The Phylodynamic and Spread of the Invasive Asian Malaria Vectors, Anopheles stephensi, in Sudan
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Mosquito Collection
2.2. Active Surveys Targeting An. stephensi
2.3. Routine Vector Surveillance
2.4. The Morphological Identification of Mosquito Samples
2.5. DNA Extraction from Mosquito
2.6. Polymerase Chain Reaction (PCR)
2.7. Sequences’ Identity Confirmation
2.8. Bioinformatics Analysis
3. Results
3.1. Surveillance Data
3.2. Breeding Sites of An. stephensi
3.3. Bioinformatic Analysis
3.3.1. Haplotype Analysis
3.3.2. Phylogenetic Analysis
3.3.3. Worldwide Haplotypes Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The World Health Organization. World Malaria Report 2020. Available online: https://cms.who.int/publications-detail-redirect/9789240015791 (accessed on 16 July 2021).
- The World Health Organization. World Malaria Report 2019. Available online: https://www.who.int/publications/i/item/world-malaria-report-2019 (accessed on 9 October 2019).
- Ageep, T.B.; Damiens, D.; Alsharif, B.; Ahmed, A.; Salih, E.H.; Ahmed, F.T.; Diabaté, A.; Lees, R.S.; Gilles, J.R.; El Sayed, B.B. Participation of Irradiated Anopheles Arabiensis Males in Swarms Following Field Release in Sudan. Malar. J. 2014, 13, 484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatt, S.; Weiss, D.J.; Cameron, E.; Bisanzio, D.; Mappin, B.; Dalrymple, U.; Battle, K.E.; Moyes, C.L.; Henry, A.; Eckhoff, P.A.; et al. The Effect of Malaria Control on Plasmodium Falciparum in Africa between 2000 and 2015. Nature 2015, 526, 207–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, N.S.; Abdelbagi, H.; Osman, H.A.; Ahmed, A.E.; Yousif, A.M.; Edris, Y.B.; Osman, E.Y.; Elsadig, A.R.; Siddig, E.E.; Mustafa, M.; et al. A Snapshot of Plasmodium Falciparum Malaria Drug Resistance Markers in Sudan: A Pilot Study. BMC Res. Notes 2020, 13, 512. [Google Scholar] [CrossRef] [PubMed]
- Abuelmaali, S.; Ahmed, A.; AbdHamid, M.; Elaagip, A.; Basheer, M.; Weetman, D. Poster of the Impacts of the Agricultural Schemes on Insecticide Resistance. In Proceedings of the Roll Back Malaria (RBM) Vector Control Working Group (VCWG-11) Annual Meeting 2016, Geneva, Switzerland, 10 December 2013. [Google Scholar] [CrossRef]
- Mohamed, N.S.; AbdElbagi, H.; Elsadig, A.R.; Ahmed, A.E.; Mohammed, Y.O.; Elssir, L.T.; Elnour, M.-A.B.; Ali, Y.; Ali, M.S.; Altahir, O.; et al. Assessment of Genetic Diversity of Plasmodium Falciparum Circumsporozoite Protein in Sudan: The RTS, S Leading Malaria Vaccine Candidate. Malar. J. 2021, 20, 436. [Google Scholar] [CrossRef] [PubMed]
- The World Health Organization. World Malaria Report 2021. Available online: https://www.who.int/publications/i/item/9789240040496 (accessed on 8 December 2021).
