Bird Assemblages in Coffee Agroforestry Systems and Other Human Modified Habitats in Indonesia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curtis, P.G.; Slay, C.M.; Harris, N.L.; Tyukavina, A.; Hansen, M.C. Classifying drivers of global forest loss. Science 2018, 361, 1108–1111. [Google Scholar] [CrossRef] [PubMed]
- Wiedmann, T.O.; Schandl, H.; Lenzen, M.; Moran, D.; Suh, S.; West, J.; Kanemoto, K. The material footprint of nations. Proc. Natl. Acad. Sci. USA 2015, 112, 6271–6276. [Google Scholar] [CrossRef] [Green Version]
- Lenzen, M.; Moran, D.; Kanemoto, K.; Foran, B.; Lobefaro, L.; Geschke, A. International trade drives biodiversity threats in developing nations. Nature 2012, 486, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Chaves, L.S.M.; Fry, J.; Malik, A.; Geschke, A.; Sallum, M.A.M.; Lenzen, M. Global consumption and international trade in deforestation-associated commodities could influence malaria risk. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Xiang, M.; Chen, D.; Zhou, J.; Wu, W.; Song, Q. Global cropland intensification surpassed expansion between 2000 and 2010: A spatio-temporal analysis based on GlobeLand30. Sci. Total Environ. 2020, 746, 141035. [Google Scholar] [CrossRef]
- Bunn, C.; Läderach, P.; Ovalle Rivera, O.; Kirschke, D. A bitter cup: Climate change profile of global production of Arabica and Robusta coffee. Clim. Change 2015, 129, 89–101. [Google Scholar] [CrossRef] [Green Version]
- Schroth, G.; da Fonseca, G.A.B.; Harvey, C.A.; Gascon, C.; Vasconcelos, H.L.; Izac, A.M.N. The role of agroforestry in biodiversity conservation in tropical landscapes. In Agroforestry and Biodiversity Conservation in Tropical Landscapes; Schroth, G., da Fonseca, G.A.B., Harvey, C.A., Gascon, C., Vasconcelos, H.L., Izac, A.M.N., Eds.; Island Press: Washington, DC, USA, 2004; pp. 1–12. [Google Scholar]
- De Beenhouwer, M.; Aerts, R.; Honnay, O. A global meta-analysis of the biodiversity and ecosystem service benefits of coffee and cacao agroforestry. Agric. Ecosyst. Environ. 2013, 175, 1–7. [Google Scholar] [CrossRef]
- Bhagwat, S.A.; Willis, K.J.; Birks, H.J.N.; Whittaker, R.J. Agroforestry: A refuge for tropical biodiversity? Trends Ecol. Evol. 2008, 23, 261–267. [Google Scholar] [CrossRef]
- Estrada, A.; Raboy, B.E.; Oliveira, L.C. Agroecosystems and primate conservation in the tropics: A review. Am. J. Primatol. 2012, 74, 696–711. [Google Scholar] [CrossRef]
- Guzman, A.; Link, A.; Castillo, J.A.; Botero, J.E. Agroecosystems and primate conservation: Shade coffee as potential habitat for the conservation of Andean night monkeys in the northern Andes. Agric. Ecosyst. Environ. 2016, 215, 57–67. [Google Scholar] [CrossRef]
- Campera, M.; Balestri, M.; Manson, S.; Hedger, K.; Ahmad, N.; Adinda, E.; Nijman, V.; Budiadi, B.; Imron, M.A.; Nekaris, K.A.I. Shade trees and agrochemical use affect butterfly assemblages in coffee home gardens. Agric. Ecosyst. Environ. 2021, 319, 107547. [Google Scholar] [CrossRef]
- Meyfroidt, P.; Rudel, T.K.; Lambin, E.F. Forest transitions, trade, and the global displacement of land use. Proc. Natl. Acad. Sci. USA 2010, 107, 20917–20922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soto-Pinto, L.; Perfecto, I.; Castillo-Hernandez, J.; Caballero-Nieto, J. Shade effect on coffee production at the northern Tzeltal zone of the state of Chiapas, Mexico. Agric. Ecosyst. Environ. 2000, 80, 61–69. [Google Scholar] [CrossRef]
