Deadbug Bridging Performance in 6- to 15-Year-Old Competitive Alpine Skiers—A Cross-Sectional Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design, Setting and Participants
2.2. Data Collection and Evaluation
2.2.1. Age, Anthropometric Data and Determination of Biological Maturity
2.2.2. DBB Performance Assessment
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics and Biological Maturation
3.2. Differences in Absolute DBBdisplacement with Respect to Age and Sex
3.3. Association between DBBdisplacement, Age, Anthropometrics, Maturity Offset and APHV
4. Discussion
4.1. Implementability of DBB Exercises in Competitive Alpine Skiers Aged 6- to 15-Years
4.2. Differences in Baseline Characteristics and DBBdisplacement with Respect to Age Group and Sex
4.3. Association of DBBdisplacement with Age, Anthropometrics and Maturity Offset in U10 and U15 Skiers
4.4. DBB Performance in 6- to 15-Year-Old Skiers—Why It May Matter
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Müller, L.; Hildebrandt, C.; Müller, E.; Oberhoffer, R.; Raschner, C. Injuries and illnesses in a cohort of elite youth alpine ski racers and the influence of biological maturity and relative age: A two-season prospective study. Open Access J. Sports Med. 2017, 8, 113–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoeb, T.; Peterhans, L.; Frohlich, S.; Frey, W.O.; Gerber, C.; Sporri, J. Health problems in youth competitive alpine skiing: A 12-month observation of 155 athletes around the growth spurt. Scand. J. Med. Sci. Sports 2020, 30, 1758–1768. [Google Scholar] [CrossRef] [PubMed]
- Peterhans, L.; Fröhlich, S.; Stern, C.; Frey, W.O.; Farshad, M.; Sutter, R.; Spörri, J. High Rates of Overuse-Related Structural Abnormalities in the Lumbar Spine of Youth Competitive Alpine Skiers: A Cross-sectional MRI Study in 108 Athletes. Orthop. J. Sports Med. 2020, 8, 2325967120922554. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, S.; Peterhans, L.; Stern, C.; Frey, W.O.; Sutter, R.; Spörri, J. Remarkably high prevalence of overuse-related knee complaints and MRI abnormalities in youth competitive alpine skiers: A descriptive investigation in 108 athletes aged 13–15 years. BMJ Open Sport Exerc. Med. 2020, 6, e000738. [Google Scholar] [CrossRef] [PubMed]
- Raschner, C.; Platzer, H.P.; Patterson, C.; Werner, I.; Huber, R.; Hildebrandt, C. The relationship between ACL injuries and physical fitness in young competitive ski racers: A 10-year longitudinal study. Br. J. Sports Med. 2012, 46, 1065–1071. [Google Scholar] [CrossRef]
- Gilgien, M.; Kröll, J.; Spörri, J.; Crivelli, P.; Müller, E. Application of dGNSS in Alpine Ski Racing: Basis for Evaluating Physical Demands and Safety. Front. Physiol. 2018, 9, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilgien, M.; Reid, R.; Raschner, C.; Supej, M.; Holmberg, H.C. The Training of Olympic Alpine Ski Racers. Front. Physiol. 2018, 9, 1772. [Google Scholar] [CrossRef] [Green Version]
- Reid, R.C.; Haugen, P.; Gilgien, M.; Kipp, R.W.; Smith, G.A. Alpine Ski Motion Characteristics in Slalom. Front. Sports Act. Living 2020, 2, 25. [Google Scholar] [CrossRef] [Green Version]
- Spörri, J.; Kröll, J.; Fasel, B.; Aminian, K.; Müller, E. The Use of Body Worn Sensors for Detecting the Vibrations Acting on the Lower Back in Alpine Ski Racing. Front. Physiol. 2017, 8, 522. [Google Scholar] [CrossRef]
- Spörri, J.; Kröll, J.; Haid, C.; Fasel, B.; Müller, E. Potential Mechanisms Leading to Overuse Injuries of the Back in Alpine Ski Racing: A Descriptive Biomechanical Study. Am. J. Sports Med. 2015, 43, 2042–2048. [Google Scholar] [CrossRef]