- Mohamed, N.S.; Ali, Y.; Muneer, M.S.; Siddig, E.E.; Sibley, C.H.; Ahmed, A. Malaria Epidemic in Humanitarian Crisis Settings the Case of South Kordofan State, Sudan. J. Infect. Dev. Ctries 2021, 15, 168–171. [Google Scholar] [CrossRef]
- Abdelwhab, O.F.; Elaagip, A.; Albsheer, M.M.; Ahmed, A.; Paganotti, G.M.; Abdel Hamid, M.M. Molecular and Morphological Identification of Suspected Plasmodium Vivax Vectors in Central and Eastern Sudan. Malar. J. 2021, 20, 132. [Google Scholar] [CrossRef]
- Ahmed, A.; Eldigail, M.; Elduma, A.; Breima, T.; Dietrich, I.; Ali, Y.; Weaver, S.C. First Report of Epidemic Dengue Fever and Malaria Co-Infections among Internally Displaced Persons in Humanitarian Camps of North Darfur, Sudan. Int. J. Infect. Dis. 2021, 108, 513–516. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Mohamed, N.S.; Siddig, E.E.; Algaily, T.; Sulaiman, S.; Ali, Y. The Impacts of Climate Change on Displaced Populations: A Call for Actions. J. Clim. Change Health 2021, 3, 100057. [Google Scholar] [CrossRef]
- Takken, W.; Lindsay, S. Increased Threat of Urban Malaria from Anopheles Stephensi Mosquitoes, Africa. Emerg. Infect. Dis. 2019, 25, 1431–1433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, A.; Khogali, R.; Elnour, M.-A.B.; Nakao, R.; Salim, B. Emergence of the Invasive Malaria Vector Anopheles Stephensi in Khartoum State, Central Sudan. Parasites Vectors 2021, 14, 511. [Google Scholar] [CrossRef]
- Ahmed, A.; Pignatelli, P.; Elaagip, A.; Hamid, M.M.A.; Alrahman, O.F.; Weetman, D. Invasive Malaria Vector Anopheles Stephensi Mosquitoes in Sudan, 2016–2018. EID 2021, 27, 2952–2954. [Google Scholar] [CrossRef] [PubMed]
- Faulde, M.K.; Rueda, L.M.; Khaireh, B.A. First Record of the Asian Malaria Vector Anopheles Stephensi and Its Possible Role in the Resurgence of Malaria in Djibouti, Horn of Africa. Acta Trop. 2014, 139, 39–43. [Google Scholar] [CrossRef] [PubMed]
- de Santi, V.P.; Khaireh, B.A.; Chiniard, T.; Pradines, B.; Taudon, N.; Larréché, S.; Mohamed, A.B.; de Laval, F.; Berger, F.; Gala, F.; et al. Role of Anopheles Stephensi Mosquitoes in Malaria Outbreak, Djibouti, 2019. Emerg. Infect. Dis. 2021, 27, 1697–1700. [Google Scholar] [CrossRef]
- WHO. Vector Alert: Anopheles Stephensi Invasion and Spread. Available online: https://www.who.int/news-room/detail/26-08-2019-vector-alert-anopheles-stephensi-invasion-and-spread (accessed on 31 May 2020).
- Coetzee, M. Key to the Females of Afrotropical Anopheles Mosquitoes (Diptera: Culicidae). Malar. J. 2020, 19, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA Primers for Amplification of Mitochondrial Cytochrome c Oxidase Subunit I from Diverse Metazoan Invertebrates. Mol. Marine Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Manske, M. GENtle, a Free Multi-Purpose Molecular Biology Tool. Ph.D. Thesis, Universität zu Köln, Köln, Germany, 2006. [Google Scholar]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.-J.; Zou, Y.-L.; Ding, Y.-R.; Xu, W.-Y.; Yan, Z.-T.; Li, X.-D.; Fu, W.-B.; Li, T.-J.; Chen, B. Complete Mitochondrial Genomes of Anopheles Stephensi and An. Dirus and Comparative Evolutionary Mitochondriomics of 50 Mosquitoes. Sci. Rep. 2017, 7, 7666. [Google Scholar] [CrossRef]