- Perfecto, I.; Mas, A.; Dietsch, T.; Vandermeer, J. Conservation of biodiversity in coffee agroecosystems: A tri-taxa comparison in southern Mexico. Biodivers. Conserv. 2003, 12, 1239–1252. [Google Scholar] [CrossRef]
- Meylan, L.; Gary, C.; Allinne, C.; Ortiz, J.; Jackson, L.; Rapidel, B. Evaluating the effect of shade trees on provision of ecosystem services in intensively managed coffee plantations. Agric. Ecosyst. Environ. 2017, 245, 32–42. [Google Scholar] [CrossRef]
- Sarmiento-Soler, A.; Vast, P.; Hoffmann, M.P.; Jassogne, L.; van Asten, P.; Graefe, S.; Rotter, R.P. Effect of cropping system, shade cover and altitudinal gradient on coffee yield components at Mt. Elgon, Uganda. Agric. Ecosyst. Environ. 2020, 295, 12. [Google Scholar] [CrossRef]
- Mariño, Y.A.; Pérez, M.E.; Gallardo, F.; Trifilio, M.; Cruz, M.; Bayman, P. Sun vs. shade affects infestation, total population and sex ratio of the coffee berry borer (Hypothenemus hampei) in Puerto Rico. Agric. Ecosyst. Environ. 2016, 222, 258–266. [Google Scholar] [CrossRef] [Green Version]
- Borkhataria, R.; Collazo, J.A.; Groom, M.J.; Jordan-Garcia, A. Shade-grown coffee in Puerto Rico: Opportunities to preserve biodiversity while reinvigorating a struggling agricultural commodity. Agric. Ecosyst. Environ. 2012, 149, 164–170. [Google Scholar] [CrossRef]
- Perfecto, I.; Vandermeer, J.; Mas, A.; Soto, L. Biodiversity, yield, and shade coffee certification. Ecol. Econ. 2005, 54, 435–446. [Google Scholar] [CrossRef]
- Pywell, R.F.; Heard, M.S.; Woodcock, B.A.; Hinsley, S.; Ridding, L.; Nowakowski, M.; Bullock, J.M. Wildlife-friendly farming increases crop yield: Evidence for ecological intensification. Proc. R. Soc. B Biol. Sci. 2015, 282, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Richter, A.; Klein, A.M.; Tscharntke, T.; Tylianakis, J.M. Abandonement of coffee agroforests increases insect abundance and diversity. Agrofor. Syst. 2007, 69, 175–182. [Google Scholar] [CrossRef]
- Tejeda-Cruz, C.; Sutherland, W.J. Bird responses to shade coffee production. Anim. Conserv. 2004, 7, 169–179. [Google Scholar] [CrossRef]
- Buechley, E.R.; Sekercioglu, C.H.; Atickem, A.; Gebremichael, G.; Ndungu, J.K.; Mahamued, B.A.; Beyene, T.; Mekonnen, T.; Lens, L. Importance of Ethiopian shade coffee farms for forest bird conservation. Biol. Conserv. 2015, 188, 50–60. [Google Scholar] [CrossRef]
- Sari, D.F.; Budiadi, B.; Imron, M.A. The utilization of trees by endangered primate species Javan slow loris (Nycticebus javanicus) in shade-grown coffee agroforestry of Central Java. IOP Conf. Ser. Earth Environ. Sci. 2020, 449, 1. [Google Scholar] [CrossRef] [Green Version]
- Bali, A.; Kumar, A.; Krishnaswamy, J. The mammalian communities in coffee plantations around a protected area in the Western Ghats, India. Biol. Conserv. 2007, 139, 93–102. [Google Scholar] [CrossRef]
- Top Coffee Producing Countries. WorldAtlas. Available online: www.worldatlas.com/articles/top-coffee-producing-coun-tries.html (accessed on 10 January 2022).