- Bere, T.; Flørenes, T.W.; Krosshaug, T.; Koga, H.; Nordsletten, L.; Irving, C.; Muller, E.; Reid, R.C.; Senner, V.; Bahr, R. Mechanisms of anterior cruciate ligament injury in World Cup alpine skiing: A systematic video analysis of 20 cases. Am. J. Sports Med. 2011, 39, 1421–1429. [Google Scholar] [CrossRef] [PubMed]
- Spörri, J.; Müller, E.; Kröll, J. “When you’re down, stay down”: A lesson for all competitive alpine skiers supported by an ACL rupture measured in-vivo. J. Sport Health Sci. 2021, 11, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Ellenberger, L.; Jermann, J.; Fröhlich, S.; Frey, W.O.; Snedeker, J.G.; Spörri, J. Biomechanical quantification of deadbug bridging performance in competitive alpine skiers: Reliability, reference values, and associations with skiing performance and back overuse complaints. Phys. Ther. Sport 2020, 45, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Schoeb, T.; Fröhlich, S.; Frey, W.O.; Verhagen, E.; Farshad, M.; Spörri, J. The ISPAInt injury prevention programme for youth competitive alpine skiers: A controlled 12-month experimental study in a real-world training setting. Front. Physiol. 2022, 13, 826212. [Google Scholar] [CrossRef]
- Mirwald, R.L.; Baxter-Jones, A.D.; Bailey, D.A.; Beunen, G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar]
- Kiers, K.; Ellenberger, L.; Javet, M.; Bruhin, B.; Frey, W.O.; Spörri, J. A cross-sectional observation on maximal eccentric hamstring strength in 7- to 15-year-old competitive alpine skiers. Biology 2021, 10, 1128. [Google Scholar] [CrossRef]
- Malina, R.M.; Koziel, S.M. Validation of maturity offset in a longitudinal sample of Polish girls. J. Sports Sci. 2014, 32, 1374–1382. [Google Scholar] [CrossRef]
- Malina, R.M.; Koziel, S.M. Validation of maturity offset in a longitudinal sample of Polish boys. J. Sports Sci. 2014, 32, 424–437. [Google Scholar] [CrossRef]
- Müller, L.; Müller, E.; Hildebrandt, C.; Kapelari, K.; Raschner, C. The Assessment of Biological Maturation for Talent Selection—Which Method can be used? Sportverl. Sportschad. 2015, 29, 56–63. [Google Scholar] [CrossRef]
- Razali, N.M.; Wah, Y.B. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darlling tests. J. Stat. Modeling Anal. 2011, 2, 21–33. [Google Scholar]
- West, S.G.; Finch, J.F.; Curran, P.J. Structural equation models with nonnormal variables: Problems and remedies. In Structural Equation Modeling: Concepts, Issues, and Applications; Hoyle, R.H., Ed.; Sage Publication Inc.: Thousand Oaks, CA, USA, 1995; pp. 56–75. [Google Scholar]
- Malina, R.M.; Rogol, A.D.; Cumming, S.P.; Coelho e Silva, M.J.; Figueiredo, A.J. Biological maturation of youth athletes: Assessment and implications. Br. J. Sports Med. 2015, 49, 852–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freeman, M.D.; Woodham, M.A.; Woodham, A.W. The role of the lumbar multifidus in chronic low back pain: A review. PM R 2010, 2, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, C.; Oberhoffer, R.; Raschner, C.; Muller, E.; Fink, C.; Steidl-Muller, L. Training load characteristics and injury and illness risk identification in elite youth ski racing: A prospective study. J. Sport Health Sci. 2021, 10, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Witwit, W.A.; Kovac, P.; Sward, A.; Agnvall, C.; Todd, C.; Thoreson, O.; Hebelka, H.; Baranto, A. Disc degeneration on MRI is more prevalent in young elite skiers compared to controls. Knee Surg. Sport Traumatol. Arthrosc. 2018, 26, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Rachbauer, F.; Sterzinger, W.; Eibl, G. Radiographic abnormalities in the thoracolumbar spine of young elite skiers. Am. J. Sports Med. 2001, 29, 446–449. [Google Scholar] [CrossRef] [PubMed]
- Spörri, J.; Kröll, J.; Supej, M.; Müller, E. Reducing the back overuse-related risks in alpine ski racing: Let’s put research into sports practice. Br. J. Sports Med. 2019, 53, 2–3. [Google Scholar] [CrossRef] [Green Version]