- Tamura, K. Estimation of the Number of Nucleotide Substitutions When There Are Strong Transition-Transversion and G+C-Content Biases. Mol. Biol. Evol. 1992, 9, 678–687. [Google Scholar] [CrossRef] [Green Version]
- Rozas, J.; Sánchez-DelBarrio, J.C.; Messeguer, X.; Rozas, R. DnaSP, DNA Polymorphism Analyses by the Coalescent and Other Methods. Bioinformatics 2003, 19, 2496–2497. [Google Scholar] [CrossRef]
- Carter, T.E.; Yared, S.; Gebresilassie, A.; Bonnell, V.; Damodaran, L.; Lopez, K.; Ibrahim, M.; Mohammed, S.; Janies, D. First Detection of Anopheles Stephensi Liston, 1901 (Diptera: Culicidae) in Ethiopia Using Molecular and Morphological Approaches. Acta Trop. 2018, 188, 180–186. [Google Scholar] [CrossRef]
- Iwamura, T.; Guzman-Holst, A.; Murray, K.A. Accelerating Invasion Potential of Disease Vector Aedes Aegypti under Climate Change. Nat. Commun. 2020, 11, 2130. [Google Scholar] [CrossRef]
- Crowl, T.A.; Crist, T.O.; Parmenter, R.R.; Belovsky, G.; Lugo, A.E. The Spread of Invasive Species and Infectious Disease as Drivers of Ecosystem Change. Front. Ecol. Environ. 2008, 6, 238–246. [Google Scholar] [CrossRef]
- Ahmed, A.; Dietrich, I.; LaBeaud, A.D.; Lindsay, S.W.; Musa, A.; Weaver, S.C. Risks and Challenges of Arboviral Diseases in Sudan: The Urgent Need for Actions. Viruses 2020, 12, 81. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.; Ali, Y.; Mohamed, N.S. Arboviral Diseases: The Emergence of a Major yet Ignored Public Health Threat in Africa. Lancet Planet. Health 2020, 4, e555. [Google Scholar] [CrossRef]
- Ahmed, A.; Ali, Y.; Elmagboul, B.; Mohamed, O.; Elduma, A.; Bashab, H.; Mahamoud, A.; Khogali, H.; Elaagip, A.; Higazi, T. Dengue Fever in the Darfur Area, Western Sudan. Emerg. Infect. Dis. 2019, 25, 2126. [Google Scholar] [CrossRef]
- Ahmed, A.; Elduma, A.; Magboul, B.; Higazi, T.; Ali, Y. The First Outbreak of Dengue Fever in Greater Darfur, Western Sudan. Trop. Med. Infect. Dis. 2019, 4, 43. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.; Ali, Y.; Elduma, A.; Eldigail, M.H.; Mhmoud, R.A.; Mohamed, N.S.; Ksiazek, T.G.; Dietrich, I.; Weaver, S.C. Unique Outbreak of Rift Valley Fever in Sudan, 2019. Emerg. Infect. Dis. 2020, 26, 3030–3033. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Mahmoud, I.; Eldigail, M.; Elhassan, R.M.; Weaver, S.C. The Emergence of Rift Valley Fever in Gedaref State Urges the Need for a Cross-Border One Health Strategy and Enforcement of the International Health Regulations. Pathogens 2021, 10, 885. [Google Scholar] [CrossRef] [PubMed]
- Sinka, M.E.; Pironon, S.; Massey, N.C.; Longbottom, J.; Hemingway, J.; Moyes, C.L.; Willis, K.J. A New Malaria Vector in Africa: Predicting the Expansion Range of Anopheles Stephensi and Identifying the Urban Populations at Risk. Proc. Natl. Acad. Sci. USA 2020, 117, 24900–24908. [Google Scholar] [CrossRef]