- von Rintelen, K.; Arida, E.; Häuser, C. A review of biodiversity-related issues and challenges in megadiverse Indonesia and other Southeast Asian countries. Res. Ideas Outcomes. 2017, 3, e20860. [Google Scholar] [CrossRef] [Green Version]
- Breman, J. Keuntungan Kolonial Dari Kerja Paksa: Sistem Priangan Dari Tanam Paksa Kopi di Jawa, 1720–1870, 1st ed.; Yayasan Pustaka Obor Indonesia, KITLV Jakarta: Jakarta, Indonesia, 2014. [Google Scholar]
- Van Balen, S. Birds on Fragmented Islands: Persistence in the Forests of Java and Bali. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 1999. [Google Scholar]
- Eaton, J.A.; Shepherd, C.R.; Rheindt, F.E.; Harris, J.B.C.; van Balen, S.B.; Wilcove, D.S.; Collar, N.J. Trade-driven extinctions and near-extinctions of avian taxa in Sundaic Indonesia. Forktail 2015, 31, 1–12. [Google Scholar]
- Irawan, N.; Pudyatmoko, S.; Yuwono, P.S.H.; Tafrichan, M.; Giordano, A.J.; Imron, M.A. The Importance of unprotected areas as habitat for the leopard cat (Prionailurus bengalensis javanensis Desmarest, 1816) on Java, Indonesia. J. Ilmu Kehutan. 2020, 14, 198–212. [Google Scholar]
- Leupen, B.T.C.; Gomez, L.; Shepherd, C.R.; Nekaris, K.A.I.; Imron, M.A.; Nijman, V. Thirty years of trade data suggests population declines in a once common songbird in Indonesia. Eur. J. Wildl. Res. 2020, 66, 2020. [Google Scholar] [CrossRef]
- Condro, A.A.; Prasetyo, L.B.; Rushayati, S.B.; Santikayasa, I.P.; Iskandar, E. Predicting hotspots and prioritizing protected areas for endangered primate species in Indonesia under changing climate. Biology 2021, 10, 154. [Google Scholar] [CrossRef] [PubMed]
- Campera, M.; Brown, E.; Imron, M.A.; Nekaris, K.A.I. Unmonitored releases of small animals? The importance of considering natural dispersal, health, and human habituation when releasing a territorial mammal threatened by wildlife trade. Biol. Conserv. 2020, 242, 108404. [Google Scholar] [CrossRef]
- Birot, H.; Campera, M.; Imron, M.A.; Nekaris, K.A.I. Artificial canopy bridges improve connectivity in fragmented landscapes: The case of Javan slow lorises in an agroforest environment. Am. J. Primatol. 2020, 82, e23076. [Google Scholar] [CrossRef] [PubMed]
- Nekaris, K.A.I.; Handby, V.; Campera, M.; Birot, H.; Hedger, K.; Eaton, J.; Imron, M.A. Implementing and monitoring the use of artificial canopy bridges by mammals and birds in an Indonesian agroforestry environment. Diversity 2020, 12, 399. [Google Scholar] [CrossRef]
- Badan Pusat Statistik Indonesia, “Statistik Indonesia Tahun 2011–2020”. Available online: https://www.bps.go.id/indicator/54/132/3/produksi-tanaman-perkebunan.html (accessed on 19 October 2021).
- Philpott, S.M.; Arendt, W.J.; Armbrecht, I.; Bichier, P.; Diestch, T.V.; Gordon, C.; Greenberg, R.; Perfecto, I.; Reynoso-Santos, R.; Soto-Pinto, L.; et al. Biodiversity loss in Latin American coffee landscapes: Review of the evidence on ants, birds, and trees. Conserv. Biol. 2008, 22, 1093–1105. [Google Scholar] [CrossRef]
- Wood, S.N. Generalized Additive Models: An Introduction with R, 2nd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2017. [Google Scholar]