- Wirth, K.; Hartmann, H.; Mickel, C.; Szilvas, E.; Keiner, M.; Sander, A. Core Stability in Athletes: A Critical Analysis of Current Guidelines. Sports Med. 2017, 47, 401–414. [Google Scholar] [CrossRef]
- Hibbs, A.E.; Thompson, K.G.; French, D.; Wrigley, A.; Spears, I. Optimizing performance by improving core stability and core strength. Sports Med. 2008, 38, 995–1008. [Google Scholar] [CrossRef]
- Lloyd, R.S.; Oliver, J.L.; Faigenbaum, A.D.; Myer, G.D.; De Ste Croix, M.B. Chronological age vs. biological maturation: Implications for exercise programming in youth. J. Strength Cond. Res. 2014, 28, 1454–1464. [Google Scholar] [CrossRef]
U10 | U15 | p Values | |||||
---|---|---|---|---|---|---|---|
Variables | Female | Male | Female | Male | Sex | Age | Sex × Age |
sample size | 31 | 19 | 27 | 24 | |||
age [years] | 9.8 ± 0.9 (6.7–10.8) | 9.5 ± 0.9 (7.9–10.8) | 13.6 ± 1.5 * (11.1–15.6) | 13.3 ± 1.4 * (11.2–15.6) | 0.172 | <0.001 * | 0.947 |
body height [cm] | 137.7 ± 6.8 (121.0–148.5) | 139.7 ± 7.5 (129.0–154.0) | 159.5 ± 8.5 * (143.0–172.5) | 161 ± 13.3 * (140.0–180.5) | 0.365 | <0.001 * | 0.904 |
body weight [kg] | 31.3 ± 6.0 (20.0–49.0) | 33.4 ± 8.4 (25.0–54.0) | 49.2 ± 9.8 * (31.0–64.0) | 49.5 ± 14.1 * (28.0–74.0) | 0.532 | <0.001 * | 0.669 |
maturity offset [years] | --- | --- | 1.3 ± 1.3 (−1.1–2.8) | −0.6 ± 1.5 # (−2.7–1.6) | <0.001 # | --- | --- |
APHV [years] | --- | --- | 12.4 ± 0.4 (11.6–13.0) | 13.9 ± 0.7 # (12.4–15.6) | <0.001 # | --- | --- |
DBBdisplacement [mm] | Mean | SD | Min | Q1 | Median | Q3 | Max |
---|---|---|---|---|---|---|---|
U10 female | 34.8 | 8.5 | 21.1 | 26.6 | 35.4 | 42.4 | 48.4 |
U10 male | 33.9 | 8.7 | 26.0 | 27.4 | 31.1 | 38.1 | 58.5 |
U15 female | 29.3 | 8.2 | 12.8 | 22.6 | 28.4 | 33.9 | 44.6 |
U15 male | 35.7 | 9.3 | 20.0 | 28.1 | 34.8 | 43.1 | 56.5 |
DBBdisplacement [mm] | |||||
---|---|---|---|---|---|
U10 | U15 | ||||
Variables | Female | Male | Female | Male | |
age [years] | r (R2) | −0.141 (0.020) | −0.010 (<0.001) | −0.178 (0.032) | 0.030 (0.001) |
p-value | 0.451 | 0.967 | 0.373 | 0.889 | |
body height [cm] | r (R2) | 0.413 (0.171) | 0.128 (0.016) | −0.152 (0.023) | −0.034 (0.001) |
p-value | 0.021 * | 0.602 | 0.449 | 0.875 | |
body weight [kg] | r (R2) | 0.295 (0.087) | 0.377 (0.142) | −0.295 (0.087) | 0.078 (0.006) |
p-value | 0.108 | 0.111 | 0.108 | 0.716 | |
maturity offset [years] | r (R2) | --- | --- | −0.195 (0.038) | −0.013 (0) |
p-value | --- | --- | 0.330 | 0.952 | |
APHV [years] | r (R2) | --- | --- | −0.028 (0.001) | 0.087 (0.007) |
p-value | --- | --- | 0.888 | 0.688 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strutzenberger, G.; Ellenberger, L.; Bruhin, B.; Frey, W.O.; Scherr, J.; Spörri, J. Deadbug Bridging Performance in 6- to 15-Year-Old Competitive Alpine Skiers—A Cross-Sectional Study. Biology 2022, 11, 329. https://doi.org/10.3390/biology11020329
Strutzenberger G, Ellenberger L, Bruhin B, Frey WO, Scherr J, Spörri J. Deadbug Bridging Performance in 6- to 15-Year-Old Competitive Alpine Skiers—A Cross-Sectional Study. Biology. 2022; 11(2):329. https://doi.org/10.3390/biology11020329
Chicago/Turabian StyleStrutzenberger, Gerda, Lynn Ellenberger, Björn Bruhin, Walter O. Frey, Johannes Scherr, and Jörg Spörri. 2022. "Deadbug Bridging Performance in 6- to 15-Year-Old Competitive Alpine Skiers—A Cross-Sectional Study" Biology 11, no. 2: 329. https://doi.org/10.3390/biology11020329
APA StyleStrutzenberger, G., Ellenberger, L., Bruhin, B., Frey, W. O., Scherr, J., & Spörri, J. (2022). Deadbug Bridging Performance in 6- to 15-Year-Old Competitive Alpine Skiers—A Cross-Sectional Study. Biology, 11(2), 329. https://doi.org/10.3390/biology11020329