- Hussien, H.H. Malaria’s Association with Climatic Variables and an Epidemic Early Warning System Using Historical Data from Gezira State, Sudan. Heliyon 2019, 5, e01375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, H.; Li, N.; Li, Y.; Kraemer, M.U.G.; Tan, H.; Liu, Y.; Li, Y.; Wang, B.; Wu, P.; Cazelles, B.; et al. Malaria Elimination on Hainan Island despite Climate Change. Commun. Med. 2022, 2, 12. [Google Scholar] [CrossRef]
- Elsanousi, Y.E.A.; Elmahi, A.S.; Pereira, I.; Debacker, M. Impact of the 2013 Floods on the Incidence of Malaria in Almanagil Locality, Gezira State, Sudan. PLoS Curr. 2018, 10. [Google Scholar] [CrossRef]
- Franklinos, L.H.V.; Jones, K.E.; Redding, D.W.; Abubakar, I. The Effect of Global Change on Mosquito-Borne Disease. Lancet Infect. Dis. 2019, 19, e302–e312. [Google Scholar] [CrossRef]
- Colón-González, F.J.; Sewe, M.O.; Tompkins, A.M.; Sjödin, H.; Casallas, A.; Rocklöv, J.; Caminade, C.; Lowe, R. Projecting the Risk of Mosquito-Borne Diseases in a Warmer and More Populated World: A Multi-Model, Multi-Scenario Intercomparison Modelling Study. Lancet Planet. Health 2021, 5, e404–e414. [Google Scholar] [CrossRef]
- Watts, N.; Amann, M.; Arnell, N.; Ayeb-Karlsson, S.; Belesova, K.; Boykoff, M.; Byass, P.; Cai, W.; Campbell-Lendrum, D.; Capstick, S.; et al. The 2019 Report of The Lancet Countdown on Health and Climate Change: Ensuring That the Health of a Child Born Today Is Not Defined by a Changing Climate. Lancet 2019, 394, 1836–1878. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A. The Threat of the Invasive An. Stephensi in the African Region and Lessons for Vector Control Policy. In Proceedings of the ISNTD Bites 2021 Vector Control & Vector-borne Diseases, London, UK, 27 October 2021. [Google Scholar] [CrossRef]
- United Nations Office for the Coordination of Humanitarian Affairs in 2019 Malaria Breached the Epidemic Threshold in Sudan. Available online: https://reports.unocha.org/en/country/sudan/card/1Av57iny1Q/ (accessed on 17 January 2020).
- Gayan Dharmasiri, A.G.; Perera, A.Y.; Harishchandra, J.; Herath, H.; Aravindan, K.; Jayasooriya, H.T.R.; Ranawaka, G.R.; Hewavitharane, M. First Record of Anopheles Stephensi in Sri Lanka: A Potential Challenge for Prevention of Malaria Reintroduction. Malar. J. 2017, 16, 326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, A. Urgent Call for a Global Enforcement of the Public Sharing of Health Emergencies Data: Lesson Learned from Serious Arboviral Disease Epidemics in Sudan. Int. Health 2020, 12, 238–240. [Google Scholar] [CrossRef] [PubMed]
- Seyfarth, M.; Khaireh, B.A.; Abdi, A.A.; Bouh, S.M.; Faulde, M.K. Five Years Following First Detection of Anopheles Stephensi (Diptera: Culicidae) in Djibouti, Horn of Africa: Populations Established-Malaria Emerging. Parasitol. Res. 2019, 118, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, F.G.; Ashine, T.; Teka, H.; Esayas, E.; Messenger, L.A.; Chali, W.; Meerstein-Kessel, L.; Walker, T.; Wolde Behaksra, S.; Lanke, K.; et al. Anopheles Stephensi Mosquitoes as Vectors of Plasmodium Vivax and Falciparum, Horn of Africa, 2019. Emerg. Infect. Dis. 2021, 27, 603–607. [Google Scholar] [CrossRef] [PubMed]