- Campera, M.; Santini, L.; Balestri, M.; Nekaris, K.A.I.; Donati, G. Elevation gradients of lemur abundance emphasise the importance of Madagascar’s lowland rainforest for the conservation of endemic taxa. Mamm. Rev. 2020, 1, 25–37. [Google Scholar] [CrossRef]
- Coetzee, B.W.T.; Gaston, K.J.; Chown, S.L. Local scale comparisons of biodiversity as a test for global protected area ecological performance: A meta-analysis. PLoS ONE 2014, 9, e105824. [Google Scholar] [CrossRef]
- Bąk-Badowska, J.; Wojciechowska, A.; Czerwik-Marcinkowska, J. Effects of open and forest habitats on distribution and diversity of Bumblebees (Bombus) in the Małopolska upland (Southern Poland): Case study. Biology 2021, 10, 1266. [Google Scholar] [CrossRef]
- Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 2003, 6, 927–930. [Google Scholar] [CrossRef]
- Ibrahim, H.W.; Zailani, S. A review on the competitiveness of global supply chain in a coffee Industry in Indonesia. Int. Bus. Manag. 2010, 4, 105–115. [Google Scholar]
- Campera, M.; Budiadi, B.; Adinda, E.; Ahmad, N.; Balestri, M.; Hedger, K.; Imron, M.A.; Manson, S.; Nijman, V.; Nekaris, K.A.I. Fostering a wildlife-friendly program for sustainable coffee farming: The case of small-holder farmers in Indonesia. Land 2021, 10, 121. [Google Scholar] [CrossRef]
- Whelan, C.J.; Sekercioglu, C.H.; Wenny, D.G. Why birds matter: From economic ornithology to ecosystem services. J. Ornithol. 2015, 156, 227–238. [Google Scholar] [CrossRef]
- Perfecto, I.; Rice, R.A.; Greenberg, R.; VanderVoort, M.E. Shade coffee: A disappearing refuge for biodiversity. Bioscience 1996, 46, 598–608. [Google Scholar] [CrossRef] [Green Version]
- Campera, M.; Hedger, K.; Birot, H.; Manson, S.; Balestri, M.; Budiadi, B.; Imron, M.A.; Nijman, V.; Nekaris, K.A.I. Does the presence of shade trees and distance to the forest affect detection rates of terrestrial vertebrates in coffee home gardens? Sustainability 2021, 13, 8540. [Google Scholar] [CrossRef]
- Ricketts, T.H.; Daily, G.C.; Ehrlich, P.R.; Michener, C.D. Economic value of tropical forest to coffee production. Proc. Natl. Acad. Sci. USA 2004, 101, 12579–12582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreer, V.; Padmanabhan, M. The many meanings of organic farming: Framing food security and food sovereignty in Indonesia. Org. Agric. 2020, 10, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Ibanez, M.; Blackman, A. Is eco-certification a win–win for developing country agriculture? Organic coffee certification in Colombia. World Dev. 2016, 82, 14–27. [Google Scholar] [CrossRef]
- Chapman, M.; Satterfield, T.; Chan, K.M.A. When value conflicts are barriers: Can relational values help explain farmer participation in conservation incentive programs? Land Use Policy 2019, 82, 464–475. [Google Scholar] [CrossRef] [Green Version]
- Schroth, G.; Läderach, P.; Blackburn Cuero, D.S.; Neilson, J.; Bunn, C. Winner or loser of climate change? A modelling study of current and future climatic suitability of Arabica coffee in Indonesia. Reg. Environ. Change 2015, 15, 1473–1482. [Google Scholar] [CrossRef] [Green Version]
- Edwards, D.P.; Hodgson, J.A.; Hamer, K.C.; Mitchell, S.L.; Ahmad, A.H.; Cornell, S.J.; Wilcove, D.S. Wildlife-friendly oil palm plantations fail to protect biodiversity effectively. Conserv. Lett. 2010, 3, 236–242. [Google Scholar] [CrossRef]
