to ADP and TRAP. | Hu et al., 2003 [167] |
epifibatide treatment | with epifibatide, N = 10 | without epifibatide, N = 10 | Epifibatide significantly augmented collagen-induced formation of PLA-M (stronger effect) and PLA-N in whole blood from healthy volunteers. | Scholz et al., 2002 [168] |
hypothermic conditions | with epifibatide at 18 °C, N = 10 | with epifibatide at 37 °C, N = 10 | When epifibatide was added, after ADP stimulation PLA-G were significantly elevated in hypothermic conditions (18 °C) compared with normothermia (37 °C). | Straub et al., 2005 [169] |
hypothermic conditions | with tirofiban or epifibatide or abciximab, each N = 4 | no drug, N = 4 | In normothermia (37 °C) each of three drugs partially reduced ADP-induced PLA-M and PLA-N formation compared with control. However, this effect disappeared in hypothermic conditions (32 °C). | Frelinger et al., 2003 [170] |
AMI | with reteplase or reteplase with abciximab or tenecteplase with tirofiban, each N = 5 | before drug, each N = 5 | ADP-induced PLA formation was significantly reduced in patients treated with reteplase with abciximab as well as tenecteplase with tirofiban with the maximum effect at 2 h after administration. | Bertram et al., 2002 [172] |
epoprostenol administration | epoprostenol, N = 5 | PGE1 or ASA or cangrelor, each N = 4–6 | Epoprostenol inhibited PLA-M and platelet-polymorphonuclear aggregates formation in blood from healthy subjects. In vitro concentration inhibiting 50% of the maximal response to stimulation (collagen with ADP) was smaller for epoprostenol (nanomolar range) than reference drugs in the study: PGE1, aspirin, cangrelor (micromolar range). | Tamburrelli et al., 2011 [174] |
Preclinical studies | ||||
CHF and statin treatment | CHF, N = 22 rats CHF with rosuvastatin, N = 15 rats | healthy, N = 15 rats | Rat model of CHF was characterized by significantly increased PLA compared with controls. Amount of PLA in this animal was normalized on rosuvastatin treatment. | Schafer et al., 2005 [39] |
alfrutamide, caffedymine | with alfrutamide or caffedymine, each N = 5 | without alfrutamide and caffedymine, each N = 5 | In vitro and in vivo both compounds significantly reduced unstimulated PLA formation in blood from mice. | Park et al., 2016 [40] |
temporary ligation of the common carotid artery | ASA, N = 11 rivaroxaban, N = 12 ASA with rivaroxaban, N = 6 | placebo, N = 11 | Without stimulation ASA treated groups had significantly higher PLA compared with controls. No treatment reduced effect of 2-MeSADP stimulation on PLA, but rivaroxaban eliminated stimulating effect of PAR4 agonist. | Mastenbroek et al., 2020 [142] |
ischemia-reperfusion injury in intestinal microcirculation | cilostazol, N = 14 mice ASA, N = 14 mice | placebo, N = 14 mice | Both cilostazol and ASA groups showed reduced PLA in intestinal circulation on microscopic assessment. However, only cilostazol group exhibited less endothelial damage. | Iba et al., 2006 [143] |
clopidogrel treatment | mice treated with clopidogrel, N = 15–20 | untreated mice, N = 15–20 | Ability to form platelet–polymorphonuclear aggregates in response to ADP or thrombin was reduced in blood from treated mice. Platelets from untreated animals combined with polymorphonuclear cells from treated animals gave results like in untreated animals. Pretreating human blood with active metabolite of clopidogrel significantly reduced platelet–polymorphonuclear aggregates formation induced by ADP or PAR-1 agonist. | Evangelista et al., 2005 [146] |
human blood pretreated with clopidogrel 1, N = 3 | human blood, N = 3 | |||
murine model of endotoxemic shock | prasugrel, N = 5 | placebo, N = 5 | In prasugrel group, platelet-polymorphonuclear aggregates formation was significantly reduced after stimulation with PAR-4 agonist peptide (only low concentrations) both after and without LPS injection. | Totani et al., 2012 [150] |
murine model of endotoxemia | LPS with clopidogrel pretreatment, N = 10 | placebo, N = 10 LPS, N = 10 clopidogrel, N = 10 | LPS injection resulted in PLA-N elevation, but it was significantly lower in subjects pretreated with clopidogrel. Clopidogrel pretreatment group showed less histological change and less leukocyte and platelet infiltration in the lungs compared with LPS alone group. | Wang et al., 2019 [155] |
murine model of hypertension and cardiac remodelling | with clopidogrel, N = 4 | without clopidogrel, N = 4 | High pressure (due to infusion of angiotensin II or phenylephrine) was associated with high PLA formation. Clopidogrel treatment counteracted this effect leading to a significant PLA reduction. | Jia et al., 2013 [156] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pluta, K.; Porębska, K.; Urbanowicz, T.; Gąsecka, A.; Olasińska-Wiśniewska, A.; Targoński, R.; Krasińska, A.; Filipiak, K.J.; Jemielity, M.; Krasiński, Z. Platelet–Leucocyte Aggregates as Novel Biomarkers in Cardiovascular Diseases. Biology 2022, 11, 224. https://doi.org/10.3390/biology11020224
Pluta K, Porębska K, Urbanowicz T, Gąsecka A, Olasińska-Wiśniewska A, Targoński R, Krasińska A, Filipiak KJ, Jemielity M, Krasiński Z. Platelet–Leucocyte Aggregates as Novel Biomarkers in Cardiovascular Diseases. Biology. 2022; 11(2):224. https://doi.org/10.3390/biology11020224
Chicago/Turabian StylePluta, Kinga, Kinga Porębska, Tomasz Urbanowicz, Aleksandra Gąsecka, Anna Olasińska-Wiśniewska, Radosław Targoński, Aleksandra Krasińska, Krzysztof J. Filipiak, Marek Jemielity, and Zbigniew Krasiński. 2022. "Platelet–Leucocyte Aggregates as Novel Biomarkers in Cardiovascular Diseases" Biology 11, no. 2: 224. https://doi.org/10.3390/biology11020224
APA StylePluta, K., Porębska, K., Urbanowicz, T., Gąsecka, A., Olasińska-Wiśniewska, A., Targoński, R., Krasińska, A., Filipiak, K. J., Jemielity, M., & Krasiński, Z. (2022). Platelet–Leucocyte Aggregates as Novel Biomarkers in Cardiovascular Diseases. Biology, 11(2), 224. https://doi.org/10.3390/biology11020224