- Mehravaran, A.; Vatandoost, H.; Oshaghi, M.A.; Abai, M.R.; Edalat, H.; Javadian, E.; Mashayekhi, M.; Piazak, N.; Hanafi-Bojd, A.A. Ecology of Anopheles Stephensi in a Malarious Area, Southeast of Iran. Acta Med. Iran. 2012, 50, 61–65. [Google Scholar]
- Munga, S.; Minakawa, N.; Zhou, G.; Barrack, O.-O.J.; Githeko, A.K.; Yan, G. Oviposition Site Preference and Egg Hatchability of Anopheles Gambiae: Effects of Land Cover Types. J. Med. Entomol. 2005, 42, 993–997. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.M.; Macoris, M.L.G.; Galvani, K.C.; Andrighetti, M.T.M.; Wanderley, D.M.V. Assessing the Effects of Temperature on the Population of Aedes Aegypti, the Vector of Dengue. Epidemiol. Infect. 2009, 137, 1188–1202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yared, S.; Gebressielasie, A.; Damodaran, L.; Bonnell, V.; Lopez, K.; Janies, D.; Carter, T.E. Insecticide Resistance in Anopheles Stephensi in Somali Region, Eastern Ethiopia. Malar. J. 2020, 19, 180. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Abubakr, M.; Ali, Y.; Siddig, E.E.; Mohamed, N.S. Vector Control Strategy for Anopheles Stephensi in Africa. Lancet Microbe 2022. [Google Scholar] [CrossRef]
- Ahmed, A. Current Status of Mosquito-Borne Arboviruses in Sudan, and Challenges of Surveillance and Responses. In Proceedings of the Mosquito-Borne Arboviruses: The Rising Global Threat, Malaria Consortium Webinar, Internet, 10 February 2021. [Google Scholar]
- Vaughan, J.A.; Turell, M.J. Facilitation of Rift Valley Fever Virus Transmission by Plasmodium Berghei Sporozoites in Anopheles Stephensi Mosquitoes. Am. J. Trop. Med. Hyg. 1996, 55, 407–409. [Google Scholar] [CrossRef]
- Yadav, P.; Gokhale, M.D.; Barde, P.V.; Singh, D.K.; Mishra, A.C.; Mourya, D.T. Experimental Transmission of Chikungunya Virus by Anopheles Stephensi Mosquitoes. Acta Virol. 2003, 47, 45–47. [Google Scholar] [PubMed]
- The World Health Organization Chikungunya Outbreak in Chad. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/chikungunya-chad (accessed on 8 February 2022).
No. | State | An. stephensi | An. arabiensis | An. macupalpis | An. rufipes | % of An. stephensi | Total |
---|---|---|---|---|---|---|---|
1 | Blue Nile | 0 | 124 | 0 | 0 | - | 124 |
2 | Gedarif | 163 | 10 | 0 | 0 | 94.2% | 173 |
3 | Kassala | 106 | 80 | 0 | 0 | 57.1% | 186 |
4 | North Darfur | 6 | 219 | 60 | 0 | 2.1% | 285 |
5 | Red Sea | 309 | 0 | 0 | 0 | 100% | 309 |
6 | River Nile | 11 | 254 | 0 | 0 | 4.2% | 265 |
7 | Sinnar | 29 | 232 | 0 | 25 | 10.1% | 286 |
Total | 630 | 921 | 60 | 25 | 1628 |
Population | N | S | Hap | Hapd ± VarHapd | Pi | TajimaD | FuFs |
---|---|---|---|---|---|---|---|
North Darfur | 6 | 8 | 6 | 1.0 ± 0.00926 | 0.009 | −0.6231 | −3.178 |
River Nile | 11 | 6 | 6 | 0.873 ± 0.00499 | 0.00617 | 0.1874 | −1.375 |