- Smith, C.; Barton, D.; Johnson, M.D.; Wendt, C.; Milligan, M.C.; Njoroge, P.; Gichuki, P. Bird communities in sun and shade coffee farms in Kenya. Glob. Ecol. Conserv. 2015, 4, 479–490. [Google Scholar] [CrossRef] [Green Version]
Sites | Regency | Elevation Range (m above Sea Level) | Plant Diversity | Bird Diversity | Number of Observation Points | Main Habitat Types |
---|---|---|---|---|---|---|
Cipaganti | Garut | 1300–1650 | 0.97 ± 0.06 | 0.65 ± 0.04 | 57 | Mixed coffee systems: sun, shade monoculture, commercial polyculture |
Kemuning | Temanggung | 459–649 | 1.63 ± 0.03 | 1.83 ± 0.04 | 89 | Rustic coffee |
Kepuhharjo | Sleman | 616–985 | 1.36 ± 0.07 | 1.34 ± 0.12 | 30 | Traditional polyculture coffee |
Jatimulyo | Kulon Progo | 514–765 | 1.35 ± 0.07 | 1.10 ± 0.12 | 30 | Traditional polyculture coffee |
Ijen-Baluran | Banyuwangi | 70–1595 | 0.20 ± 0.04 | 0.88 ± 0.07 | 46 | Tree farms and other crops * |
Madiun-Kediri | Kediri | 780–1265 | 0.31 ± 0.05 | 1.08 ± 0.06 | 60 | Tree farms and other crops * |
Batu-Malang | Malang | 881–1484 | 0.21 ± 0.04 | 0.92 ± 0.07 | 60 | Tree farms and other crops |
Pasuruan | Pasuruan | 595–1793 | 0.50 ± 0.06 | 1.49 ± 0.08 | 60 | Tree farms * |
Trenggalek | Trenggalek | 4–372 | 0.47 ± 0.06 | 1.19 ± 0.05 | 60 | Tree farms and other crops * |
Gunung Kelud | Kediri, Malang, Blitar | 712–1031 | 0.29 ± 0.05 | 1.33 ± 0.06 | 60 | Tree farms and other crops |
Sampang | Sampang | 0–8 | 0.22 ± 0.05 | 1.89 ± 0.05 | 60 | Mangrove and paddy fields |
Kota Surabaya | Surabaya | 0–47 | 0.43 ± 0.06 | 1.94 ± 0.04 | 60 | Mangrove and other crops |
Probolinggo (BTS) | Probolinggo | 607–1412 | 0.25 ± 0.06 | 0.99 ± 0.08 | 60 | Tree farms |
DT Hyang | Probolinggo | 498–968 | 0.83 ± 0.06 | 1.14 ± 0.07 | 60 | Community managed forest |
Situbondo | Situbondo | 0–32 | 0.11 ± 0.04 | 0.87 ± 0.06 | 60 | Paddy fields and other crops |
Tuban | Tuban | 3–32 | 0.10 ± 0.04 | 1.49 ± 0.07 | 60 | Paddy fields and other crops |
Banyuwangi | Banyuwangi | 5–182 | 0.44 ± 0.06 | 0.91 ± 0.07 | 60 | Tree farms and other crops |
Jember | Jember | 1–17 | 0.03 ± 0.02 | 1.19 ± 0.06 | 60 | Paddy fields |
Lumajang | Lumajang | 1–26 | 0.12 ± 0.05 | 1.12 ± 0.06 | 60 | Tree farms and other crops |
Sidoarjo | Sidoarjo | 0–4 | 0.25 ± 0.05 | 2.03 ± 0.06 | 60 | Mangrove and other crops |
Alas Purwo-Meru Betiri | Banyuwangi | 0–112 | 0.43 ± 0.06 | 0.86 ± 0.08 | 60 | Tree farms |
Response Variable a | Predictor | Category | Estimate ± Std. Error | Z-Value | p | Smooth Term | p | |
---|---|---|---|---|---|---|---|---|
Edf | χ2 | |||||||
Bird abundance | Intercept | 4.06 ± 0.40 | 8.24 ** | <0.001 | ||||
Habitat b | Community managed forest | −0.19 ± 0.41 | −0.48 | 0.634 | ||||
Mangrove | −1.19 ± 0.22 | −5.32 ** | <0.001 | |||||
Other commercial polyculture | −0.95 ± 0.25 | −3.83 ** | <0.001 | |||||
Other crop/fruit field | −0.82 ± 0.20 | −4.08 * | <0.001 | |||||
Paddy field | −0.64 ± 0.21 | −3.02 ** | 0.003 | |||||
Rustic coffee | 0.05 ± 0.39 | 0.33 | 0.741 | |||||
Shade monoculture coffee | −0.93 ± 0.19 | −5.02 ** | <0.001 | |||||
Sun coffee | −0.99 ± 0.23 | −4.31 ** | <0.001 | |||||