Khartoum | 5 | 4 | 4 | 0.9 ± 0.02592 | 0.00575 | 0.2734 | −1.012 |
Red Sea | 187 | 11 | 11 | 0.539 ± 0.00169 | 0.00268 | −1.2208 | −4.434 |
Kassala | 94 | 11 | 11 | 0.579 ± 0.00339 | 0.00357 | −1.1133 | −3.962 |
El Gedarif | 96 | 11 | 11 | 0.64 ± 0.00279 | 0.00523 | −0.396 | −1.963 |
Al Gezira | 1 | n.d. | 1 | n.d. | n.d. | n.d. | n.d. |
India | 27 | 2 | 3 | 0.274 ± 0.01143 | 0.00082 | −0.9543 | −1.052 |
Iran | 2 | 0 | 1 | n.d. | 0 | n.d. | n.d. |
Pakistan | 29 | 3 | 4 | 0.2 ± 0.00955 | 0.00059 | −1.7326 | −3.324 * |
Saudi Arabia | 8 | 3 | 4 | 0.643 ± 0.0339 | 0.00216 | −1.4475 | −1.832 |
Sri Lanka | 18 | 1 | 2 | 0.471 ± 0.00678 | 0.00135 | 1.1662 | 1.215 |
United Arab Emirates | 1 | n.d. | 1 | n.d. | n.d. | n.d. | n.d. |
Djibouti | 1 | n.d. | 1 | n.d. | n.d. | n.d. | n.d. |
Ethiopia | 1 | n.d. | 1 | n.d. | n.d. | n.d. | n.d. |
Sudan ¥ | 3 | 1 | 2 | 0.667 ± 0.09877 | 0.00192 | n.d. | 0.201 |
Populations * | North Darfur | River Nile | Khartoum | Red Sea | Kassala | Gedarif | India | Iran | Pakistan | Saudi Arabia | Sri Lanka |
---|---|---|---|---|---|---|---|---|---|---|---|
River Nile | 0.058 | - | - | - | - | - | - | - | - | - | - |
Khartoum | 0.055 | 0.036 | - | - | - | - | - | - | - | - | - |
Red Sea | 0.423 | 0.203 | 0.415 | - | - | - | - | - | - | - | - |
Kassala | 0.394 | 0.171 | 0.372 | 0.004 | - | - | - | - | - | - | - |
El Gedarif | 0.360 | 0.155 | 0.324 | 0.054 | 0.014 | - | - | - | - | - | - |
India | 0.484 | 0.282 | 0.513 | 0.030 | 0.058 | 0.136 | - | - | - | - | - |
Iran | 0.624 | 0.579 | 0.688 | 0.678 | 0.621 | 0.545 | 0.876 | - | - | - | - |
Pakistan | 0.484 | 0.273 | 0.509 | 0.048 | 0.064 | 0.135 | 0.023 | 0.906 | - | - | - |
Saudi Arabia | 0.652 | 0.672 | 0.682 | 0.796 | 0.745 | 0.641 | 0.879 | 0.927 | 0.885 | - | - |
Sri Lanka | 0.485 | 0.304 | 0.512 | 0.065 | 0.106 | 0.168 | 0.126 | 0.824 | 0.224 | 0.863 | - |
Sudan | 0.400 | 0.125 | 0.259 | 0.226 | 0.170 | 0.156 | 0.416 | 0.800 | 0.397 | 0.805 | 0.431 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abubakr, M.; Sami, H.; Mahdi, I.; Altahir, O.; Abdelbagi, H.; Mohamed, N.S.; Ahmed, A. The Phylodynamic and Spread of the Invasive Asian Malaria Vectors, Anopheles stephensi, in Sudan. Biology 2022, 11, 409. https://doi.org/10.3390/biology11030409
Abubakr M, Sami H, Mahdi I, Altahir O, Abdelbagi H, Mohamed NS, Ahmed A. The Phylodynamic and Spread of the Invasive Asian Malaria Vectors, Anopheles stephensi, in Sudan. Biology. 2022; 11(3):409. https://doi.org/10.3390/biology11030409
Chicago/Turabian StyleAbubakr, Mustafa, Hamza Sami, Isam Mahdi, Omnia Altahir, Hanadi Abdelbagi, Nouh Saad Mohamed, and Ayman Ahmed. 2022. "The Phylodynamic and Spread of the Invasive Asian Malaria Vectors, Anopheles stephensi, in Sudan" Biology 11, no. 3: 409. https://doi.org/10.3390/biology11030409
APA StyleAbubakr, M., Sami, H., Mahdi, I., Altahir, O., Abdelbagi, H., Mohamed, N. S., & Ahmed, A. (2022). The Phylodynamic and Spread of the Invasive Asian Malaria Vectors, Anopheles stephensi, in Sudan. Biology, 11(3), 409. https://doi.org/10.3390/biology11030409