Traditional polyculture coffee | −0.23 ± 0.26 | −0.88 | 0.378 | |||||
Tree farm | −1.18 ± 0.20 | −5.94 ** | <0.001 | |||||
Shade tree richness | 0.04 ± 0.02 | 2.03 | 0.043 * | |||||
s(plant diversity) | 8.42 | 53.22 ** | <0.001 | |||||
s(elevation) | 2.58 | 4.54 | 0.177 | |||||
s(longitude, latitude) | 31.68 | 1724.84 ** | <0.001 | |||||
s(distance to protected areas) | 8.07 | 109.00 ** | <0.001 | |||||
Bird diversity | Intercept | 0.55 ± 0.19 | 2.91 * | 0.004 | ||||
Habitat b | Community managed forest | |||||||
Mangrove | ||||||||
Other commercial polyculture | ||||||||
Other crop/fruit field | ||||||||
Paddy field | ||||||||
Rustic coffee | ||||||||
Shade monoculture coffee | ||||||||
Sun coffee | ||||||||
Traditional polyculture coffee | ||||||||
Tree farm | ||||||||
Shade tree richness | ||||||||
s(plant diversity) | ||||||||
s(elevation) | ||||||||
s(longitude, latitude) | ||||||||
s(distance to protected areas) | ||||||||
Bird richness | Intercept | 1.75 ± 0.23 | 7.74 ** | <0.001 | ||||
Habitatb | Community managed forest | −0.05 ± 0.27 | −0.19 | 0.853 | ||||
Mangrove | −0.29 ± 0.19 | −1.57 | 0.117 | |||||
Other commercial polyculture | −0.20 ± 0.21 | −0.96 | 0.336 | |||||
Other crop/fruit field | −0.41 ± 0.17 | −2.37 * | 0.018 | |||||
Paddy field | −0.21 ± 0.18 | −1.20 | 0.23 | |||||
Rustic coffee | 0.11 ± 0.31 | 0.67 | 0.502 | |||||
Shade monoculture coffee | −0.54 ± 0.17 | −3.19 ** | 0.001 | |||||
Sun coffee | −0.56 ± 0.24 | −2.40 * | 0.016 | |||||
Traditional polyculture coffee | 0.08 ± 0.28 | 0.29 | 0.769 | |||||
Tree farm | −0.48 ± 0.17 | −2.76 ** | 0.006 | |||||
Shade tree richness | 0.01 ± 0.02 | 0.84 | 0.387 | |||||
s(plant diversity) | 1.00 | 0.15 | 0.699 | |||||
s(elevation) | 1.00 | 0.53 | 0.468 | |||||
s(longitude, latitude) | 25.45 | 457.90 ** | <0.001 | |||||
s(distance to protected areas) | 2.67 | 3.40 | 0.484 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imron, M.A.; Campera, M.; Al Bihad, D.; Rachmawati, F.D.; Nugroho, F.E.; Budiadi, B.; Wianti, K.F.; Suprapto, E.; Nijman, V.; Nekaris, K.A.I. Bird Assemblages in Coffee Agroforestry Systems and Other Human Modified Habitats in Indonesia. Biology 2022, 11, 310. https://doi.org/10.3390/biology11020310
Imron MA, Campera M, Al Bihad D, Rachmawati FD, Nugroho FE, Budiadi B, Wianti KF, Suprapto E, Nijman V, Nekaris KAI. Bird Assemblages in Coffee Agroforestry Systems and Other Human Modified Habitats in Indonesia. Biology. 2022; 11(2):310. https://doi.org/10.3390/biology11020310
Chicago/Turabian StyleImron, Muhammad Ali, Marco Campera, Dennis Al Bihad, Farah Dini Rachmawati, Febrian Edi Nugroho, Budiadi Budiadi, K. Fajar Wianti, Edi Suprapto, Vincent Nijman, and K.A.I. Nekaris. 2022. "Bird Assemblages in Coffee Agroforestry Systems and Other Human Modified Habitats in Indonesia" Biology 11, no. 2: 310. https://doi.org/10.3390/biology11020310
APA StyleImron, M. A., Campera, M., Al Bihad, D., Rachmawati, F. D., Nugroho, F. E., Budiadi, B., Wianti, K. F., Suprapto, E., Nijman, V., & Nekaris, K. A. I. (2022). Bird Assemblages in Coffee Agroforestry Systems and Other Human Modified Habitats in Indonesia. Biology, 11(2), 310. https://doi.org/10.3390/biology11020310